Skip to main content
  • Bioactive Meterials
  • Article
  • Published:

Constituents of the stem of Angelica gigas with rat lens aldose reductase inhibitory activity

Abstract

Eleven compounds were isolated from the stem of Angelica gigas. On the basis of spectral data, these compounds were identified as isoimperatorin (1), 7-methoxy-5-prenyloxycoumarin (2), imperatorin (3), decursin (4), bergapten (5), psoralen (6), xanthotoxin (7), p-hydroxyphenethyl trans-ferulate (8), visamminol (9), scopoletin (10), and 3′-hydroxyxanthyletin (11). All isolates were evaluated in vitro for their inhibitory activities on the rat lens aldose reducatase. Tested compounds (1-11) exhibited inhibitory activities against rat lens aldose reductase with IC50 values ranging from 2.59 to 191.91 μM.

References

  • Baba K, Hata K, Kimura Y, Matsuyama Y, and Kozawa M (1981) Chemical studies of Angelica japonica A. GRAY. I. On the constituents of the ethyl acetate extract of the root. Chem Pharm Bull 29, 2565–2570.

    Article  CAS  Google Scholar 

  • Baynes WJ and Thorpe RS (1999) Perspectives in diabetes: role of oxidative stress in diabetic complications—A new perspective on an old paradigm. Diabetes 48, 1–9.

    Article  CAS  Google Scholar 

  • Bergendorff O, Dekermendjian K, Nielsen M, Shan R, Witt R, Ai J, and Sterner O (1997) Furanocoumarins with affinity to brain benzendizepine receptors in vitro. Phytochemistry 44, 1121–1124.

    Article  CAS  Google Scholar 

  • Boel E, Selmer J, Flodgaard JH, and Jensen (1995) Diabetic late complications: will aldose reductase inhibitors or inhibitors of advanced glycosylation endproduct formation hold promise? J Diab Comp 9, 104–129.

    Article  CAS  Google Scholar 

  • Capra CJ, Cuanha PM, Machado GD, Zomkowski DEA, Mendez GB, Santos SAR, Pizzolatti GM, and Rodirigues SAL (2010) Antidepressant-like effect of scopoletin, a coumarin isolated Polygala sabulosa (Polygalaceae) in mice: evidence for the involvement of monoaminergic systems. Eur J Pharmacol 643, 232–238.

    Article  CAS  Google Scholar 

  • Chen IS, Chang CT, Sheen WS, Teng CM, Tsai IL, Duh CY, and Ko FN (1996) Coumarins and antiplatelet aggregation constituents from formosan Peucedanum japonicum. Phytochemistry 41, 525–530.

    Article  CAS  Google Scholar 

  • Deng S, Chen SN, Yao P., Nikolic D, van Breemen RB, Bolton JL, Fong HH, Farnsworth NR, and Pauli GF (2006) Serotonegic activity-guided phytochemical investigation of the roots of Angelica sinensis. J Nat Prod 69, 536–541.

    Article  CAS  Google Scholar 

  • Diwan R and Malpathak N (2009) Furocoumarins: novel topoisomerase I inhibitors from Ruta graveolens L. Bioorg Med Chem 17, 7052–7055.

    Article  CAS  Google Scholar 

  • Endo S, Toshiyuki M, Mamiya H, Ohta C, Soda M, Kitade Y, Tajima K, Hai-Tao Z, EI-Kabbani O, and Hara A (2009) Kinetic studies of AKR1B1O, human aldose reductase-like protein: endogenous substrates and inhibition by steroids. Arch Biochem Biophys 487, 1–9.

    Article  CAS  Google Scholar 

  • Epifano F, Molinaro G, Genovese S, Ngomba RT, Nicoletti F, and Curini M (2008) Neuroprotective effect of prenyloxycoumarins from edible vagetables. Nerusci Lett 443, 57–60.

    Article  CAS  Google Scholar 

  • Feldman EL, Stevens MJ, and Greene DA (1997) Pathogenesis of diabetic neuropathy. Clin Neurosci 4, 365–370.

    CAS  Google Scholar 

  • Friedman AE (1999) Advanced glycosylated end products and hyperglycemia in the pathogenesis of diabetic complications. Diabetes Care 22 Sup 2, B65-B71.

    Google Scholar 

  • Gözler T, Gözler B, Patra A, Leet EJ, Freyer JA, and Samma M (1984) Konyanin: a new lignin from hapuophyllum vulcaniclm. Tetrahedron 40, 1145–1150.

    Article  Google Scholar 

  • Jung HA, Yoon NY, Bae HJ, Min BS, and Choi JS (2008) Inhibitory activities of the alkaloids from Coptidis rhizoma against aldose reductase. Arch Pharm Res 31, 1405–1412.

    Article  CAS  Google Scholar 

  • Kang SY and Kim YC (2007) Neuroprotctive coumarins form the roots of Angelica gigas: structure-activity relationships. Arch Phram Res 30, 1368–1373.

    Article  CAS  Google Scholar 

  • Kang SY, Lee KY, Sung SH, Park MJ, and Kim YC (2001) Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J Nat Prod 64, 683–685.

    Article  CAS  Google Scholar 

  • Kim DK, Lim JP, Yang JH, Eom DO, Eun JS, and Leem KH (2002) Acetylcholineseterase inhibitors from the roots of Angelica dahurica. Arch Pharm Res 25, 856–859.

    Article  CAS  Google Scholar 

  • Kim GS, Park CG, Jeong TS, Cha SW, Baek NI, and Song KS (2009) ACAT (Acyl-CoA: cholesterol acyltransferase) inhibitory effect and quantification of pyranocoumarin in different parts of Angelica gigas Naki. J Appl Biol Chem 52, 187–194.

    Article  CAS  Google Scholar 

  • Kim WJ, Lee SJ, Choi YD, and Moon SK (2010) Decursin inhibits growth of human bladder and colon cancer cell via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation. Int J Mol Med 25, 635–641.

    CAS  Google Scholar 

  • Kim YK, Kim YS, and Ryu SY (2007) Antiproliferative effect of furanocoumaris from the root of Angelica dahurica on cultured human tumor cell lines. Phytother Res 21, 288–290.

    Article  CAS  Google Scholar 

  • Koya D and King LG (1998) Perspectives in diabetes: protein kinase C activation and the development of diabetic complications. Diabetes 47, 859–866.

    Article  CAS  Google Scholar 

  • Lee SH, Kang SS, and Shin KH (2002) Coumarins and a pyrimidine from Angelica gigas roots. Nat Prod Sci 8, 58–61.

    CAS  Google Scholar 

  • Manzanaro S, Salva J, and de la Fuente JA (2006) Phenolic marine natural products as aldose reductase inhibitors. J Nat Prod 69, 1485–1487.

    Article  CAS  Google Scholar 

  • Marumoto S and Miyazawa M (2010) β-Secretase inhibitory effect of furanocoumarins from the root of Angelica dahurica. Phytother Res 24, 510–513.

    CAS  Google Scholar 

  • Masuda T, Takasugi M, and Anetai M (1998) Psoralen and other linear furanocoumarins as phytoalexine in Glehnia littoralis. Phytochemistry 47, 13–16.

    Article  CAS  Google Scholar 

  • Mishra N, Oraon A, Dev A, Jayaprakash V, Basu A, Pattnaik KA, Tripapthi NS, Akahtar M, Ahmad S, Swaroop S, and Basu M (2010) Anticonvulsant activity of Benkara malabarica (Linn.) root extract: in vitro and in vivo investigation. J Ethnopharmacol 128, 533–536.

    Article  Google Scholar 

  • Nakata H, Sahida Y, and Shimamura H (1982) A New phenolic compound from Heracleum lanata MICH. var. nippinicum HARA II. Chem Phram Bull 30, 4554–4556.

    Article  CAS  Google Scholar 

  • Okada Y, Miyauchi N, Suzuki K, Kobayashi T, Tsutsui C, Mayuzumi K, Nishibe S, and Okuyama T (1995) Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derevatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem Pharm Bull 43, 1385–1387.

    Article  CAS  Google Scholar 

  • Pan R, Gao XH, Li Y, Xia YF, and Dai Y (2010) Anti-arthritic effect of scopoletin, a coumarin compound occurring in Erycibe abtusifolia Benth stem, is associated with decreased angiogenesis in synovium. Fundam Clin Pharmacol 24, 477–490.

    Article  CAS  Google Scholar 

  • Ryu KS and Yook CS (1967) Studies on the coumarins of the roots of Angelica gigas Nakai. Yakhak Hoeji 11, 22–26.

    CAS  Google Scholar 

  • Ryu KS, Hong ND, Kim NJ, and Kong YY (1990) Studies on the coumarin constituents of the roots of Angelica gigas Nakai. Kor J Pharmacogn 21, 64–68.

    CAS  Google Scholar 

  • Santiago JV (1993) Lessons from the diabetes control and complications trial. Diabetes 42, 1549–1554.

    CAS  Google Scholar 

  • Sasaki H, Taguchi H, Endo T, and Yosioka I (1982) The constituents of Ledebouriella seseloides WOLFF. I. Structures of three new chromones. Chem Pharm Bull 30, 3555–3562.

    Article  CAS  Google Scholar 

  • Satyajit DS, Amstrong AJ, and Waterman PG (1995) An alkaloid, coumarins and a triterpene from Boronia algida. Phytochemistry 39, 801–804.

    Article  Google Scholar 

  • Shimizu M, Ito T, Terashima S, Hayashi T, Arisawa M, Morita N, Kurokawa S, Ito K, and Hashimoto Y (1984) Inhibition of lens aldose reductase by flavonoids. Phytochemistry 23(9), 1885–1888.

    Article  CAS  Google Scholar 

  • Shin E, Choi KM, Yoo HS, Lee CK, Hwang BY, and Lee MK (2010) Inhibitory effects of coumaris from the stem barks of Fraxinus rhychophylla on adipocyte differentiation in 3T3-L1 cells. Biol Pharm Bull 33, 1610–1614.

    Article  CAS  Google Scholar 

  • Ueda H, Kuroiwa E, Tachibana Y, Kawanishi K, Ayala F, and Moriyasu M (2004) Aldose reductase inhibitors from the leaves of Myrciaria dubia (H. B. & K.) McVaugh. Phytomedicine 11, 652–656.

    Article  CAS  Google Scholar 

  • Wei Y and Ito Y (2006) Preparative isolation of imperatorin, oxypeucedanin and isoimperatorin from traditional Chinese herb “bai zhi” Angelica dahurica (Fisch. Ex Hoffm) Benth. et Hook using multidimensional high-speed counter-current chromatography. J Chromatogr A 1115, 112–117.

    Article  CAS  Google Scholar 

  • Xiao H and Parkin K (2006) Isolation and identification of Phase II enzyme-inducing agents from nonpolar extracts of green onion (Alliums pp.). J Agric Food Chem 54, 8417–8424.

    Article  CAS  Google Scholar 

  • Yabe-Nishimura C (1998) Aldose reducatse in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50, 21–33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Soo Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.Y., Kwon, S.B., Heo, N.K. et al. Constituents of the stem of Angelica gigas with rat lens aldose reductase inhibitory activity. J. Korean Soc. Appl. Biol. Chem. 54, 194–199 (2011). https://doi.org/10.3839/jksabc.2011.032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2011.032

Key words