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Vitamin D and Breast Cancer: Molecular Communications
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Epidemiological studies have demonstrated that vitamin D status is inversely associated with

breast cancer incidence, mortality, and recurrences, suggesting vitamin D as a potent agent to

reduce the risk of breast cancer. The hormonally active metabolite of vitamin D, 1α,25-

dihydroxyvitamin D (1α,25(OH)
2
D, calcitriol), and its analogs have exerted inhibitory activity of

cellular proliferation through arresting cell cycle and inducing apoptosis, and suppressive effects

on the invasion, angiogenesis, and metastasis of breast cancer. In the studies of molecular basis of

vitamin D activities, many upstream signaling pathways cross-talking with vitamin D signaling

have been investigated. 1α,25(OH)
2
D and its analogs regulates different signaling pathways

mediated by transforming growth factor-β superfamily, epidermal growth factor receptors family,

estrogen signaling-related molecules, insulin-like growth factor-binding proteins, and protein

kinase C. The multipotent activities of vitamin D in signaling modulation may be efficient and

effective in suppressing highly heterogeneous breast cancer.

Key words: breast cancer, epideramal growth factor receptor, estrogen, transforming growth factor-

β, vitamin D

In addition to the well-known roles of vitamin D

(cholecalciferol and ergocalciferol) and its metabolites

in the physiological regulation of calcium/phosphate

homeostasis and bone mineralization [Brown et al., 1999;

Dusso et al., 2005; Holick, 2007], the accumulating

epidemiological, preclinical, and clinical studies have

demonstrated that vitamin D and/or the metabolites exert

anti-tumor activity by inhibiting cell proliferation, inducing

apoptosis and cell differentiation, and inhibiting cell

invasion, angiogenesis, and metastasis [Garland et al.,

2006; Vijayakumar et al., 2006; Deeb et al., 2007]. These

studies have suggested that vitamin D may act as a potent

chemopreventive agent in several cancer types including

breast cancer.

Based on the global cancer statistics (GLOBOCAN

2008), breast cancer is the most frequently occurring

cancer (23% of total new cancer cases) and accounts for

the highest mortality rate (14% of the total cancer death)

in women worldwide [Jemal et al., 2011]. Although the

breast cancer incidence in Asia including Korea is

relatively lower than those in Western countries, new

cases of breast cancer and mortality rate in Asian countries

have been gradually rising during the last decade [Jemal

et al., 2011]. In addition, human breast tumorigenesis has

been shown to be highly heterogeneous, and it appears

that there are different dominant pathways playing a

critical role during tumor progression [Stingl and Caldas,

2007; Vargo-Gogola and Rosen, 2007]. Therefore, safe

and effective dietary agents regulating the key signaling

pathways are necessary to prevent breast carcinogenesis.

This review focuses on summarizing recent studies of

vitamin D on the suppression of breast cancer and

molecular mechanisms of action.

Vitamin D Sources and Metabolism

Vitamin D sources. Significant amounts of vitamin D

can be obtained from dietary natural sources (salmon, cod

liver oil, egg yolk etc.), fortified foods (milk, juice,

cheese, etc.), and dietary supplements (Fig. 1). Vitamin

Ds from dietary sources enter the blood stream through

the lymphatic system after the incorporation with

chylomicrons [Holick, 2007]. Vitamin D is also produced

in the skin through the breakdown of 7-dehydro-

cholesterol into previtamin D by an ultraviolet B from the

sun light, and previtamin D is then converted into vitamin

D by thermal isomerization [Holick, 2007].
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Vitamin D metabolism. Vitamin D is metabolized into

25-hydroxyvitamin D, the major circulating metabolite,

by the hepatic cytochrome P-450 monooxygenases, 25-

hydroxylase (CYP27A1) in the liver (Fig. 1) [Prosser and

Jones, 2004]. The second step for vitamin D activation is

1α-hydroxylation of 25-hydroxyvitamin D mainly in the

kidney [Fraser and Kodicek, 1970]. The mitochondrial

cytochrome P-450 enzyme, 25-hydroxyvitamin D-1α-

hydroxylase (1α-hydroxylase) encoded by the gene

CYP27B1 produces hormonally active vitamin D

metabolite, 1α,25-dihydroxyvitamin D (1α,25(OH)
2
D,

calcitriol) from 25-hydroxyvitamin D [Haussler et al.,

1998]. Extrarenal organs including colon, breast, prostate,

lung, pancreas, monocytes, and skin are also known to

express 1α-hydroxylase, which converts 25-hydroxy-

vitamin D into 1α,25(OH)
2
D

 
locally [Zehnder et al.,

2001; Hewison et al., 2004]. However, the produced

1α,25(OH)
2
D in those organs function as tissue-specific

autocrine/paracrine factor to mediate local actions of

vitamin D in cell proliferation, differentiation, and

immune regulation [Dusso et al., 2005; Townsend et al.,

2005a; 2005b], suggesting that 1α,25(OH)
2
D

 
does not

enter the circulating track for calcium metabolism

[Holick, 2007].

Vitamin D receptor (VDR). The active vitamin D

metabolite, 1α,25(OH)
2
D transduce the cellular signal by

binding and activating VDR, a member of the nuclear

receptor superfamily for the steroid hormones discovered

in 1969 [Haussler and Norman, 1969]. VDR is known to

be expressed in more than 30 tissues in human [Reichel et

al., 1989], and its crystal structure of the ligand binding

domain (LBD) was first reported in 2000 [Rochel et al.,

2000]. The regulation of target genes of 1α,25(OH)
2
D

occurs by binding to VDR. The 1α,25(OH)
2
D-bound

VDR heterodimerizes with retinoid X receptor (RXR)

and translocates to the nucleus, where 1α,25(OH)
2
D-

VDR-RXR complex specifically interacts with VDR

element (VDRE), and modulate the transcriptional activity

[Haussler et al., 1998; Dusso et al., 2005]. It has also been

reported that non-genomic rapid response is mediated by

the vitamin D receptor located in the plasma membrane in

caveolae-rich environments, although the mechanism is

not yet clearly understood [Norman et al., 2004].

Norman’s group have demonstrated that the flexibility of

1α,25(OH)
2
D in single bonds of carbons 6 and 7

determined genomic or nongenomic rapid responses, in

which 6-s-trans configuration of 1α,25(OH)
2
D binds to

the VDR for genomic regulation and 6-s-cis-conformation

is used by the VDR for rapid responses [Norman et al.,

2004; Norman, 2006]. Although the rapid action of

1α,25(OH)
2
D

 
works via non-genomic regulation, it may

affect the transcription indirectly by secondary messengers

Fig. 1. Metabolism of vitamin D. Vitamin D can be synthesized through convertion of 7-dehydrocholesterol into vitamin D

using the UVB energy in the skin and/or obtained from foods. The absorbed vitamin D is hydrolysed into form 25-

hydroxyvitamin D by 25-hydroxylase in the liver. 1α,25-dihydroxyvitamin D (1α,25(OH)
2
D) is produced by 1α-hydroxylase

(CYP27B1) in the kidney to play a role in calcium homeostasis and bone metabolism. The local production of 1α,25(OH)
2
D in

extrarenal organs shows functions in cell proliferation, differentiation, and immune regulation.
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inducing cross-talk with other signaling pathways such as

protein kinase C (PKC) pathway [Losel and Wehling,

2003; Deeb et al., 2007] 

Vitamin D Status and Breast Cancer

Among vitamin D metabolites, the plasma level of 25-

hydroxyvitamin D is used as a common indicator for

determining vitamin D status, because 25-hydroxy-

vitamin D is the major circulating molecule and its serum

level is known to be proportional to vitamin D intake

[Holick, 1981; 2007]. The serum level of 1α,25(OH)
2
D,

however, is not appropriate for use as a vitamin D status

indicator, because the renal production of 1α,25(OH)
2
D

can be elevated by parathyroid hormone (PTH) when

vitamin D is deficient and calcium concentration is low

[Holick, 2009]. The epidemiological studies demonstrating

the association of serum 25-hydroxyvitamin D and breast

cancer risk have been performed. In pooled analysis, a

higher serum level of 25-hydroxyvitamin D (>52 ng/mL)

showed a 50% decrease of breast cancer risk compared to

the lower level (<13 ng/mL) [Garland et al., 2007]. Yin et

al. [2010] also performed a meta-analysis with four

nested and five case-control studies and found significant

inverse association between serum level of 25-hydroxy-

vitamin D and breast cancer risk in case-control studies,

although this finding remained unconfirmed in nested

case-control studies. In postmenopausal breast cancer

patients, lower serum level of 25-hydroxyvitamin D was

reported to be significantly associated with the increased

risk of cancer death and distant recurrence [Vrieling et al.,

2011]; however, there was no significant association with

breast cancer risk in the mostly premenopausal population

in the Nurses’ Health Study II [Eliassen et al., 2011],

suggesting the estrogen-related signaling could be

communicating with vitamin D signaling. Interestingly,

in a case-control and a case-series study, Yao et al. [2011]

compared the serum concentration of 25-hydroxyvitamin

D in different breast cancer subtypes and showed that 10

ng/mL increase of serum 25-hydroxyvitamin D correlated

with a 64% lower risk of triple negative breast cancer.

These accumulating study results suggest that the serum

25-hydroxyvitamin D may be deeply associated with

breast carcinogenesis and 25-hydroxyvitamin D can act

as a useful indicator for the breast cancer in women. 

Anti-tumor Mechanisms of the Active Vitamin 

D Metabolite (1α,25(OH)
2
D) on Breast Cancer

Although 1α,25(OH)
2
D is not commonly considered as

vitamin D status indicator [Holick, 2009], Caucasian

women having low level of 1α,25(OH)
2
D were reported

to have five times higher risk of breast cancer than

frequency-matched control in a clinic-based case-control

study [Janowsky et al., 1999], and serum level of

1α,25(OH)
2
D was also negatively correlated with the

progression of breast cancer to bone metastases [Mawer

et al., 1997]. Hormonally active vitamin D metabolite,

1α,25(OH)
2
D binds its cellular receptor VDR, which acts

as a transcription factor or cellular signaling molecule,

and regulate the expression of the target genes to exert the

biological activities [Dusso et al., 2005]. In clinical trial,

however, 20-30% of patients who were given a dose of

1.5-2.0 mg/day of 1α,25(OH)
2
D developed hypercalcemia,

a potentially life threatening situation [Osborn et al.,

1995]. Therefore, different vitamin D analogs have been

synthesized to overcome the hypercalcemic toxicity and

to enhance the anti-tumorigenic activity. 1α,25(OH)
2
D

and its analogs have been investigated for their activity in

preventing and/or suppressing mammary tumorigenesis.

Inhibition of cell proliferation. 1α,25(OH)
2
D and its

analogs were reported to down-regulate cyclin D1/ cyclin-

dependent kinase (CDK)s and up-regulate the CDK

inhibitors p21 and p27, which leads to accumulation of

the cells in the G1 phase in both estrogen receptor (ER)-

positive and -negative breast cancer cells [Wu et al.,

1997; Verlinden et al., 1998; 2000; Jensen et al., 2001;

Flanagan et al., 2003; Hussain-Hakimjee et al., 2006].

Although the gene CDKN1A encoding p21 is known to

contain a functional VDRE in the promoter region, the

cell cycle perturbation by vitamin D and its analogs can

also be derived indirectly from the cross-talk with other

signaling pathways including the epidermal growth factor

(EGF) [Koga et al., 1988; McGaffin et al., 2004], the

transforming growth factor-β (TGF-β) [Wu et al., 1998;

Yang et al., 2001; Li et al., 2005], and the mitogen-

activated protein kinase (MAPK)-extracellular signal

regulated kinase (ERK1/2) or MAPK-p38 signaling

pathway [Capiati et al., 2004; Rossi et al., 2004; Li et al.,

2005]. A vitamin D analog, 1α(OH)D
5
, was also reported

to inhibit cell proliferation by inducing cell differentiation

via VDR [Lazzaro et al., 2000; Mehta et al., 2000]. In

combination studies, 1α,25(OH)
2
D and its analogs

enhanced the sensitivity to the treatments of adriamycin

[Sundaram et al., 2000], melatonin [Bizzarri et al., 2003],

and radiation [Chaudhry et al., 2001].

Induction of apoptosis. Several studies have demonstrated

that 1α,25(OH)
2
D and its analogs induced apoptosis by

regulating the mediators including anti-apoptotic BCL-2

and pro-apoptotic Bax in breast cancer cells. In MCF-7

human breast cancer cells, 1α,25(OH)
2
D and its analogs

have been reported to induce apoptosis by inhibiting BCL-

2 expression, translocating Bax, and inducing cytochrome

c release via the caspase-independent pathway [James et
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al., 1996; Mathiasen et al., 1999; Narvaez and Welsh,

2001]. In addition, mechanistic studies have suggested

that 1α,25(OH)
2
D and its analogs down-regulate ER

[Simboli-Campbell et al., 1997], activate PKC [Narvaez

et al., 2003], and regulate TGF-β and p38 MAPK

signaling to induce apoptosis [Li et al., 2005]. Furthermore,

co-treatment of 1α,25(OH)
2
D or its analogs with other

agents, such as tamoxifen [Welsh, 1994], retinoids [James

et al., 1995], adriamycin [Sundaram et al., 2000], and

radiation [Sundaram and Gewirtz, 1999; Polar et al.,

2003] enhanced the induction of apoptosis.

Effects on cell invasion, angiogenesis and metastasis.

Studies of the role of 1α,25(OH)
2
D and its analogs on cell

invasion have shown that 1α,25(OH)
2
D and its analogs

inhibit cell invasion by decreasing invasion-related serine

protease and metalloproteinase, MMP-9 [Koli and Keski-

Oja, 2000; Flanagan et al., 2003; Sundaram et al., 2006].

Moreover, Mantell et al. [2000] found that 1α,25(OH)
2
D

inhibited the vascular endothelial growth factor (VEGF)-

induced endothelial cell sprouting and elongation in vitro,

and also demonstrated in vivo suppression of vascularization

in tumors. In addition, a significant decrease of tumor

cell-induced angiogenesis by co-treatment of cells with

1α,25(OH)
2
D and retinoids was reported [Majewski et

al., 1995]. The vitamin D analog EB1089 exerting less

calcemic activity was reported to suppress bone metastases

by decreasing the number of bone metastases, surface

area of osteolytic lesions, and tumor burden per animal

after intracardiac injection of MDA-MB-231 human

breast cancer cells [El Abdaimi et al., 2000].

Cross-talk of Vitamin D Signaling with

Other Pathways

In addition to the gene regulation by vitamin D involved

in calcium/phosphate homeostasis, 1α,25(OH)
2
D and its

analogs have been demonstrated to activate or repress the

transcription of different genes in normal and tumor

tissues [Katayama et al., 2003; Palmer et al., 2003;

Guzey et al., 2004; Krishnan et al., 2004; Peehl et al.,

2004; Nagpal et al., 2005; Zhang et al., 2005]. However,

among those genes regulated by 1α,25(OH)
2
D and its

analogs, especially the genes involved in carcinogenesis

such as proto-oncogenes and tumor-suppressing genes,

many do not have VDREs in their promoter regions

[Deeb et al., 2007]. This suggests that indirect modulation

via cross-talk with other signaling pathways may play a

role in deriving different cellular responses in cell

proliferation, differentiation, and apoptosis (Fig. 2) [Losel

and Wehling, 2003; Deeb et al., 2007].

TGF-β superfamily. The TGF-β superfamily, including

TGF-βs, activins, and bone morphogenetic proteins

(BMPs), are multifunctional cytokines that affect

inflammation, immune response, cell proliferation,

Fig. 2. Signaling pathways communicating with vitamin D signaling in breast cancer. Hormornally active metabolite, 1α,25-

dihydroxyvitamin D (1α,25(OH)
2
D) and its analogs inhibit cellular proliferation and induce apoptosis by regulating molecular

targets in different signaling pathways. VD, 1α,25(OH)
2
D and its analogs; TGFβs, transforming growth factor βs; TGFβR, TGFβ

receptor; BMPs, bone morphogenetic proteins; BMPR, BMP receptor; EGF, epidermal growth factor; IGF, insulin-like growth

factor; IGFR, IGF receptor; IGFBPs, IGF-binding proteins; ER, estrogen receptor; MAPK, mitogen-activated protein kinase.
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differentiation, and apoptosis [Bierie and Moses, 2006].

The nuclear receptor ligands, vitamin D analogs, have

been shown to induce the synthesis of ligands and

receptors for TGF-βs and BMPs in different types of cells

including epithelial and leukemia cells [Hatakeyama et

al., 1996; Wu et al., 1998; Jung et al., 1999; Yang et al.,

2001; Bizzarri et al., 2003; Li et al., 2005]. In addition,

Mehta et al. [1997] reported that the vitamin D analog,

1α(OH)D
5 
significantly induced the expression of TGF-

β1 and VDR in normal mouse mammary glands. Among

the studies with TGF-β/BMP signaling and nuclear

receptors, 1α,25(OH)
2
D

 
has been shown to induce an

interaction among Smad3, intracellular mediator transducing

TGF-β signaling, and VDR in the nucleus, and potentiate

VDR-dependent transcription, suggesting that Smad3

may mediate cross-talk between the vitamin D and TGF-

β signaling pathways, acting as a coactivator [Yanagi et

al., 1999; Yanagisawa et al., 1999]. 1α,25(OH)
2
D and

novel Gemini vitamin D analogs are also reported to

activate the BMP signaling pathway through the

enhancement of the production of BMPs and suppression

of the inhibitory Smad6 in human mammary epithelial

cells [Lee et al., 2006a; 2006b].

Epidermal growth factor receptor (EGFR) family

and RAS. The EGFR family is composed of four closely

related receptors, including EGFR (ErbB1), HER2/c-neu

(ErbB2), HER3 (ErbB3), and HER4 (ErbB4) [Hackel et

al., 1999]. The downstream signaling includes the MAPK

and AKT pathways, which regulate cell growth, survival,

and cell differentiation [Oda et al., 2005]. Several studies

have demonstrated that 1α,25(OH)
2
D

 
and vitamin D

analogs suppress cell proliferation by blocking the cell

mitogenic signaling at the level of EGFR [Koga et al.,

1988; Tong et al., 1999; McGaffin et al., 2004; Deeb et

al., 2007]. Treatment of breast cancer cells with

1α,25(OH)
2
D

 
and vitamin D analogs reduced the specific

binding of EGF by decreasing the number of receptors

[Koga et al., 1988] and inhibited the mRNA synthesis of

EGFR [McGaffin et al., 2004]. In the mouse mammary

tumor virus (MMTV)-Her2/neu transgenic mouse model,

Gemini vitamin D analog inhibited mammary tumorigenesis

by suppressing the phosphorylation of ErbB2 receptor, as

well as that of downstream signaling molecules, AKT

and ERK [Lee et al., 2010]. RAS/MAPK signaling in

breast cancer has drawn less attention due to low percentage

(~5%) of RAS mutation [von Lintig et al., 2000].

However, Paranjape et al. [2011] recently demonstrated

that KRAS variant increased the risk of triple-negative

breast cancer in premenopausal women, and Whyte et al.

[2009] showed that abnormal activation of RAS/MAPK

signaling in breast cancer suggests the involvement of

RAS/MAPK signaling during mammary carcinogenesis.

The modulation of MAPK including ERK, JNK, and p38

by 1α,25(OH)
2
D in breast cancer cells has also been

reported [Gilad et al., 2005; Cordes et al., 2006; Brosseau

et al., 2010]. 

Estrogen signaling related molecules. Estrogen is the

major stimulator of estrogen ER positive breast cancer,

and ER antagonists, tamoxifen and raloxifene, are Food

and Drug Administration (FDA)-approved agents for

breast cancer preventive therapy [Cuzick et al., 2011].

1α,25(OH)
2
D has been shown to inhibit estrogen signaling

by suppressing the expression of ER-α [Stoica et al.,

1999; Swami et al., 2000]. In addition, 1α,25(OH)
2
D was

involved in reducing the expression of aromatase, the

enzyme that catalyzes the estrogen synthesis, which results

in down-regulating the estrogen signaling [Krishnan et

al., 2010a; 2010b; Lundqvist et al., 2011]. More importantly,

1α,25(OH)
2
D regulates aromatase activity tissue-

specifically, which indicates that 1α,25(OH)
2
D inhibits

the aromatase expression in breast cancer cells or the

surrounding mammary adipose tissue, whereas enhances

in osteoblast and fibroblasts [Enjuanes et al., 2003;

Yanase et al., 2003; Krishnan et al., 2010b]. The tissue-

specific role of 1α,25(OH)
2
D in estrogen synthesis is

beneficial, because estrogen is necessary for the maintenance

of bone mineralization in postmenopausal women

[Krishnan et al., 2010b]. 

Insulin-like growth factor binding proteins (IGFBPs).

IGFBPs, a group of six different proteins, sequester free

ligands, insulin-like growth factors (IGFs), by binding

with high affinity, thereby modulating the mitogenic and

prosurvival IGF signaling pathway [Grimberg and

Cohen, 2000]. After the studies showing plasma levels of

IGF-I were significantly associated with prostate cancer

risk [Chan et al., 1998; Peng et al., 2006; Silha et al.,

2006; Peng et al., 2007], the roles of IGFBPs, especially

IGFBP-3, in cell proliferation and tumor growth have

been investigated. In breast cancer, IGFBP-3 has been

suggested to acts as a tumor suppressive factor [Pazaitou-

Panayiotou et al., 2007; Tomii et al., 2007], although the

association of circulating IGFBP-3 with pre-menopausal

breast cancer is still unsettled [Renehan et al., 2006;

Schernhammer et al., 2006]. The expression of IGFBPs

has been shown to be up-regulated by 1α,25(OH)
2
D and

its analogs in different cancer cells including prostate

[Boyle et al., 2001; Stewart et al., 2005], colon [Oh et al.,

2001; Palmer et al., 2003], and breast [Swami et al.,

2003]. Recently, a functional VDRE has been identified

in the promoter region of IGFBPs [Peng et al., 2004;

Matilainen et al., 2005; Carlberg et al., 2007], suggesting

that IGFBPs may be the primary target genes of

1α,25(OH)
2
D and its analogs. Lee et al. [2006a; 2008]

also reported that Gemini vitamin D analogs induce the
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expression of IGFBP-3 in estrogen receptor (ER)-positive

and -negative animal models, as well as MCF10A series

of breast epithelial cells.

PKC. The PKC family of serine/threonine kinases

regulates cell growth, apoptosis, differentiation, cell

migration, and carcinogenesis in different types of cells

[Teicher, 2006; Griner and Kazanietz, 2007]. PKCs were

originally thought to be pro-mitogenic kinases, but this

effect may be PKC isoform-dependent and cell-type-

dependent, as many PKCs can also inhibit cell cycle

progression [Griner and Kazanietz, 2007]. Among many

different PKC isoforms, PKCα is known to inhibit cell

proliferation via p21 induction and suppress tumor

formation in vivo [Detjen et al., 2000; Oster and Leitges,

2006]. PKC has been shown to be regulated by

1α,25(OH)
2
D

 
and several vitamin D analogs [Buitrago et

al., 2003; Boyan et al., 2006a; 2006b]. Boyan et al.

[2006a; 2006b] suggested that a caveolar environment

may play an important role in mediating the PKC

activation by 1α,25(OH)
2
D. Furthermore, Lee et al.

[2007] reported that Gemini vitamin D analog induced

VDR dependent-Smad1/5/8 phosphorylation through the

activation of PKC
 
α.

Conclusion

Many studies have been performed to demonstrate the

role of vitamin D in breast cancer prevention or therapy,

and it is clear that vitamin D signaling is deeply involved

in human breast carcinogenesis. In the mechanistic studies,

hormonally active vitamin D metabolite, 1α,25(OH)
2
D

and its analogs, exerted the ability to regulate the multiple

signaling pathways including TGF-β, PKC, IGFBPs,

ErbBs, and estrogen signaling in a nuclear VDR-dependent

and/or membrane VDR-dependent manner. Because

breast cancer is a highly heterogeneous chronic disease,

in which significant amounts of genetic and epigenetic

changes are induced and multiple signaling pathways are

also deregulated [Vargo-Gogola and Rosen, 2007], the

multipotent activities of vitamin D could be adequate

strategy for effective suppression of breast carcinogenesis.

Recently, Perou et al. [2000] and Sorlie et al. [2001]

proposed a novel classification of breast cancer based on

distinct profiles of gene expression in human breast

tumors, which include luminal A, luminal B, basal-like,

Her-2 positive, and normal breast-like subtypes. Therefore,

in future studies on the molecular targets of vitamin D in

vitro or in vivo breast cancer model, it will be necessary to

define the subtypes of breast cancer models and then

identify the subtype-specific targets of vitamin D.
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