2-Isopropyl-5-methylphenol Isolated from Ruta graveolens and Its Structural Analogs Show Antibacterial Activity against Food-borne Bacteria

Ju-Hyun Jeon • Jun-Hwan Park • Hoi-Seon Lee

Received: 29 April 2014 / Accepted: 3 June 2014 / Published Online: 31 August 2014
© The Korean Society for Applied Biological Chemistry and Springer 2014

Abstract

The antimicrobial activities of the essential oil obtained from the aerial parts of Ruta graveolens and 2-isopropyl-5methylphenol analogs were evaluated against six food-borne bacteria. The essential oil of R. graveolens aerial parts exhibited potent antimicrobial activity against six food-borne bacteria. 2-Isopropyl-5-methylphenol was isolated by chromatographic analyses. The structure-activity relationships of the 2-isopropyl-5-methylphenol analogs, 2 -isopropyl-5-methylphenol, and its structural analogs (2isopropylphenol, 2-methylphenol, phenol, and 2-isopropyl-5methylbenzene) were determined against six food-borne bacteria. When employing the agar diffusion method, 2-isopropyl-5methylphenol and 2-isopropylphenol had potent antimicrobial activities against the six food-borne bacteria. The minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) values of 2-isopropyl-5-methylphenol and its structural analogs were determined against the six food-borne bacteria. 2-Isopropyl-5-methylphenol exhibited the strongest activity (MIC, $5-6.25 \mu \mathrm{~g} / \mathrm{mL}$; MBC, $6.25-12.5 \mu \mathrm{~g} / \mathrm{mL}$) against the six food-borne bacteria. Therefore, the essential oil of R. graveolens and 2-isopropyl-5-methylphenol analogs should be useful as natural food preservatives.

Keywords 2-isopropyl-5-methylphenol • antimicrobial foodborne bacteria R. graveolens

Introduction

Various illnesses are caused by consuming food contaminated

[^0]with bacteria (Oussalah et al, 2007). Thus, antimicrobial drugs are widely used to control food-borne diseases. However, conventional use of antimicrobial drugs leads to the emergence of antibioticresistant pathogenic strains (Yang et al., 2013). The principle mechanisms of bacterial resistance to antimicrobials include active drug efflux systems, mutations that result in altered cell permeability, cellular degradation of antimicrobials, and alterations in their cellular targets (Nikaido, 1994; Walsh, 2000). Increasing concern about this problem has led to the development of safe alternatives, such as natural products against food-borne bacteria (Lee and Ahn, 1998; Lim et al., 2007).

Essential oils are aromatic oily liquids obtained from plant materials (fruits, flowers, buds, seeds, twigs, leaves, bark, wood, herbs, and roots), and these essential oils can be obtained by expression, fermentation or extraction; however, the steam distillation method is the most commonly used method for commercial production (Prabuseenivasan et al., 2006; Yang et al., 2002). In addition, plant-derived oils have been used as flavoring agents in food for a long time and as natural agents for food preservation (Helander et al., 1998; Lee, 2002). Bioactive constituents with antimicrobial activity found in plants, spices, and herbs include phenolic compounds, terpenes, aldehydes, aliphatic alcohols, ketones, and isoflavonoids (Katayama and Nagai, 1960; Farag et al., 1989; Dorman and Deans, 2000; Lambert et al., 2001; Burt and Foegeding, 2003; Kim et al., 2003; Kim et al., 2004). Above all, the modes of action of phenolic compounds as antimicrobial agents have been reported (Lopez et al., 2007). The effect of phenolic compounds on microbial growth could be the result of their ability to alter microbial cell permeability, and permit the loss of macromolecules from the interior (Santiesteban-Lopez et al., 2007). Ruta graveolens L. (Rutaceae) is a traditional medicinal plant that prevents attacks by fleas and other noxious insects (Vincenzo et al., 2002). In addition, R. graveolens is used as a flavoring agent in foods and spirits (Vincenzo et al., 2002) and has been recommended as an herbal medicine for treatment of
headache, insomnia, nervousness, abdominal cramps, and renal troubles (Malik et al., 2013). The objective of the present study was to isolate the active components of R. graveolens oil and test them against six foodborne bacteria. We also discuss the structureactivity relationships of the analogs.

Materials and Methods

Chemicals. 2-Isopropylphenol, 1-isopropyl-4-methylbenzene, 2methylphenol, and phenol were purchased from Sigma-Aldrich (USA). All other compounds were of reagent grade.
Plant materials. Aerial parts of R. graveolens from air-dried plants were purchased from a local market (Korea). The essential oil of R. graveolens was extracted by the steam distillation extraction method. The extracted oil (yield, 0.06%) was dried with anhydrous sodium sulfate and stored in a sealed vial at $4^{\circ} \mathrm{C}$ prior to isolation.
Isolation and identification. The oil of R. graveolens aerial parts (20 g) was sequentially fractionated by chromatography on a silica gel column (Merck 70-230 mesh, $600 \mathrm{~g}, 6.0 \mathrm{~cm}$ i.d. $\times 80 \mathrm{~cm}$; USA), and then continuously eluted with a step gradient of hexane-ethyl acetate ($10: 0$ to $0: 10, \mathrm{v} / \mathrm{v}$), which gave five fractions (R1-5). These fractions were analyzed by thin-layer chromatography (TLC), and fractions with similar patterns were combined. The active R3 $(14.5 \mathrm{~g})$ fraction was subjected to silica gel column chromatography ($6.0 \times 80 \mathrm{~cm}$) using hexane-ethyl acetate ($9: 1$ and $8: 2, \mathrm{v} / \mathrm{v}$) as the mobile phase to provide four fractions (R31-4). Fraction R33 (8.4 g) was isolated by preparative high-performance liquid chromatography (prep. HPLC, Japan Analytical Industry Co. Ltd, Japan) using a Jai gel W series column (W $25350 \mathrm{~cm}+\mathrm{W} 25250$ cm), with 100% chloroform as the mobile phase at a flow rate of $3.0 \mathrm{~mL} / \mathrm{min}$, which produced three fractions (R331-3). Fraction R331 was subjected to further chromatography to acquire a refined active compound on a Jai gel GS series column (GS 310 $50+\mathrm{GS} 31030 \mathrm{~cm}$) using hexane-ethyl acetate ($1: 9, \mathrm{v} / \mathrm{v}$), which gave three fractions (R3311-3). Fraction R3312 was subjected to a Jai gel GS series column, with 100% chloroform as the mobile phase under the same conditions, providing two fractions (R33121 and R33122). Finally, fraction R33121 (1.2 g) was identified by spectroscopic method. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nuclear magnetic resonance (NMR) were conducted using a JNM-EX 600 spectrometer (JEOL, Japan) in deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ with trimethylsilane as the internal standard at 600 and 150 MHz , respectively. Additionally, electron-impact-mass spectroscopy (EI-MS) spectra were obtained with a JEOL JMS-DX 30 spectrometer.
Gas chromatography-mass spectrometry (GC-MS). Aerial parts of R. graveolens were analyzed on a gas chromatograph (6890, Agilent, Technologies, USA)-mass spectrometer (5973 IV, Agilent). A $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ inside diameter DB- 5 (0.25 mm film) fused silica capillary column (J\&W Scientific, USA) was used as the GC column. The GC conditions were as follows: injector temperature, $210^{\circ} \mathrm{C}$; column temperature, isothermal at $50^{\circ} \mathrm{C}$ for

15 min , then programmed to rise to $200^{\circ} \mathrm{C}$ at $2^{\circ} \mathrm{C} / \mathrm{min}$ and held at this temperature for 15 min ; ion source temperature, $230^{\circ} \mathrm{C}$. Helium gas was used as the carrier gas at a flow rate of $0.8 \mathrm{~mL} /$ min . The GC effluent directly entered the MS. Spectra were obtained in the EI mode with 70 eV . The mass analyzer was set to scan from 50 to 600 amu for 2 s . Components were identified by comparison of their retention time, retention index, and mass spectra with those in a mass spectra library (The Wiley Registry of Mass Spectral Data, 8th edition).
Bacterial strains and culture conditions. The food-borne bacteria used in the experiments included the Gram-positive bacteria Bacillus cereus ATCC 14579, Listeria monocytogenes ATCC 15313, and Staphylococcus intermedius ATCC 29663, and the Gram negative bacteria Salmonella enterica ATCC 43971, Salmonella typhimurium IFO 14193, and Shigella sonnei ATCC 25931. The bacterial strains were obtained from the Korean Culture Center of Microorganisms (Korea). The bacteria were aerobically cultured at $37^{\circ} \mathrm{C}$ for 24 h in nutrient broth (Difco, USA), with the exception of Escherichia coli, which was cultured in brain heart infusion broth (Difco).
Antimicrobial activity The paper disc agar diffusion method was used to determine the antimicrobial activities of 2-isopropyl-5methylphenol and its structural analogs such as 2-isopropylphenol, 2-methylphenol, phenol, and 1-isopropyl-4-methylbenzene. To assay the antimicrobial activity of the test microorganisms used, one loopful of bacteria was suspended in 1 mL of sterilized physiological saline. An aliquot (0.1 mL) of the test bacterial suspension was seeded on a Mueller-Hinton agar (MHA, Difco) plate. Each test sample was then dissolved in $100 \mu \mathrm{~L}$ methanol solution and applied to a paper disc using a Drummond glass microcapillary (8 mm diameter and 1 mm thickness; Advantec Roshi, Japan). After evaporating the solvents, the discs were placed on an agar surface preincubated with test bacteria. All plates were then incubated anaerobically at $37^{\circ} \mathrm{C}$ for 2 days. The control discs received $100 \mu \mathrm{~L}$ methanol. All growth inhibition tests were replicated three times. The range of antimicrobial activity was: potent activity, $>30 \mathrm{~mm}$; strong activity, $21-30 \mathrm{~mm}$; moderate activity, $16-20 \mathrm{~mm}$; weak activity, $10-5 \mathrm{~mm}$; and little or no activity, $<10 \mathrm{~mm}$.
Minimum bactericidal concentration (MBC)/minimum inhibitory concentration (MIC). The MBC and MIC values of the essential oil and the 2 -isopropyl-5-methylphenol analogs were determined by the broth micro-dilution technique, as described previously (NCCLS, 2003). Each sample (10 mg) was dissolved in methanol $(10 \mathrm{~mL})$ as a stock solution and was consecutively diluted from 100 to $0.1 \mu \mathrm{~g} / \mathrm{mL}$ using methanol as the solvent. Each dilution (50 $\mu \mathrm{L}$) was dispensed into a 96 -well microplate that had been injected with $100 \mu \mathrm{~L}$ Mueller-Hinton broth and was inoculated with $50 \mu \mathrm{~L}$ of bacterial suspension. The final concentration of each strain was adjusted to $10^{7} \mathrm{CFU} / \mathrm{mL}$ (absorbance values of $0.08-0.10$ at 625 nm , according to McFarland turbidity standards). The MIC was defined as the lowest concentration of a substance that inhibited visible growth of the microorganisms. The MBC
was the lowest concentration at which no colony formulation was observed on the agar plates, determined by spreading $100 \mu \mathrm{~L}$ of each microorganism on a MHA plate. These plates were incubated at $37^{\circ} \mathrm{C}$ for 24 h , and all experiments were performed in triplicate.

Results and Discussion

Antimicrobial activity of the essential oil derived from R. graveolens aerial parts was tested against six food-borne bacteria via the paper disc agar diffusion method. The essential oil of R. graveolens at $5.0 \mathrm{mg} /$ disc exhibited potent antimicrobial activity against B. cereus, L. monocytogenes, S. intermedius, S. enterica, S. typhimurium, and S. sonnei (Table 1). The essential oil from R. graveolens was analyzed to determine the active compounds.

The components identified in the essential oil from the aerial parts of R. graveolens by GC-MS are presented in Table 2. The analysis led to the identification of seven constituents from the essential oil. The main constituents were 2 -acetoxytridecane (5.64\%), 2,4-dimethylundecane (2.42%), 4-hexadecanyl pivalate (6.12\%), p-isopropyltoluene (1.85%), 2-isopropyl-5-methylphenol (31.13%), 1-methyltridecyl pentanoate (12.13%), and pentadecanol (18.52%). The main constituents made up 77.81% of the oil. Soleimani et al. (2009) reported the main compounds of the oil from R. graveolens aerial parts as 2-nonanone, geyrene, 2-
heptanol acetate, 2-undecanone, and 1-dodecanol. In this regard, natural components isolated from plants are influenced by plant species, plant parts (flower, root, and leaves), and geographical location where the plants were grown (Oribe and Miyazzaki, 1997).

Silica gel column chromatography, TLC, and prep HPLC were performed to isolate the active component of the R. graveolens oil, using single or mixed organic solvents. As a result, the R33121 fraction was successfully isolated and analyzed by spectroscopic analyses, including EI-MS, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and distortionless enhancement by polarization transfer-NMR spectra. The isolated R33121 fraction was characterized as 2-isopropyl-5-methylphenol $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}\right.$, MW 150); EI-MS (70 eV) m/z (\% relative intensity) M^{+} 150 (34), 135 (100), 107 (19), 91 (25), 71 (8), 58 (26), 50 (4); ${ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta \mathrm{ppm}\right) 6.99-7.02(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz})$, $6.72-6.73(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{s}), 3.12-3.19(1 \mathrm{H}, \mathrm{t}, J=6.9$ Hz), 1.23-1.24 ($3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$), $1.23-1.24(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$, and $2.26(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta \mathrm{ppm}\right) 152.6$, 136.7, 131.4, $126.3(\mathrm{CH}), 121.7(\mathrm{CH}), 116.1(\mathrm{CH}), 26.8(\mathrm{CH})$, 22.7 (CH3), 22.7 (CH3) and $20.9(\mathrm{CH} 3)$. The spectroscopic data of 2-isopropl-5-methylphenol were compared with those of previous studies (Ezoubeiri et al., 2005; Jeong et al., 2008).

The antimicrobial activity of the R. graveolens essential oil against several micro-organisms has been reported (Alzoreky and Nakahara, 2003; Ivanova et al., 2005). Thymol (2-isopropyl-5methylphenol) has also been tested against multiple food-borne

Table 1 Antibacterial activities of essential oil of Ruta graveolens against food-borne bacteria, as determined by the paper disk agar diffusion method ${ }^{\text {a }}$

Microorganisms $^{\mathrm{c}}$	Strain source	Clean zone $^{\mathrm{b}}(\mathrm{mean} \pm \mathrm{SD})$	MIC $^{\mathrm{d}}(\mu \mathrm{g} / \mathrm{mL})$	$\mathrm{MBC}{ }^{\mathrm{d}}(\mu \mathrm{g} / \mathrm{mL})$
Gram positive				
B. cereus	ATCC14579	14.5 ± 0.9	75	$100<$
L. monocytogenes	ATCC15313	13.0 ± 1.1	75	100
S. intermedius	ATCC29663	14.3 ± 1.4	25	50
Gram negative				
S. enterica	ATCC43971	21.5 ± 1.7	25	75
S. typhimurium	IFO14193	15.2 ± 1.3	25	50
S. sonnei	ATCC25931	14.1 ± 1.6	25	50

${ }^{\text {a }}$ Exposed to 5 mg per disc.
${ }^{\mathrm{b}}$ Values (mm) are expressed as mean \pm SD of three parallel measurements, $p<0.05$.
${ }^{\mathrm{c}} \mathrm{Bc}$, Bacillus cereus ATCC14579; Lm, Listeria monocytogenes ATCC 15313; Si, Staphylococcus intermedius ATCC29663; Sae, Salmonella enterica ATCC 43971; St, Salmonella typhimurium IFO 14193; Ss, Shigella sonnei ATCC 25931.
${ }^{\mathrm{d}}$ MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MIC and MBC values $<100 \mu \mathrm{~g} / \mathrm{mL}$.
Table 2 Chemical composition of volatile oil isolated by steam distillation from R. graveolens

Retention time (min)	Library search	Retention index $^{\text {a }}$	Mass spectral data	Relative (\%)
6.92	p-Isopropyltoluene	1042	$50,65,77,91,103,119,134$	1.85
11.52	2-Isopropyl-5-methylphenol	1262	$58,71,91,107,135,150$	31.13
11.65	Pentadecanol	1715	$55,69,83,97,111,125,125$	18.52
13.52	2-Acetoxytridecane	1755	$55,70,87,111,125,154$	5.64
13.77	2,4-Dimethylundecane	1913	$57,71,85,103,120,126$	2.42
16.33	4-Hexadecanyl pivalate	2013	$55,57,71,85,103,125,154$	6.12
16.38	1-Methyltridecyl pentanoate	2127	$55,57,71,85,103,120,155$	12.13

[^1]

Compounds	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}
Phenol	OH	H	H	H	H	
2-Methylphenol	OH	CH_{3}	H	H	H	H
2-Isopropylphenol	OH	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H	
2-Isopropyl-5-methylphenol	OH	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	H	H		
1-Isopropyl-4-methylbenzene	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H_{3}	CH	

Fig. 1 Structures of 2-isopropyl-5-methylphenol and its derivatives.
Table 3 Antimicrobial activities of 2-isopropyl-5-methylphenol and its derivatives against food-borne bacteria, as determined by the paper disc agar diffusion method

Compounds ${ }^{\text {a }}$	Clean zone (mm) ${ }^{\text {b }}$					
	Microorganisms ${ }^{\text {c }}$					
	Bc	Lm	Si	Sae	St	Ss
2-Isopropyl-5-methylphenol	20.2 ± 1.3	18.6 ± 1.5	18.2 ± 0.9	17.5 ± 0.8	20.1 ± 1.2	20.0 ± 1.3
2-Isopropylphenol	15.0 ± 1.1	14.3 ± 0.9	17.0 ± 1.3	15.5 ± 1.1	15.3 ± 0.9	15.6 ± 1.6
2-Methylphenol	$n d^{\text {e }}$	nd	nd	nd	nd	nd
Phenol	nd	nd	nd	nd	nd	nd
1-Isopropyl-4-methylbenzene	nd	nd	nd	nd	nd	nd
Chloramphenicol ${ }^{\text {d }}$	20.5 ± 1.4	20.0 ± 1.3	23.1 ± 1.1	21.5 ± 1.4	18.4 ± 1.2	23.1 ± 1.4
Tetracycline ${ }^{\text {d }}$	23.4 ± 1.7	20.1 ± 0.8	22.3 ± 1.4	24.2 ± 1.4	22.1 ± 1.5	20.3 ± 1.3

${ }^{\text {a }}$ Exposed to 0.5 mg per disc.
${ }^{\mathrm{b}}$ Values (mm) are expressed as mean $\pm \mathrm{SD}$ of three parallel measurements, $p<0.05$.
${ }^{\text {c Bc, Bacillus cereus ATCC14579; Lm, Listeria monocytogenes ATCC 15313; Si, Staphylococcus intermedius ATCC29663; Sae, Salmonella }}$ enterica ATCC 43971; St, Salmonella typhimurium IFO 14193; Ss, Shigella sonnei ATCC 25931.
${ }^{\mathrm{d}}$ Chloramphenicol and tetracycline served as positive controls (Exposed to 0.01 mg per disc).
${ }^{e}$ nd, not detected.
bacteria in previous studies (Juven et al., 1994; Friedman et al., 2002). Although the antimicrobial activities of the R. graveolens oil and 2-isopropyl-5-methylphenol against Bacillus subtilis, Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Salmonella enterica Staphylococcus aureus, Staphylococcus pyogenes, and Streptococcus pyogenes have been reported (Juven et al., 1994; Friedman et al., Alzoreky and Nakahara, 2003; Ivanova et al., 2005; Liolios et al., 2009), 2-isopropyl-5-methylphenol isolated from the aerial parts of R. graveolens has not been reported. Therefore, the present study was conducted to assay the antimicrobial activities of 2-isopropyl-5-methylphenol and its analogs isolated from the aerial parts of R. graveolens against food-borne bacterial. The antimicrobial activities of 2-isopropyl-5methylphenol and its structural analogs (2-isopropylphenol, 2methylphenol, phenol, and 1-isopropyl-4-methylbenzene) were evaluated by the paper disc agar diffusion method at $0.5 \mathrm{mg} /$ disc (Fig. 1, Table 3). The antimicrobial values of 2-isopropyl-5-
methylphenol isolated from the R. graveolens aerial parts had moderate activity against B. cereus (clean zone diameter, 20.2 $\mathrm{mm})$, S. typhimurium $(20.1 \mathrm{~mm}), S$. sonnei $(20.0 \mathrm{~mm}), L$. monocytogenes $(18.6 \mathrm{~mm})$, S. intermedius (18.2 mm), and S. enterica $(17.5 \mathrm{~mm})$. These results indicate that the antimicrobial activity of the R. graveolens aerial parts could be attributed to 2-isopropyl-5-methylphenol. 2-Isopropylphenol exhibited weak antimicrobial activity against S. intermedius (clean zone diameter, $17.0 \mathrm{~mm})$, S. sonnei $(15.6 \mathrm{~mm})$, S. enterica $(15.5 \mathrm{~mm})$, S. typhimurium $(15.3 \mathrm{~mm})$, B. cereus $(15.0 \mathrm{~mm})$, and L. monocytogenes $(14.3$ mm). However, 2-methylphenol, phenol, and 1-isopropyl-4methylbenzene exhibited no growth inhibitory effects against the six food-borne bacteria. Treatment with commercially available antibiotic tetracycline and chloramphenicol resulted in strong activity against the six food-borne bacteria at $0.01 \mathrm{mg} /$ disc (Table $3)$.

The MBC and MIC values of 2-isopropyl-5-metylphenol, 2-

Table 4 MIC and MBC values ${ }^{\text {a }}$ of the 2-isopropyl-5-methylphenol derivatives

Compounds	Microorganisms ${ }^{\text {b }}$											
	Bc		Lm		Si		Sae		St		Ss	
	MIC	MBC										
2-Isopropyl-5-methylphenol	5	12.5	5	6.25	5	10	6.25	10	5	6.25	6.25	12.5
2-Isopropylphenol	5	10	6.25	12.5	5	6.25	6.25	12.5	12.5	25	12.5	25
2-Methylphenol	50	$100<$	50	100	50	100	25	75	50	100	50	100
Phenol	$100<$	$100<$	$100<$	100<	100<	100<	$100<$	100<	100<	$100<$	100<	$100<$
1-Isopropyl-4-methylbenzene	$100<$	$100<$	$100<$	$100<$	$100<$	$100<$	$100<$	$100<$	$100<$	$100<$	$100<$	$100<$

${ }^{\text {a }}$ MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MIC and MBC values $<100 \mu \mathrm{~g} / \mathrm{mL}$.
${ }^{\mathrm{b}}$ Bc, Bacillus cereus ATCC14579; Lm, Listeria monocytogenes ATCC 15313; Si, Staphylococcus intermedius ATCC29663; Sae, Salmonella enterica ATCC 43971; St, Salmonella typhimurium IFO 14193; Ss, Shigella sonnei ATCC 25931.
isopropylphenol, 2-methylphenol, phenol, and 1-isopropyl-4methylbenzene were determined against the six food-borne bacteria (Table 4). 2-Isopropyl-5-methylphenol exhibited the strongest activity (MIC $5-6.25 \mu \mathrm{~g} / \mathrm{mL}$, MBC $6.25-12.5 \mu \mathrm{~g} / \mathrm{mL}$) followed by 2-isopropylphenol (MIC $5-12.5 \mu \mathrm{~g} / \mathrm{mL}$, MBC $6.25-$ $25 \mu \mathrm{~g} / \mathrm{mL}$), 2-methylphenol (MIC $25-50 \mu \mathrm{~g} / \mathrm{mL}$, MBC 75 to $>100 \mu \mathrm{~g} / \mathrm{mL}$), and phenol and 1-isopropyl-4-methylbenzene (MIC $>100 \mu \mathrm{~g} / \mathrm{mL}, \mathrm{MBC}>100 \mu \mathrm{~g} / \mathrm{mL}$) against the six food-borne bacteria.

2-Isoproyl-5-methylphenol contains isopropyl and methyl functional groups on the phenol skeleton. 2-Isopropyl-5methylphenol, which is conjugated with an isopropyl functional group and a methyl functional group, showed the strongest antimicrobial activity against the six food-borne bacteria, whereas 2-isopropylphenol, conjugated with an isopropyl functional group, showed lower antimicrobial activity against the six food-borne bacteria than that of 2-isopropyl-5-methylphenol. 2-Methylphenol, which is conjugated with a methyl functional group, showed no antimicrobial activity against the six food-borne bacteria. Similarly, phenol, which is the skeleton of 2-isopropyl-5methylphenol, showed no antimicrobial activity against the six food-borne bacteria. The position of the hydroxyl functional group in the phenol ring is the effective component against Gram-positive and Gram-negative bacteria (Dorman and Deans, 2000; Gallucci et al., 2009). Interestingly, 1-isopropyl-4-methylbenzene, which contains isopropyl and methyl functional groups on the benzene skeleton, showed no antimicrobial activity against the six food-borne bacteria. Previous studies have reported that biological activities are influenced by the presence and position of various functional groups (e.g., isopropyl and methyl functional groups) (Ilkay et al., 2004; Yang and Lee, 2013). These results indicate that the isopropyl functional group in the phenol ring is more sensitive than the methyl functional group to food-borne bacteria. Furthermore antimicrobial activity due to the isopropyl and methyl functional groups was shown only in the phenol ring.

Based on the Material Safety Data sheet provided by SigmaAldrich, the oral lethal dose of 2-isopropyl-5-methylphenol (980 $\mathrm{mg} / \mathrm{kg}$) indicated low acute toxicity to mammals (Sigma-Aldrich, USA). This result indicates that the essential oil of R. graveolens
aerial parts and 2-isopropyl-5-methylphenol analogs would be useful as natural bactericides and potentially suitable as alternative chemical preservatives.

References

Alzoreky NS and Nakahara K (2003) Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int J Food Microbiol 80, 223-30.
Burt FF and Foegeding PM (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol 36, 162-7.
Dorman HJD and Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile. J Appl Microbiol 88, 308-16.
Ezoubeiri A, Gadhi CA, Fdil N, Benharref A, Jana M, and Vanhaelen M (2005) Isolation and antimicrobial activity of two phenolic compounds from Pulicaria odora L. J Ethnopharmacol 99, 287-92.
Farag RS, Daw ZY, Hewedi FM, and El-Baroty GSA (1989) Antimicrobial activity of some Egyptian spice essential oils. J Food Prot 52, 665-7.
Friedman M, Henika PR, and Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and salmonella enterica. J. Food Prot 65, 1545-60.
Gallucci MN, Oliva M, Casero C, Dambolena J, Luna A, Zygadlo J et al. (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr J 24, 348-54.
Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ et al. (1998) Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem 46, 3590-5.
Ilkay YO, Ismail Y, Esin AS, and Nejat U (2004) Synthesis and structureactivity relationships of new antimicrobial active multisubstituted benzazole derivatives. Eur J Med Chem 39, 291-8.
Ivanova A, Mikhova B, Najdenski H, Tsvetkova I, and Kostova I (2005) Antimicrobial and cytotoxic activity of Ruta graveolens. Fitoterapia 76, 344-7.
Jeong EY, Lim JH, Kim HG, and Lee HS (2008) Acaricidal activity of Thymus vulgaris oil and its main components against Tyrophagus putrescentiae, a stored food mite. J Food Protec 71, 351-5.
Juven BJ, Kamnner J, Schved F, and Weissiowicz H (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol 76, 626-31.
Katayama T and Nagai I (1960) Chemical significance of the volatile components of spices in the food preservative view point. VI. Structure and antibacterial activity of terpenes. Bull Japan Soc Sci Fisheries 26, 29-32.

Kim MK, Choi GJ, and Lee HS (2003) Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J Agric Food Chem 51, 1578-81.
Kim YM, Lee CH, Kim HG, and Lee HS (2004) Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J Agric Food Chem 52, 6096-100.
Lambert RJW, Skandamis PN, Coote PJ, and Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of Oregano essential oil, thymol and carvacrol. J Appl Microbiol 91, 453-62.
Lee HS (2002) Tyrosinase inhibitors of Pulsatilla cernua root-derived materials. J Agric Food Chem 50, 1400-03.
Lee HS and Ahn YJ (1998) Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J Agric Food Chem 46, 8-12.
Lim MY, Jeon JH, Jeong EY, Lee CH, and Lee HS (2007) Antimicrobial activity of 5-hydroxy-1,4-naphthoquinone isolated from Caesalpinia sappan toward intestinal bacteria. Food Chem 100, 1254-8.
Liolios CC, Gortzi O, Lalas S, Tsaknis J, and Chinou I (2009) Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity Food Chem 112, 77-83.
Lopez P, Sanchez C, Batlle R, and Nerin C (2007) Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J Agric Food Chem 55, 4348-56.
Malik AA, Mir SR, and Ahmad J (2013) Ruta graveolens L. essential oil composition under different nutritional treatments. Am-Eurans J Agric \& Environ Sci 13, 1390-5.
NCCLS (2003) Methods for dilution antimicrobial susceptibility testing. $9^{\text {th }}$ International Supplement (M100-59). National committee for Clinical Laboratory Standards. USA.
Nikaido H (1994) Prevention of drug access to bacterial targets: permeability
barriers and active efflux. Science 264, 382-8.
Oribe Y and Miyazzaki Y (1997) Effects of two weed oils on the population growth of the European house-dust mites, dermatophagoides pteronyssinus. Mokuzai Gakkaishi 43, 521-3.
Oussalah M, Caillet S, Saucier L, and Lacroix M (2007) Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Stapylococcus aureus and Listeria monocytogenes. Food Control 18, 414-20.
Prabuseenivasan S, Jayakumr M, and Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complem Altern M6, 39 .
Santiesteban-Lopez A, Palou E, and Lopez-Malo A (2007) Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a_{w} and pH . J Appl Microbiol 102, 486-97.
Soleimani M, Azar PA, Saber-Tehranil M, and Rustaiyan A (2009) Volatile composition of Ruta graveolens L. of north of Iran. Word Appl Sci J 7, 124-6.
Vincenzo DF, Francesco DS, and Felice S (2002) Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry 61, 573-8.
Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775-81.
Yang JY and Lee HS (2013) Changes in acaricidal potency by introducing functional radicals and an acaricidal constituent isolated from Schizonepeta tenuifolia. J Agric Food Chem 61, 11511-6.
Yang JY, Park JH, and Lee HS (2013) Isolation of 8-hydroxyquinoline from Sebastiania corniculata and antimicrobial activity against food borne bacteria. J Korean Soc Appl Biol Chem 56, 763-6.
Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, and Lee HS (2002) A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem 50, 3765-7.

[^0]: J-H. Jeon \cdot J-H. Park $(\boxtimes) \cdot$ H-S. Lee (\boxtimes)
 Department of Bioenvironmental Chemistry and Institute of Agricultural Science \& Technology, College of Agriculture \& Life Science, Chonbuk National University, Jeonju 561-756, Republic of Korea
 E-mail: hoiseon@jbnu.ac.kr; jjunh@jbnu.ac.kr

[^1]: ${ }^{\text {a }}$ Kovats indices were determined on a DB-5 capillary column.

