Isolation and Functional Characterization of the Brassica napus Cruciferin Gene cru4 promoter

Kyung Hee Roh • Soo Bok Choi • Han-Chul Kang • Jong-Bum Kim • Hyun Uk Kim • Kyeong-Ryeol Lee - Sun Hee Kim

Received: 11 May 2014 / Accepted: 4 August 2014 / Published Online: 31 October 2014
(C) The Korean Society for Applied Biological Chemistry and Springer 2014

Abstract

The 12 S globulin protein cruciferin is main seed storage protein in Brassica napus. To gain a better understanding of the Bncru4 promoter function, we conducted the promoter 5' deletion analysis in transgenic Arabidopsis. In the β-glucuronidase (GUS) expression assay, Bncru4 promoter was strongly active in transgenic seeds. In addition, deletion of RY-elements (-236 bp region) dramatically decreased the promoter activity in seed embryos; however, the GUS expression could be observed in seed coat. Further deletion up to -113 bp region (removed up to the CAAT and TATA box), GUS expression was completely abolished in all tissues. These results were consistent with that of the GUS activity in transgenic seeds. Therefore, we consider that RYelement is crucial to the seed-specific expression of Bncru4 promoter.

Keywords 12S globulin • Bncru4 promoter • Brassica napus . rapeseed • RY-element

Introduction

Seed storage proteins are synthesized in high abundance during seed development and serve as a nitrogen source for germinating seeds. Seeds contain large amounts of storage proteins that are classified as four major classes; (i) the water-soluble albumins, (ii) the alcohol-soluble prolamines, (iii) the salt-soluble globulins, and (iv) the acid- or alkaline-soluble glutelins (Utsumi, 1992). Dicot seeds contain mainly albumins and globulins, whereas monocot

[^0]seeds contain mainly prolamines and glutelins (Li and Okita, 1993; Mandal and Mandal, 2000).

In B. napus, there are two main seed storage proteins, the 2 S protein napin and the 12 S globulin protein cruciferin. Napin is composed of two polypeptides that are linked by disulfide bridges (Crouch and Sussex, 1985). Cruciferin protein is a hexameric complex ($300-50 \mathrm{kDa}$) consisted of three different groups of subunits, cru1, cru2/3, and cru4 (Schwenke et al., 1983; Rdin and Rask, 1990; Sjdahl et al., 1991). Each subunit consists of a heavy α-chain and a light β-chain (Rdin and Rask, 1990). Both chains originate from the same precursor molecule, which is cotranslationally synthesized in the late stages of seed development on the rough endoplasmic reticulum. These procruciferins are then assembled into trimers (Chrispeels et al., 1982), transported through the Golgi apparatus, and finally accumulate as mature hexamers in protein storage vacuoles of terminally differentiated cells in developing seeds (Dickinson et al., 1989; Jung et al., 1998). The cruciferin complex of Brassica napus has an octameric barrel-like structure, which represents a very compact building block optimized for maximal storage of amino acids within minimal space (Nietzel et al., 2013). In germinating seeds, cruciferin mRNAs are rapidly degraded (Fernandez et al., 1991).

The cis-acting elements involved in the regulation of expression of napin gene have been identified (Stålberg et al., 1993; Ellerström et al., 1996). Deletion of an overlapping E-box/abscisic-acidresponsive element (ABRE) motif abolished the activity of the napA promoter. The ABRE elements are known to be involved in ABA-dependent induction of other genes and have been shown to bind G-box binding proteins belonging to the bZIP family of transcription factors (Giraudat, 1994). In addition, napA promoter showed the spatial and developmental expression patterns. In cruciferin, the regulatory region of crul gene among three subunits was investigated (Sjödahl et al., 1995). Similarly to napA promoter, crul promoter also showed the spatial and developmental expression patterns. Gel retardation assays showed that a CANNTG motif (E-
box), an SEF3 motif, an ABRE and an RY-like motif interacted specifically in vitro with DNA-binding proteins present in nuclear extracts from seeds of B. napus.

In the present study, the cis-acting elements of B. napus cruciferin gene cru4 promoter was investigated. To this aim, a $0.75-\mathrm{kb}$ fragment upstream of the translation start codon (ATG) of Bncru4 was cloned, followed by generation of the progressive 5^{\prime} deletion constructs of this promoter region, which were used to study the expression of the β-glucuronidase (GUS) reporter gene using stable transformants of Arabidopsis thaliana. Finally, we found that deletion of a RY-element abolished the Bncru4 promoter activity in transgenic A. thaliana seeds.

Materials and Methods

RNA extraction and Northern blotting. Total RNAs were isolated from the leaf, stem, root, petal, and seeds $(10,25,35$, and 45 DAF, respectively) from B. napus L. cv Youngsan using Plant RNA Purification Reagent (Invitrogen, USA). For Northern hybridization, about $10 \mu \mathrm{~g}$ of total RNA was fractionated on 1.5% (w/v) formaldehyde agarose gel electrophoresis, transferred onto Hybond N^{+}-Nylon membranes (GE Healthcare) by capillary transfer, followed by RNA hybridization with $\left[\alpha-{ }^{32} \mathrm{P}\right]$ dCTPlabeled Bncru4 gene [GenBank:X57848] cDNA fragment and Bnnapin gene [GenBank:X17542], corresponding to the entire gene open reading frame. Blots were rehybridized using a $\left[\alpha-{ }^{32} \mathrm{P}\right]$ dCTP-labeled Bnactin gene [GenBank:FJ529167] as an internal control.
Isolation and analysis of the Bncru4 promoter sequence. The 5' upstream region of cru4 gene from B. napus cv Youngsan was isolated using a Genome Walker ${ }^{\mathrm{TM}}$ kit (Clontech, USA). Genomic DNA was extracted from leaves using a phenol-chloroform based protocol (Ahmed et al., 2009), and digested by the four enzymes -DraI, EcoRV, PvuII and StuI- to generate blunt ends. Using the GenomeWalker library as a template, primary and nested polymerase chain reactions (PCRs) were performed based on the gene-specific primers listed in Table 1 and Genome Walker
adaptor primers provided in the kit. The gene-specific primers were designed on the Bncru 4 gene cDNA sequence. Nested PCR products were purified from a $1.5 \%(\mathrm{w} / \mathrm{v})$ agarose gel and inserted into the pGEM-T-easy vector (Promega, USA) for sequencing. To detect putative cis-acting regulatory elements in the Bncru4 promoter sequence cloned, the database PlantCARE (Lescot et al., 2002) was used.

Determination of the promoter transcription start site. Total RNA was isolated from the embryo of B. napus cv Youngsan using a Plant RNA purification reagent (Invitrogen, USA). The Bncru4 transcription start site was determined by a 5'-rapid amplification of cDNA ends (RACE) PCR strategy, based on a GeneRacer ${ }^{\circledR}$ Core Kit (Invitrogen). Nested PCRs were performed using the two genes-specific primers listed in Table 1 and the adaptor primers provided in the kit. The primers (Table 1) were designed from the Bncru4 cDNA sequence, and second round PCR products were introduced into the pGEM-T-easy vector (Promega, USA) for sequencing. The promoter transcription start site was obtained by aligning the resulting sequences with that of the promoter.
Progressive 5' deletion constructs of the Bncru4 promoter. A series of fragments with different 5^{\prime} terminal deletions were obtained by PCR amplification, using the primers described in Table 1. The size of the expected amplicons were $753,426,293$, 236, and 113bp. An EcoRI restriction site was introduced into the forward primers and a BglII site was introduced into the reverse ones. Five promoter sequences of variable length were released by EcoRI and BglII digestion and cloned into pCAMBIA 3301 vector (CAMBIA, Australia) by replacing CaMV35S promoter upstream of the GUS reporter gene. All PCR products were entirely sequenced to avoid PCR error. Bncru $4:$:GUS constructs were introduced into Agrobacterium tumefaciens strain EHA105 by freeze-thaw method.
Arabidopsis transformation. Arabidopsis thaliana plants of the ecotype Columbia were transformed by Agrobacterium-mediated floral dip method (Clough and Bent, 1998; Martinez-trujillo et al., 2004). The modified floral dip inoculation medium consisted of 5% sucrose and 0.05% triton-X 100 . To obtain more floral buds

Table 1 Primers used in this study (The restriction sites are underlined)

Genes	Primer names	Sequence (5'-3')
GenomeWalker adaptor	AP1	GTAATACGACTCACTATAGGGC
	AP2	ACTATAGGGCACGCGTGGT
5^{\prime} RACE adaptor	5^{\prime}	CGACUGGAGCACGAGGACACUGA
Bncru4 gene	$5^{\prime}-$ Nested	GGACACUGACAUGGACUGAAGGAGUA
	Bncru4gsp1	GCCCATAGGACCACTGCTTTGAGT
Bncru4 promoter	Bncru4gsp2	GAACTGTTGGCTTGTGGCACGTTT
	$753-\mathrm{F}$	GAATTCACAATCAAGATTTCAACTAATCGG
	$426-\mathrm{F}$	GAATTCAAGTGTTTTTAACCGCTTGCTTAA
	$293-\mathrm{F}$	GAATTCTTTTTTATAAAAAATATACAAAAT
	$236-\mathrm{F}$	GAATTCGTTGCATGGCATGTAGACGCGGAA
	$113-\mathrm{F}$	GGATTCGTTACACGTGATCTCCATGCAGAA
	Bncru4-R	

per plant, primary inflorescences were clipped, relieving apical dominance and encouraging the synchronized emergence of multiple secondary bolts. Plants were inoculated when most secondary inflorescences were about 5 to 10 cm tall. Plants were inoculated by performing direct drop by drop inoculation to every flower by using a micropipette.
Histochemical and fluorometric GUS assays. The histochemical and fluorometric assays for GUS were performed essentially as described by Jefferson et al. (1987) with minor modification. The plant tissues were collected from each transgenic line at the same developmental stage. For histochemical assay, the plant materials were immersed in X-gluc buffer containing 1 mM X-gluc, 100 mM sodium phosphate buffer $\mathrm{pH} 7.0,1 \mathrm{mM}$ potassium ferricyanide, 1 mM potassium ferrocyanide and $0.05 \%(\mathrm{v} / \mathrm{v})$ triton X-100 and incubated overnight at $37^{\circ} \mathrm{C}$. After staining, flowers were rinsed in 75% ethanol for 2 to 3 times, and photographed.

The GUS activity was quantified by a fluorometric assay using 4 -methylumbelliferyl- β-D-glucruonic acid as a substrate. The tissue $(0.1 \mathrm{~g})$ was homogenized in 1 mL protein extraction buffer (50 mM sodium phosphate, $\mathrm{pH} 7.0,10 \mathrm{mM}$ EDTA, 0.1% sodium lauryl sulphate, $10 \mathrm{mM} \beta$-mercaptoethanol and 0.1% triton-X 100) followed by centrifugation at $13,000 \mathrm{rpm}$ for 15 min under $4^{\circ} \mathrm{C}$. Protein content was measured by the Bradford (1976) method using BSA as a standard. Fifty microliters of the crude protein extract were added to $500 \mu \mathrm{~L}$ GUS assay buffer (10 mM 4-methylumbelliferyl- β-D-glucuronide trihydrate dissolved in protein extraction buffer) in a ratio of 1:10 and then incubated at $37^{\circ} \mathrm{C}$ for 1 h in a water bath. One hundred microliters of this mixture was transferred into a Microcentrifuge tube containing $900 \mu \mathrm{~L}$ Stop buffer (0.2 M sodium carbonate). The GUS activity was measured immediately using a Victor 3 Fluorometer system (PerkinElmer, USA) with an excitation wavelength of 355 nm and an emission wavelength of 460 nm . A calibration curve of 4-MU standards was prepared according to the manufacturer's instructions. The amount of GUS was calculated based on the established standard curve, and the specific GUS activity was expressed as μ moles $4-\mathrm{MU} / \mathrm{mg} / \mathrm{min}$. Data are presented as the mean (\pm standard error) of GUS activity from three independent determinations.

Results and Discussion

Expression patterns of the Bncru4 gene. The expression patterns of Bncru4 [GenBank:X57848] and Bnnapin [GenBank:X17542]

Fig. 1 Bncru4 and Bnnapin expression patterns by Northern hybridization analysis in Rapeseed. Bnactin was used as an internal control. L, Leaf; St, Stem; R, Root; P, Petal, DAF, days after flowering. Ten micrograms of total RNA were used. GenBank accession numbers of these genes are: Bncru4 [GenBank:X57848], Bnnapin [GenBank:X17542], and Bnactin [GenBank:FJ529167].
of two main seed storage proteins in B. napus was observed by Northern blot analysis (Fig. 1). As expected, both cruciferin and napin were expressed only in the seeds. However, a slight difference in temporal patterns was shown; the accumulation of cru 4 gene started at 35 DAF (days after flowering) and continued until 45 DAF, whereas the accumulation of napin gene started 25 DAF and continued until 45 DAF. According to previous studies (Blundy et al., 1991; Fernandez et al., 1991; Höglund et al., 1992), the synthesis of both napin and cruciferin during embryogenesis is strictly regulated with respect to time and tissue. Although Napin mRNAs started a few days earlier than that of cruciferin, both mRNAs showed similar patterns in the spatial and temporal distributions. Cruciferin mRNAs begin to accumulate in the cortex of the axis during torpedo stage of embryogeny, i.e. the first 25 DPA (days post-anthesis) and are present at high levels in the cotyledon stage (30 DPA) and maintain higher levels until midcotyledon stage (38 DPA). These results were in agreement with ours.
Isolation and analysis of the Bncru4 promoter sequence. The promoter region of the Bncru4 gene was isolated by the genome walking PCR using a set of walker primers and gene-specific primers in Table 1. The 753 bp sequence of the Bncru4 promoter cloned in this study was deposited at NCBI [GenBank:GQ402149].

Analysis of the promoter sequence revealed five conserved

Table 2 List of cis-elements in the Bncru4 promoter sequence predicted by database analysis

Element	Element core sequence	Function
TCT motif	TCTTAC	Light responsive element
HSE	AGAAAATTCG	Heat stress responsive element
RY element	CATGCATG	Seed specific regulation
CAAT-box	CAAT	Common cis-acting elements in promoter and enhancer region
TATA-box	TATAAAT	Core promoter element around -30 of transcription start

-753	ACAATCAAGATTTCAACTAATCGGTTTTTTCTCGTTTACGATTTGTATTTGTATTTTTAATATGCTTTTATGTCATTTTT - 753
-673	ATTAAGAATTTTAATGTATGATTTTATTTTTAATCATTCTATTTAAAAATGAATTATTTAAGAACCCCTTGGGGTTCTCC
-593	CATTGGGAGAGGAATACATAATTTCCTCAAACAAAGGTTCTTTAACTACTCAAATCACTTTATTAAATATTAATTTACTC
-513	CTAAAAACCCATTAGAGGTTCTAATGGATGGACTTGCTCTTAACGATCCCGAATTACATAGTTATGTGTTCTCACACTTT TCT-motif
-433	dTCTTAdAAGTGTTTTTAACCGCTTGCTTAAACTTTAAATTTTAGTTTACCATGTAATTAATTATGATCAGTGCCATTGT -426
-353	GTGATTCCTTTTTCTTAAATATCTTAACTTGAATTAACTAAATGTTTAAA AGGAAATTCGTTTTTTATAAAAAATATACA
-273	AAATGTCAGAATATGAACTACACATCATA CATGCATGGTTGCATGGCATGTAGACGCGGAAACTTGTCACTCCTCCACAT
-193	TTGAGATTCCAACACCTAATCGCTACAAAAACCTTATAGATTCTCCCTITCTCACAAACAAACAAACACATTCATGCAAT
-113	$\frac{\text { GTTACACGTGATCTCCATGCAGAACATCTTTCACGCCTATAAATACCAACCAACACTCCACTTCCCTCTTCACTCAAACC }}{-113}$
-33	AAAACAAGCAAAAAACATACACACAAATAGCAAATG

Fig. 2 Nucleotide sequences of the Bncru4 promoter region. Putative regulatory cis-acting elements are indicated by open boxes. Translational initiation codon is underlined in bold letters. Transcription start site as determined by 5 '-RACE is indicated by arrow. The endpoints of the 5 ' deletion derivatives are indicated below the sequence underlined. Numbers to the left of the sequence denote the position relative to the translation start site. The Bncru4 promoter sequence has been submitted to NCBI [Genbank:GQ402149].

Fig. 5 GUS activities in seeds of transgenic Arabidopsis $\left(\mathrm{T}_{2}\right)$ harboring the 5^{\prime} deletion derivatives of the Bncru 4 promoter. -753 nt of the promoter; -426 nt of the promoter deleted TCT element; -293 nt of the promoter deleted HSE element; -236 nt of the promoter deleted RY element; -113 nt of the promoter deleted both CAAT box and TATA box; WT, Wild-type plant. nt, nucleotides. Data are presented as the mean $(\pm$ standard error) of GUS activity.
promoter were selected on the basis of their capacity to grow normally after BASTA (glufosinate ammonium) herbicide spraying. About 5 to 10 primary transformants of each construct were obtained. Transgenic plants were confirmed in the presence of the appropriate expression cassette by PCR using specific primers (data not shown).

To verify the GUS expression patterns driven by the 5^{\prime} deletion derivatives of the Bncru4 promoter, histochemical analyses were conducted in various tissues (leaf, flower, seed, and pod) of transgenic Arabidopsis plants (Fig. 4). GUS expression in transgenic Arabidopsis $\left(\mathrm{T}_{2}\right)$ harboring the 753 bp region of the Bncru4 promoter was detected mainly in seeds (Fig. 4A); GUS expression in leaf and pod was observed weakly or as trace, whereas GUS expression was not detected in the flower. Furthermore, at deletion up to -293 bp region, GUS expression patterns of the transgenic Arabidopsis were not altered (Data not shown). However, in -236 bp region (removed up to the RY-element), GUS expression of the seed embryos was reduced dramatically (Fig. 4B); GUS expression in seed coat was observed weakly and GUS expression in leaf was observed as trace with no GUS expression in flower and pod detected. Further deletion up to -113 bp region (removed up to the CAAT and TATA box), GUS expression was completely abolished (Fig. 4C). In wild type used as a negative control, GUS expression could not be detected (Fig. 4D).

To characterize the Bncru4 promoter isolated from B. napus, the GUS fluorometric assay was conducted in transgenic Arabidopsis seeds transformed with the 5^{\prime} deletion derivatives (Fig. 5). In the 753 , 426 and 293 bp regions of the Bncru4 promoter, GUS activities were high, showing the levels at 133 to $264 \mathrm{nmol} / \mathrm{min}$. However, at the 236 bp region the RY-element was removed, and GUS activity dropped sharply at $13 \mathrm{nmol} / \mathrm{min}$. In the shortest (113 bp) region and a negative control (WT), GUS activity was detected at the background level.

In the present study, Bncru4 promoter was strongly active in transgenic Arabidopsis seed. Deletion of RY-element resulted in deprivation of Bncru4 promoter activity in seed embryos, whereas the GUS expression could be observed in seed coat. In addition, after deletion of both CAAT-box and TATA-box the promoter activities in all tissues disappeared. Furthermore, both TCT-motif and HSE-motif were shown not to affect the promoter activity. These results were consistent with those of the GUS activity in transgenic Arabidopsis seed. Fauteux and Strmvik (2009) reported that seed storage protein gene promoters contain conserved DNA motifs (two RY-like and one ACGT-like) in the Brassicaceae, Fabaceae, and Poaceae. In Phaseolus vulgaris, several conserved RY-elements of the DLEC2 promoter (Bobb et al., 1997) and phaseolin promoter (Chandrasekharan et al., 2003) were necessary for seed-specific expression during embryogenesis. Therefore, we consider that RY element is crucial to the seed specific expression of Bncru4 promoter.

Acknowledgments This study was carried out with the support of Research Program for Agricultural Science \& Technology Development (Project No. PJ010075), National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

References

Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, and Mirza B (2009) High-quality plant DNA extraction for PCR: an easy approach. J Appl Genet 50, 105-7.
Blundy KS, Blundy MAC, and Crouch ML (1991) Differential expression of members of the napin storage protein gene family during embryogenesis in Brassica napus. Plant Mol Biol 17, 1099-104.
Bobb AJ, Chern MS, and Bustos MM (1997) Conserved RY-repeats mediate transactivation of seed-specific promoters by the developmental regulator PvALF. Nucleic Acids Research 25, 641-7.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-54.
Chandrasekharan MB, Bishop KJ, and Hall TC (2003) Module-specific regulation of the β-phaseolin promoter during embryogenesis. The Plant Journal 33, 853-66.
Chrispeels MJ, Higgins TJ, and Spencer D (1982) Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons. J Cell Biol 93, 306-13.
Clough SJ and Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-43.
Crouch ML and Sussex IM (1985) Development and storage protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153, 64-74.
Dickinson CD, Evans RP, and Nielsen NC (1988) RY repeats are conserved in the 5'-flanking regions of legume seed-protein genes. Nucleic Acids Res 16, 371.
Dickinson CD, Hussein EH, and Nielsen NC (1989) Role of posttranslational cleavage in glycinin assembly. Plant Cell 1, 459-69.
Ellerström M, Stålberg K, Ezcurra I, and Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32, 1019-27.
Fauteux F and Strmvik MV (2009) Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae.

BMC Plant Biology 9, 126.
Fernandez DE, Turner RF, and Crouch ML (1991) In situ localization of storage protein mRNA in developing meristems of Brassica napus embryos. Development 111, 299-313.
Giraudat J (1994) Current advances in abscisic acid action and signaling. Plant Mol Biol 26, 1557-77.
Hglund AS, Rdin J, Larsson E, and Rask L (1992) Distribution of napin and cruciferin in developing rape seed embryos. Plant Physiol 98, 509-15.
Jefferson RA, Kavanagh TA, and Bevan MW (1987) GUS fusions: β glucuronidase as a sensitive and versatile gene fusion marker in higher plants. $E M B O J \mathbf{6}, 3901-8$.
Jung R, Scott MP, Nam YW, Beaman TW, Bassner R, Saalbach I, Mntz K, and Nielsen NC (1998) The role of proteolysis in the processing and assembly of 11S seed globulins. Plant Cell 10, 343-57.
Lescot M, Dhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouz P, and Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325-7.
Li X and Okita TW (1993) Accumulation of prolamines and glutelins during rice seed development: a quantitative evaluation. Plant Cell Physiol 34, 385-90.
Mandal S and Mandal RK (2000) Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr Sci 79, 577-89.
Martinez-trujillo M, Limones-briones V, Cabrera-ponce J, and Herrera-estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Molecular Biology Reporter 22, 63-70.
Nietzel T, Dudkina NV, Haase C, Denolf P, Semchonok DA, Boekema EJ,

Braun HP, and Sunderhaus S (2013) The native structure and composition of the cruciferin complex in Brassica napus. J Biol Chem 288, 2238-45.
Parry TJ, Theisen JWM, Hsu JY, Wang YL, Corcoran DL, Eustice M, Ohler U, and Kadonaga JT (2014) The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes Dev 24, 2013-8.
Rödin J and Rask L (1990) The relationship between mature chains and their precursors of cruciferin, the 12 S storage protein of Brassica napus. Plant Sci 70, 57-63.
Schwenke KD, Raab B, Plietz P, and Damaschun G (1983) The structure of the 12S globulin from rapeseed (Brassica napus L.) Die Nahrung 27, 165-7.
Sjdahl S, Gustavsson HO, Rdin J, and Rask L (1995) Deletion analysis of the Brassica napus cruciferin gene crul promoter in transformed tobacco: promoter activity during early and late stages of embryogenesis is influenced by cis-acting elements in partially separate regions. Planta 197, 264-71.
Sjdahl S, Rdin J, and Rask L (1991) Characterization of the 12S globulin complex of Brassica napus: Evolutionary relationship to other 11-12S storage globulins. Eur J Biochem 196, 617-21.
Stålberg K, Ellerström M, Josefsson LG, and Rask L (1993) Deletion analysis of a 2S seed storage protein promoter of Brassica napus in transgenic tobacco. Plant Mol Biol 23, 671-83.
Storozhenko S, Pauw PD, Montagu MV, Inzé, and Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 118, 1005-14.
Utsumi S (1992) Plant food protein engineering. Adv Food Nutr Res 36, 89208.

[^0]: K. H. Roh $(\boxtimes) \cdot$ S. B. Choi \cdot H.-C. Kang \cdot J.-B. Kim \cdot H. U. Kim \cdot K. -R. Lee - S. H. Kim

 Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration (RDA), Suwon 441-707, Republic of Korea
 Email: rohkh@korea.kr

