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Abstract The endoplasmic reticulum (ER) is a well-

characterized protein folding mechanism in eukaryotic

organisms. Many secretory and membrane proteins are

folded in the ER before they are translocated to their

functional destination. Various conditions, such as biotic,

abiotic, or physiological stresses, lead to the accumulation

of unfolded and misfolded proteins in the ER, resulting in

ER stress. In response to ER stress, cells initiate a pro-

tective response called the unfolded protein response

(UPR) to maintain cellular homeostasis. Previous studies

suggest that inositol-requiring kinase 1 (IRE1) is a uni-

versal ER stress sensor in yeast, mammals, and plants.

IRE1-mediated splicing of UPR transducers, such as

HAC1, XBP1, and bZIP60, triggers the UPR in yeast,

mammals, and plants, respectively. In mammals, activated

transcription factor 6 and double stranded RNA-activated

protein kinase-like ER kinases are involved in the UPR. In

plants, the additional UPR transducers bZIP28 and bZIP17

are activated by Golgi-localized S1P and S2P proteases.

Subsequently, these UPR transducers are exported to the

nucleus and upregulate the expression of UPR-responsive

genes encoding BiP, calreticulin, calnexin, protein disulfide

isomerase, and glucose-regulated protein 94 to decrease the

amount of misfolded proteins and induce endoplasmic

reticulum-associated degradation. In plants, the UPR sig-

naling pathway plays an important role in ER homeostasis

and normal biological processes; however, the molecular

mechanisms of the UPR in plants remain poorly under-

stood. This paper provides an overview of the regulatory

and signaling mechanisms of the UPR across kingdoms. In

addition, the emerging role of the UPR in plant physiology

and defense response will be discussed.

Keywords UPR � ER stress � IRE1

Introduction

Maintaining the balance between protein folding demand

and folding capacity is necessary for proper plant growth

and development (Deng et al. 2013). The coordinated

action of a complex orchestra of chaperones regulates the

protein folding capacity of the endoplasmic reticulum

(ER). The predominant protein folding catalysts are bind-

ing protein (BiP), glucose-regulated Protein 94, protein

disulfide isomerase (PDI), peptidyl propyl isomerase (PPI),

calnexin, and calreticulin (Del Bem 2011). During

polypeptide folding, assembly, and disassembly, different

chaperones increase the overall efficiency of protein fold-

ing by recognizing and stabilizing partially folded inter-

mediates (Gupta and Tuteja 2011). Disruption of protein

folding balance is caused by biotic or abiotic stresses and

leads to the accumulation of misfolded or unfolded proteins

in the ER, thereby creating ER stress. This results in an
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increase in cell damage followed by activation of the

endoplasmic reticulum quality control system (ERQC).

The accumulation of unfolded or misfolded proteins

induces ER-associated degradation (ERAD). Programmed

cell death (PCD) is one kind of ERAD response (Liu and Li

2014; Williams et al. 2014). However, cells can also ini-

tiate a protective response to maintain cellular homeostasis

called the ER stress response or unfolded protein response

(UPR) (Iwata et al. 2010). UPR upregulates the expression

of genes that improve protein folding capacity or remove

unfolded or misfolded proteins from the ER, and interacts

at many levels with the processes of adaptive immunity in

mammals or innate immunity in invertebrates (Reimold

2001; Iwakoshi 2003; Richardson et al. 2010). Although

the molecular mechanisms of UPR have been described

mainly in yeast and mammals, in plants, studies utilizing

the N-linked glycosylation inhibitor tunicamycin (Tm)

have identified analogous pathways for quality control of

proteins and the UPR (Iwata et al. 2010).

Activation of the signaling pathway between the ER and

nucleus that induces the transcription of genes encoding

ER protein quality control molecules generally initiates

from inositol-requiring kinase 1 (IRE1), which is known to

play an important role in the UPR (Nagashima et al. 2011).

IRE1 is an ER-resident type-1 transmembrane protein with

a sensor domain on its luminal surface and an RNase

domain on its cytoplasmic surface. The function of IRE1 is

based on its ability to sense ER stress and mediate

unconventional mRNA splicing of ERQC-related proteins,

such as HAC1 in yeast or XBP1 in mammals (Moreno and

Orellana 2011). Upon ER stress, IRE1 oligomers activate

its RNase activity by autophosphorylation.

IRE1-mediated UPR in yeast, mammals,
and plants

Gene expression profiling studies indicate that the UPR

regulates a variety of genes involved in specific secretory

pathway-related processes, including protein entry into the

ER, folding, glycosylation, redox metabolism, protein

quality control, protein degradation, lipid biosynthesis, and

vascular trafficking (Martı́nez and Chrispeels 2003). The

UPR mechanism in mammals and plants is more complex

than in yeast (Deng et al. 2011).

IRE1 has important functions in the UPR in all

eukaryotic cells. It was first identified in yeast as a mRNA

splicing factor (Cox and Walter 1996; Sidrauski and Walter

1997), and has two homologs in mammals, IRE1a and

IRE1b. IRE1 is bifunctional, as it contains two different

functional domains: an ER luminal stress sensing domain

and a cytosolic protein kinase and endoribonuclease

domain (RNase domain) (Sidrauski and Walter 1997; Zhou

et al. 2006). The RNase domain of IRE1 has mRNA

splicing activity and produces active transcription factors,

such as bZIP60 in plants, HAC1 in yeast, and XBP1 in

mammals. The activity of the IRE1 RNase domain is

dependent on the protein kinase domain and endoribonu-

clease activity of IRE1, which is essential for regulation of

RNA stability (Welihinda and Kaufman 1996).

The luminal domain of IRE1 can be di- or oligomerized

in ER-stressed cells. When the unfolded protein concen-

tration is low in the ER, BiP associates with the luminal

domain of IRE1 to maintain it in an inactive state. How-

ever, in response to ER stress, BiP disassociates from IRE1

and interacts with unfolded proteins, and the luminal

domain of IRE1 forms dimers or oligomers (Li et al. 2010).

In mammalian cells, IRE1a can auto-regulate its own

mRNA expression levels in the ER through endonucle-

olytic activity (Li et al. 2012), and IRE1b attenuates its

own translation through degradation of 28S ribosomal

RNA by endonucleolytic cleavage (Iwawaki et al. 2001).

Human IRE1b (hIRE1b)-mediated 28S rRNA cleavage

may then lead to translational repression during ER stress,

which decreases the demand for protein folding in the ER.

This is a rational response to relieve cells from ER stress.

While mammalian IRE1a is ubiquitously expressed,

expression of IRE1b is limited to the epithelium of the

gastrointestinal tract (Iwata et al. 2008). The signaling

pathway mediated by IRE1–XBP1 is involved in several

human pathological conditions, including neurodegenera-

tive diseases, liver dysfunction, metabolic disorders,

inflammation, brain and heart ischemia, and cancer. Tar-

geting this pathway has emerged as a promising therapeutic

strategy against these diseases (Koong et al. 2006; Lipson

et al. 2006; Hetz et al. 2013).

IRE1a (IRE1-2) and IRE1b (IRE1-1) in plants are

orthologs of mammalian IRE1a and IRE1b. Arabidopsis
IRE1a (AtIRE1a) and IRE1b (AtIRE1b) are encoded by

841 and 885 amino acid open reading frames, respectively.

Both AtIRE1a and AtIRE1b are found in the peri-nuclear

ER (Chen and Brandizzi 2012), but, while AtIRE1a protein

is capable of autophosphorylation, AtIRE1b is not. The

different functions of IRE1a and IRE1b may have conse-

quences on their dissimilar protein kinase-activation loops.

Although both IRE1a and IRE1b are responsible for

mRNA splicing, IRE1b is primarily responsible for mRNA

splicing in seedlings (Humbert et al. 2012). AtIRE1a is

widely expressed in vascular bundles of young plants,

leaves, roots, seeding, receptacles of flowers, and vascular

bundles of petals, while the expression of AtIRE1b is

localized to certain tissues at specific developmental

stages; it is found in the apical meristem in leaf margins

(where vascular bundles end), the anther before pollen is

formed, the ovules at an early stage of development, and

the cotyledons immediately after germination. Recent
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studies reveal that, in Arabidopsis, the C-terminal protein

kinase and RNase domains of IRE1b are important for

vegetative growth under normal conditions, but that only

the RNase domain is required for ER stress tolerance under

stress conditions (Deng et al. 2013). IRE1 plays a signifi-

cant role in plant defense and is required for pathogenesis-

related 1 (PR1) protein secretion (Srivastava et al. 2013). It

was reported recently that cell death was enhanced in two

Arabidopsis mutants, ire1a and ire1b-, under ER stress

conditions (Mishiba et al. 2013). In addition, AtIRE1a and

AtIRE1b are specifically involved in plant root growth

(Chen and Brandizzi 2012). Recently, a connection

between phytohormone auxin signaling and the UPR was

identified. In these studies, the auxin transporter and

receptor were downregulated in response to ER stress in

Arabidopsis. Auxin is a plant growth substance synthesized

in the plant apices of shoots and roots. Auxin levels are

lower in IRE1 mutants than in wild-type plants, suggesting

that plant UPR has evolved a hormone-dependent strategy

for coordinating ER function with physiological process

(Chen et al. 2014).

Yeast UPR

Based on the results of microarray analysis, 381 of the

6607 yeast genes identified in the Saccharomyces cere-

visiae genome are putative UPR target genes that are reg-

ulated under ER stress conditions (Travers et al. 2000).

These UPR target genes are not only ER chaperones, but

also proteins acting at several stages of folding, glycosy-

lation, modification, translation, protein degradation, vesi-

cle trafficking, vascular protein sorting, cell wall

biosynthesis, and lipid metabolism (Liu et al. 2007).

The mechanism of the UPR in yeast is relatively simple

compared with that in mammals and plants. In yeast, the

UPR is mediated only by IRE1p (an ortholog of mam-

malian IRE1), whereas it can be initiated by both activated

transcription factor 6 (ATF6) and PERK in mammals or

bZIP28 and bZIP17 in plants as well as by IRE1. IRE1p is

activated by dissociation from BiP in response to stress.

The amino terminal domain of IRE1p resides in the ER

lumen, and is believed to sense unusually high levels of

unfolded ER proteins and eventually activate the UPR-re-

lated transcription factor, HAC1 (Patil and Walter 2001).

HAC1 mRNA contains a non-classical intron near the 30

end of the open reading frame containing the carboxy-

terminal 10 amino acids and the stop codon of the predicted

protein (Fig. 1). Upon activation of the UPR in yeast, 252-

nucleotide intronic sequence is spliced out from the HAC1

mRNA by IRE1p. The 50 and 30 portions of the mRNA are

joined by tRNA ligase (Sidrauski et al. 1996). This spliced

HAC1 (HAC1 s) encodes a HAC1 protein comprised 238

amino acids, while the unspliced HAC1 (HAC1u) protein

contains only 230 amino acids. The HAC1s protein con-

tains an 18 amino acid sequence that is important for

transcription factor activation; however, it is missing in the

HAC1u protein (Mori 2009). Deletion of the HAC1 intron

not only allows translation of the mRNA, but also changes

the sequence and properties of the encoded protein. The

N-terminal DNA-binding domain has 220 amino acids

common to both the HAC1s and HAC1u proteins. The

DNA-binding domain is not disturbed by the splicing

reaction, but the trans-activation domain includes the

C-terminal tail. HAC1s acted as a highly active transcrip-

tional activation domain when its C-terminal tail was fused

to an unrelated DNA-binding domain, while the HAC1u

tail was essentially inactive (Kawahara et al. 1997; Mori

et al. 2000). Activated HAC1 (HAC1p) is translated only

from HAC1s mRNA. Activated HAC1p binds to unfolded

protein response elements (UPREs) to promote transcrip-

tion of UPR target genes. UPREs are found in the pro-

moters of several UPR target genes, such as the ER-

resident chaperones KAR2, PDI1, and FKB2 (Ron and

Walter 2007).

Mammalian UPR

Mammalian cells have three ER stress signaling arms:

IRE1-mediated splicing activation of XBP1 mRNA,

(ATF6), and double-stranded RNA-activated protein kinase

(PERK).

IRE1-mediated splicing of XBP1

Upon perception of ER stress, X-box binding protein 1

(XBP1) is spliced by IRE1 to produce the bZIP transcrip-

tion factor. The RNase domain of IRE1 catalyzes

spliceosome-independent splicing of XBP1 mRNA.

Unspliced XBP1 (XBP1u) encodes a 261 amino acid long

ORF that generates a non-functional protein (Liu et al.

2007). Conversely, spliced XBP1 mRNA produces the

XBP1s protein, which is 376 amino acids long with a

diverse and extended amino acid sequence at the C-ter-

minus (Kim and Jung 2014).

XBP1 can bind with co-regulator NF-Y in vitro

(Yoshida et al. 2001), but it is not clear whether the acti-

vated XBP1 (XBP1s) is exported into the nucleus along

with NF-Y. XBP1s regulates the expression of a variety of

ER chaperones and genes that mediate protein degradation

by binding to ER stress response elements (ERSEs) or

UPRE (Fig. 2) (Malhotra and Kaufman 2007). XBP1s

regulates the expression of a subset of UPR-inducing

genes, including p581PK, ERdj4, H EDJ, and PDI-P5,
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which were identified in mouse embryonic fibroblasts

(MEFs) and participate in protein folding quality control

and protein degradation (Li et al. 2010). In addition,

XBP1 s indirectly controls organelle biosynthesis of the

ER and Golgi by enhancing the activity of specific

enzymes related to phospholipid biosynthesis (Iwata et al.

2010). Activation of XBP1 upregulates expression of the

DNAJ family protein p58IPK, which negatively regulates

the expression of PERK, one of the major branches of the

mammalian UPR (Yan et al. 2002). The effects of XBP1 on

organelle biosynthesis can also be observed in other

organelles, including lysosomes and mitochondria, as evi-

denced by increased cell size (Iwata et al. 2010). Analysis

of gene expression in neurons indicated that XBP1s may

control distinct sets of genes in different cell types (Kaki-

uchi et al. 2006).

Activated transcription factor (ATF6)

ATF6 is a type-2 transmembrane protein that contains a bZIP

transcription factor domain in the cytosolic region of the

protein. Generally, ATF6 is synthesized as an inactive pre-

cursor and retained in the ERby associationwithBiP/GRP78

(Harding et al. 2001). In response to stress conditions, ATF6

disassociates from BiP/GRP78 and is transported to the

Golgi apparatus, where proteolytic processing occurs via

Fig. 1 A schematic illustration

of the unfolded protein response

in yeast. Under normal

conditions, ER membrane-

localized yeast IRE1 is bound to

BiP at the N-terminal region

located in the ER lumen, with

the C-terminus facing into the

cytosol. Upon the accumulation

of unfolded proteins in the ER

lumen, IRE1 is released from

BiP and activated by

autophosphorylation and

dimerization. Activated IRE1

splices HAC1 mRNA and

removes 253 nucleotides

including stop codon. HAC1s

ligated by tRNA ligase

possesses a longer ORF than

unspliced HAC1 mRNA

(HAC1u). HAC1p is exported to

the nucleus and binds with the

UPRE region of UPR-

responsive genes
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serine protease site I protease (S1P) in the C-terminal region

and metalloprotease S2P in the intra-membrane region of

ATF6 (Fig. 2). The N-terminal domain of ATF6 contains

bZIP a DNA-binding domain and transcription activation

domain and is exported to the nucleus where it binds to the

upstream promoter region cis-elements of ER stress-re-

sponsive genes, such as BiPs, to activate their transcription,

and upregulates many UPR-responsive genes related to

protein folding and ERAD. These promoter-localized cis-

elements are also called ERSEs (Yoshida et al. 1998). There

are three types of ERSEs: ERSE-1 (CCAAT-N9-CCACG),

ERSE-2 (ATTGG–NCCACG), and XBP1-BS or UPRE

(GA-TGACGT-T/G). Mammalian UPRE (TGACGTG-T/

G) is the specific cis-acting regulatory element bound by

XBP1 and is referred to as the XBP1 binding site. ERSE-1

(CCAAT-N9-CCACG) is recognized by both ATF6 and

XBP1 in vitro (Yoshida et al. 1998), and ERSE-2 (ATTGG-

N-CCACG) is also a target of ATF6 (Kokame et al. 2001).

Together with the transcription factor NF-Y, stress-activated

ATF6 binds to cis-elements in the promoter region, resulting

in the transcription of downstreamgenes. Inmammals,NF-Y

is a heterotrimeric complex comprised three conserved

subunits: NF-YA, NF-YB, and NF-YC (Gusmaroli et al.

2001). ATF6 upregulates BiP, PDI, ER degradation-en-

hancing alpha-mannosidase-like protein1(EDEM1) expres-

sion (Chakrabarti et al. 2011).

Double-stranded RNA-activated protein kinase

(PKR)-like endoplasmic reticulum kinase (PERK)

PERK is a type-1 ER transmembrane protein that contains

an ER luminal stress sensor and cytosolic protein kinase

domain. PERK is activated in response to ER stress and

inhibits normal protein translation in the ER of mammalian

cells by inactivating eukaryotic initiation factor (elF2a) via
serine 51 phosphorylation (Iwata et al. 2010). The three-

subunit eIF2a protein is essential for translation initiation

of eukaryote genes, including GTP-dependent start site

recognition (Merrick 2004). Phosphorylation of the a
subunit of eIF2 blocks the exchange of GDP to GTP, and,

as a result, initiation of translation is blocked (Gebauer and

Hentze 2004). Eventually, the inhibitory effect on transla-

tion resulting from phosphorylation of eIF2a helps allevi-

ate ER stress by decreasing the amount of unfolded

Fig. 2 A schematic illustration of the unfolded protein response in

mammals. IRE1 splices 26 nucleotides in XBP1 mRNA in the

mammalian UPR. ATF6 is activated in the Golgi by S1P and S2P.

The N-terminal domain of ATF6 is translocated to the nucleus for the

induction of UPR gene expression. PERK activates UPR genes and

functions in translational attenuation
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proteins (Fig. 2; Ye et al. 2000). In addition, elF2a phos-

phorylation increases the translation of specific mRNAs,

such as activating transcription factor 4 (ATF4), that con-

tain inhibitory regulator sequences within their 50

untranslated region (UTR) that prevent translation in

unstressed cells (Schröder and Kaufman 2005).

Activation of ATF4 by PERK upregulates a subset of

UPR genes that function preferentially in amino acid

import, glutathione biosynthesis, and resistance to oxidase

reactions (Harding et al. 2003). ATF4 binds to AARE (C/

EBT-ATF) (TT-G/T-CATCA), an element that was dis-

covered in the promoter of the transcription factor C/EBP

homologous protein (CHOP) (Bruhat et al. 2002). CHOP is

a 29 kDa protein composed of an N-terminal transcrip-

tional activation domain and a C-terminal bZIP domain.

ATF4 induces the expression of CHOP, which is associated

with apoptotic cell death (Harding et al. 2000; Bruhat et al.

2002). PERK is also essential for the normal function of

secretory cells in the pancreas and skeletal system in

mammals (Zhang et al. 2002).

UPR in plants

The membrane-associated ER stress transducers bZIP60,

bZIP28, and bZIP17 were identified in Arabidopsis (Atb-

ZIP60, AtbZIP28, and AtbZIP17) and are upregulated in

response to different stress conditions.

IRE1-mediated splicing of basic leucine zipper 60

(bZIP60)

In Arabidopsis, the ER stress transducer AtbZIP60, an

ortholog of HAC1 in yeast and XBP1 in mammals, has

been studied in greater depth compared with other trans-

ducers. AtbZIP60 mRNA encodes a 295-amino-acid pro-

tein with an N-terminal bZIP domain and a C-terminal

putative transmembrane domain (TMD) (Urade 2009).

Under stress conditions, a 23-nucleotide mRNA fragment

of the C-terminal TMD-encoding region is cleaved out by

IRE1 (Fig. 3). During proteolytic release, IRE1 attaches to

the bZIP60 mRNA hairpin loop. Activated bZIP60 trans-

lated from the spliced mRNA is exported to the nucleus

where it binds to UPREs or ERSEs in the promoter regions

of UPR-related genes. The expression of ER stress-re-

sponsive genes, such as members of the BiP family, was

less strongly induced in the bzip60 mutant than in the wild-

type under ER stress conditions. Additionally, overex-

pression of bZIP60 increased the full length bZIP60 pro-

tein, but the BiP gene was not actively transcribed in the

absence of ER stress (Iwata et al. 2008). In maize (Zea

mays), ZmbZIP60, an ortholog of AtbZIP60, is spliced by

IRE1 in response to heat stress, and active ZmbZIP60 is

targeted to the nucleus where it mediates the upregulation

of 22 BiP-like genes (Li et al. 2012). There are two other

AtbZIP60 orthologs in tobacco: NtbZIP60 (Nicotiana

tabacum) and NbbZIP60 (Nicotiana benthamiana). How-

ever, NtbZIP60 is upregulated only in response to ER

stress, whereas other bZIP60s are activated both as part of

the plant ER stress response and during anther cell devel-

opment (Iwata et al. 2008). Expression of bZIP60 in cul-

tured cells also increases their tolerance to salt, drought,

and cold stress (Tang and Page 2013). The plant-specific

transcription factor NAC103 is induced by ER stress and is

dependent on bZIP60 to activate expression of the UPR

downstream genes, calreticulin and calnexin (Sun et al.

2013). Exogenous salicylic acid (SA) also activates BiP3

and the UPR-related gene bZIP60, but in an IRE1–bZIP60

pathway-independent manner (Nagashima et al. 2014).

Proteolytic activation of basic leucine zipper 28

(bZIP28)

bZIP28 and bZIP17 are type-2 ER stress transducers in

plants. The structure and mode of action of bZIP28 and

bZIP17 are similar to those of the mammalian ER stress

transducer, ATF6. bZIP28 and bZIP17 are composed of a

cytosolic N-terminal bZIP domain, TMD, and C-terminal

domain.

Under normal conditions, AtbZIP28 localizes to the ER

membrane and binds with BiP. BiP binds to the C-terminal

tail of bZIP28 and interacts independently with different

areas of the luminal facing tail. In Tm-treated Arabidopsis

seedlings, bZIP28 is transported from the ER to the nucleus

via the Golgi apparatus (Wang et al. 2007; Srivastava et al.

2014). A broad range of genes involved in ER protein

folding and secretion require bZIP28 for full induction,

including BiP3, HSP90-like protein, CNX, DNA J domain-

containing proteins, and PDI. As with mammalian ATF6,

bZIP28 disassociates from BiP in response to Tm-induced

stress and translocates to the Golgi apparatus. It is then

cleaved by canonical subtilisin-like serine protease (S1P)

in the C-terminal region and undergoes putative S2P

cleavage at the TMD region (Fig. 3). Recent studies

demonstrate that bZIP28 has two S1P cleavage sites at

amino acid positions 375 and 573, identified as RVLM373

and RRIL573, respectively. RRIL573 is critical for biologi-

cal function, while the RVLM373 site is less important (Sun

et al. 2015). After proteolytic cleavage, activated bZIP28 is

exported to the nucleus where it binds to cis-elements on

UPR-responsive genes, resulting in the upregulation of

target genes. Like mammalian ATF6, bZIP28 forms a

transcriptional complex with the NF-YA4/NF-YB3/NF-

YC2 trimer at the ERSE-1 region of the target genes (Liu

and Howell 2010). There are two ERSE-1 elements in

BiP3. Both are required for full function, and mutation in
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one of the ERSE-1 elements resulted in a partial increase in

transcriptional activity (Iwata et al. 2009). The Arabidopsis

NF-Y subunits are also known as heme-activator proteins

(HAPs): HAP29 (NF-YA), HAP3 (NF-YB), and HAP5

(NF-YC) (Edwards et al. 1998; Gusmaroli et al. 2001). All

of the NF-Y subunits are essential for embryo develop-

ment, plastid biogenesis, flowering time regulation, and

biotic stress tolerance (Nelson et al. 2007). In addition,

UPR genes can be upregulated even in the absence of stress

by overexpression of active bZIP28 (Liu et al. 2007).

It was recently shown that bZIP28 can be activated by

SA (Nagashima et al. 2014). However, recent studies

suggest that bZIP17 and bZIP60 also play a role in the

response to salt stress, but this response goes through a

signaling pathway different than that triggered by the UPR

(Henriquez-Valencia et al. 2015).

Basic leucine zipper 17 (bZIP17)

Activation of AtbZIP17 is controlled by heat stress in a

manner similar to the regulatory mechanism that controls

the UPR (Moreno and Orellana 2011). Under normal ER

conditions, the AtbZIP17-GFP fusion protein is localized

to the ER. However, in response to salt stress, the fusion

protein relocates from the ER to the nucleus. The C-ter-

minal tail of AtbZIP17 is inserted into the ER lumen of the

plant cell. Under stress conditions, AtbZIP17 is transported

to the Golgi apparatus before being exported to the

nucleus. In the Golgi, the C-terminal tail of AtbZIP17 is

cleaved by a Golgi-localized protease (AtS1P) and the

N-terminus of AtbZIP17 enters the nucleus to activate

stress-responsive genes (Liu et al. 2008). Following salt

treatment in Arabidopsis seedlings, an 84 kDa myc-tagged

AtbZIP17 protein was processed to a 46 kDa protein,

consistent with cleavage in or near the TMD (Schütze et al.

2008).

Golgi-localized AtS1P, which is related to mammalian

S1P (Liu et al. 2007), has a prodomain structure with an

N-terminal signal peptide that targets it to the secretory

pathway and a sub-terminal prodomain responsible for

activation of proenzymes. AtS1P is responsible for the salt-

sensitive phenotype. However, although BiP genes are

considered ER stress markers, they are not induced sig-

nificantly by AtbZIP17-dependent signaling under salt

stress conditions (Sun et al. 2013).

Fig. 3 A schematic illustration

of the unfolded protein response

in plants. IRE1 splices 23

nucleotides in bZIP60 mRNA in

the plant UPR. bZIP28 and

bZIP17 are activated in the

Golgi by S1P and S2P. The

N-terminal domains of bZIP28

and bZIP17 are translocated to

the nucleus, where bZIP28,

together with NF-Y, induces the

expression of UPR genes. The

function of bZIP17 in the UPR

is not clear. No homolog of

PERK has been identified in

plants
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IRE1-induced autophagy/ERAD in yeast,
mammals, and plants

Under ER stress conditions, autophagy may help remove

damaged organelles and abnormal proteins (Bernales et al.

2006). Depletion of IRE1 or HAC1 blocks autophagy as

well as Atg proteins, which are induced by ER stress.

IRE1- or HAC1-depleted cells are more sensitive to ER

stress than Atg-deficient cells, suggesting that IRE1/HAC1

signaling is involved in the induction of autophagy to

promote cell survival in yeast (Bernales et al. 2006;

Yorimitsu et al. 2006). In mammalian cells, IRE1a is a key

regulator of macroautophagy, possibly through activation

of the JNK pathway under ER stress conditions. Activation

of autophagy in response to ER stress in MEFs is depen-

dent on the kinase domain of IRE1a, but, interestingly, is
not affected by the RNAse/XBP1 signaling pathway (Lis-

bona and Hetz 2009). On the other hand, knockdown of

XBP1 leads to an increase in basal autophagy in Droso-

phila cells as well as neuronal cells and the central nervous

system of mice, even in the absence of stress (Arsham and

Neufeld 2009; Hetz et al. 2009).

Protein–protein interaction data show that IRE1a phys-

ically interacts with ubiquitin-specific protease (USP) and

ERAD components (Nagai et al. 2009). XBP1 induces the

ERAD components, such as ER degradation-enhancing a-
mannosidase-like protein 1 (EDEM1), under ER stress

conditions. Impairment of ERAD activity by XBP1 defi-

ciency is associated with enhanced autophagy in neurons.

In this scenario, accumulation of abnormally folded pro-

teins in the ER due to impaired ERAD activity may operate

as a signal to induce autophagy (Matus et al. 2009). Recent

data show that autophagosome formation occurred in

Arabidopsis seedlings in response to ER stress. Arabidopsis

seedlings harboring knockdown mutations in IRE1b failed

to form autophagosomes in response to ER stress, sug-

gesting that IRE1b is a key component in the signaling

pathway that connect ER stress to autophagy (Liu et al.

2012). Interestingly, autophagosome formation was not

blocked by knockout of bZIP60, suggesting that a function

of IRE1b other than its RNA-splicing capacity connects ER

stress to autophagy.

Concluding remarks and future perspectives

UPR is a compound response mediated by multiple signal

transducers in a pathway essential for the survival of

organisms under stress conditions and the recovery of ER

homeostasis. Under stress conditions, UPR genes are

upregulated in yeast, mammals, and plants (summarized in

Table 1). In plants, IRE1-mediated splicing of the bZIP60

nucleotide sequence is different in monocot and dicot

plants. Activation of the IRE1-mediated apoptosis signal-

regulating kinase1 (ASK1)-JNK signaling cascade and

degradation of mRNA encoding secretory proteins through

regulated IRE1-dependent decay (RIDD) are responsible

for decreasing the unfolded protein load under ER stress

conditions. In plants, bZIP60, bZIP28, and bZIP17 are

activated to induce the expression of ER stress-responsive

genes, but it remains unclear which UPR genes are induced

by each individual UPR sensor. IRE1 is a universal UPR

sensor in yeast, mammals, and plants. In plants, activation

of bZIP60 and bZIP28 occurs in a process similar to that

responsible for activation of mammalian XBP1 and ATF6,

respectively. The IRE1-mediated cleavage position in

Table 1 Comparison summary of the UPR in yeast, mammals, and plants

UPR arms Yeast Mammal Plant

IRE1-mediated

mRNA splicing of

HAC1, XBP1, and

bZIP60

HAC1 spliced by IRE1p

binds to UPRE to

upregulate UPR gene

expression

Spliced HAC1 is longer

than unspliced HAC1

XBP1 spliced by IRE1a binds to UPRE or

ERSE-I to upregulate UPR gene expression

Spliced XBP1 is longer than unspliced XBP1

bZIP60 splicing by IRE1 binds to UPRE or

ERSE to upregulate UPR gene

expression

Spliced bZIP60 is shorter than unspliced

bZIP60

Proteolytic activation

of ATF6, bZIP28,

and bZIP17 by S1P

and S2P

– ATF6 cleaved by S1P and S2P at Golgi binds

to ERSE-I or ERSE-II together with NF-Y

bZIP28 and bZIP17 cleavage by S1P and

S2P at the Golgi bZIP28 translocates to

the nucleus and binds to ERSE-I to

upregulate UPR gene expression

PERK-mediated

phosphorylation of

elF2a and

translational control

– eIF2a phosphorylated by PERK decreases

global protein translation to reduce ER

unfolded protein load and control

translation of UPR genes. ATF4 activated

by phosphorylated eIF2a binds to AARE to

upregulate CHOP

–
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bZIP60 in plants is still unclear at present. In addition, a

homolog of PERK, part of the mammalian ER stress

response, has not yet been identified in plants (Fig. 2).

However, the kinase AtGCN2IS was identified in plants in

response to plant starvation, and is capable of phosphory-

lation activity similar to that of mammalian elF2a (Zhang

et al. 2008). Cleavage of Arabidopsis bZIP60 mRNA by

SA treatment and agb1-2 mutant plant (G-protein beta

subunit null mutation) show less cell death in response to

ER stress, suggesting that plants may possess an IRE1a/

IRE1b-independent UPR pathway (Iwata and Koizumi

2005; Wang et al. 2007; Nagashima et al. 2014). However,

the mechanisms of ERAD, ERQC, and ER stress-induced

autophagy/PCD are mostly unknown in plants. Current

research will delineate the function of the UPR in relation

to plant defense systems and other biological processes in

the plant ER.
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