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Abstract The purpose of this study was to understand the

formation of metabolites from the metabolic reaction of

cyazofamid with human liver microsomes. Human liver

microsomal incubation of cyazofamid in the presence of

NADPH produced one metabolite, 4-chloro-2-cyano-5-(4-

(hydroxymethyl)phenyl)N,N-dimethyl-1H-imidazole-1-sul

fonamide (CCHS). An incubation study using cDNA-ex-

pressed human recombinant P450s (rCYPs) demonstrated

that cyazofamid-derived CCHS is mediated by CYP2B6,

2C9, and 2C19 at different reaction rates. The crystal

structure of cyazofamid was obtained using single-crystal

X-ray diffraction. According to a molecular modeling

study of the crystal structure of cyazofamid with the rCYPs

2B6, 2C9, 2C19, and 3A4, the metabolic reactivities

(2B6[ 2C19[ 2C9) were well-correlated to the distances

between heme irons of CYPs and 4-methylphenyl group of

cyazofamid.

Keywords Crystal � Cyazofamid � Human liver

microsomes � Metabolism � Molecular docking

Introduction

Cyazofamid (4-chloro-2-cyano-N,N-dimethyl-5-p-tolylim-

idazole-1-sulfonamide, Fig. 1), a sulfonamide fungicide

(Tomlin 2009), has been used to protect several vegeta-

bles and fruits from various diseases, such as tomato late

blight (Phytophthora infestans) and downy mildew

(Pseudoperonospora cubensis of cucumber) (Mitani et al.

2001; Tomlin 2009). It is known to inhibit the Qi site

(ubiquinone reducing site) of cytochrome bc1 in complex

III (ubiquinol-cytochrome c reductase) of the mitochon-

drial respiratory chain (Mitani et al. 2001; Tomlin 2009).

In general, pesticides are biotransformed to metabolites

in biosystems by a variety of metabolic reactions, such as

major phase I and phase II reactions. Phase I reactions

primarily produce oxidized compounds, while phase II

reactions produce conjugates with glucuronic acid, glu-

cose, glutathione and other metabolites (Hodgson and Rose

2008; Abass et al. 2014). Such metabolic reactions usually

detoxify harmful xenobiotic compounds. However, in a

number of cases, parent compounds are bioactivated to

create even more toxic metabolites or reactive intermedi-

ates (de Graaf et al. 2005). In phase I reactions, the cyto-

chrome P450 (CYPs) group of enzymes plays a major role,

and those CYPs are found in high concentrations in the

liver, while small amounts are found in the lung, kidney,

gastrointestinal tract, nasal mucosa, skin, brain, heart, and

placenta (Hodgson and Rose 2008; Zanger and Schwab

2013; Abass et al. 2014; Lee et al. 2014). For metabolism

studies of xenobiotics, including pesticides, pooled human

liver microsomes (HLMs), which contain CYPs and a

variety of cDNA-expressed human recombinant cyto-

chrome P450s (rCYPs), have become commercially

available in recent years. For example, in vitro metabolism

& J.-H. Kim

kjh2404@snu.ac.kr

1 Department of Agricultural Biotechnology and Research

Institute of Agriculture and Life Sciences, Seoul National

University, Seoul 08826, Republic of Korea

2 Geum River Environmental Research Center, National

Institute of Environmental Research, Okcheon gun 29027,

Republic of Korea

3 College of Pharmacy, The Catholic University of Korea,

Bucheon 14662, Republic of Korea

4 Division of Bioscience and Biotechnology, BMIC, Konkuk

University, Seoul 05029, Republic of Korea

123

Appl Biol Chem (2016) 59(4):649–653 Online ISSN 2468-0842

DOI 10.1007/s13765-016-0204-5 Print ISSN 2468-0834

http://crossmark.crossref.org/dialog/?doi=10.1007/s13765-016-0204-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13765-016-0204-5&amp;domain=pdf


studies of various pesticides by HLMs, such as benfuracarb

(Abass et al. 2014), flucetosulfuron (Lee et al. 2014),

bifenthrin, S-bioallethrin, bioresmethrin, b-cyfluthrin,

cypermethrin, and permethrin (Scollon et al. 2009), were

conducted to identify metabolites that could be produced in

liver, their reaction kinetics, and the CYP isoforms

responsible for metabolite formation.

As the formation of metabolites is a result of interaction

between molecules and CYPs, in silico molecular docking

methods are a useful method of investigating the binding

properties of molecules to CYPs (Marechal et al. 2006).

The molecular mechanisms of biological activities, such as

metabolism (Sousa et al. 2013), inhibition (Marechal et al.

2006) and drug–drug interactions (Qiu et al. 2015), can be

elucidated using in silico docking studies.

In the present study, metabolism of cyazofamid with

HLMs was carried out to identify the metabolite, and the

metabolic reactivity and rCYPs isoforms responsible for

formation of the metabolite were investigated with 10 types

of rCYPs. Additionally, the crystal structure of cyazofamid

was obtained by a molecular docking study with reactive

rCYPs in an attempt to understand differences in metabolic

reactivity between these molecules.

Materials and methods

Chemicals and reagents

Cyazofamid was purchased from FlukaTM (St. Louis, MO,

USA). Pooled HLMs and 10 different cDNA-expressed

human recombinant P450s (rCYPs), including CYP1A2,

2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5

(SupersomesTM) were purchased from BD Gentest

(Woburn, MA, USA). Glucose-6-phosphate, glucose-6-

phosphate dehydrogenase, nicotinamide adenine dinu-

cleotide phosphate (NADP?), nicotinamide adenine dinu-

cleotide phosphate reduced (NADPH), potassium

phosphate monobasic/dibasic, and magnesium chloride

were purchased from Sigma-Aldrich (St. Louis, MO,

USA). All solvents (HPLC grade) were obtained from

Burdick and Jackson� (Ulsan, Korea).

In vitro metabolism of cyazofamid by HLMs

and rCYPs

To determine metabolite formation from cyazofamid,

incubation mixtures containing 50 mM potassium phos-

phate buffer (pH 7.4), 10 mM magnesium chloride, pooled

HLMs (0.5 mg/mL), NADPH-generating system (1 mM

NADP?, 5 mM glucose-6-phosphate, 0.25 U glucose-6-

phosphate dehydrogenase, and 1 mM NADPH), and

100 lM cyazofamid were prepared in a total incubation

volume of 500 lL. The reaction mixtures were incubated at

37 �C for 0, 30, 60, and 120 min in a shaking water bath

before the reaction was terminated by the addition of 500

lL of acetonitrile on ice. The reaction mixture was cen-

trifuged at 13,000 rpm for 7 min at 4 �C, and 2 lL of

supernatant was subsequently analyzed using HPLC and

LC–MS/MS. The analytical settings of the instruments

used for the reaction mixture and metabolite identification

were described earlier (Lee et al. 2016). Control incuba-

tions were conducted in the absence of an NADPH-gen-

erating system or by denaturing the HLMs at 80 �C. To

confirm whether FMOs were involved in metabolite for-

mation, the HLMs were heated for 30 min at 45 �C prior to

the incubation.

To identify the rCYPs isoforms that were responsible for

metabolite formation, metabolic reactions were performed

for 10 min with 10 different rCYPs isoforms (10 pmol) and

10 lM of cyazofamid.

X-ray crystallography and molecular docking

Single crystals of cyazofamid were obtained by slow

evaporation of the solvents (acetone and hexane). Exami-

nation of the cyazofamid structure was performed by single

crystal X-ray diffraction with Mo Ka1 radiation

(k = 0.71073 Å) on a RIGAKU R-ASXIS RAPID

diffractometer.

Cyazofamid and CYP crystal structure docking experi-

ments were performed on an Intel Core 2 Quad Q6600

(2.4 GHz) Linux PC using Sybyl 7.3 software (Tripos,

USA). Three dimensional (3D) structures of CYP 2B6,

2C9, 2C19, and 3A4 were adapted from the Protein Data

H3C

N

N
S

C

Cl

N
CH3H3C

O O

N

C
H2

N

N
S

C

Cl

N
CH3H3C

O O

N

HOCYP450s

Cyazofamid 4-chloro-2-cyano-5-(4-(hydroxymethyl)phenyl)-
N,N-dimethyl-1H-imidazole-1-sulfonamide (CCHS)
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Bank (3IBD, 1OG5, 4GQS, and 2J0D, respectively). The

binding pocket was determined from 3IBD.pdb, 1OG5.pdb,

4GQS.pdb, and 2J0D.pdb using LigPlot (Wallace et al.

1995), and all 3D images were constructed using PyMOL

(PyMOL Molecular Graphics System, Version 1.0r1,

Schrödinger, LLC.).

Results and discussion

Metabolite formation from the reaction

of cyazofamid with HLMs and rCYP isoforms

Incubation of cyazofamid with HLMs in the presence of

NADPH resulted in the formation of a single metabolite,

while no metabolites were observed with denatured HLMs

without the NADPH generating system, with denatured

HLMs (at 80 �C for 10 min) or with the heated HLMs (at

45 �C for 30 min). The metabolite was identified by LC–

MS/MS ([M?H]? = m/z 341) as 4-chloro-2-cyano-5-(4-

(hydroxymethyl)phenyl)N,N-dimethyl-1H-imidazole-1-sul

fonamide (CCHS, Fig. 1), which was also observed as

CM3 in a previous study (Lee et al. 2016).

In metabolic reactions of cyazofamid with 10 different

rCYP isoforms, only three isoforms (CYP2B6, 2C19, and

2C9) produced a single metabolite CCHS and did so at

different rates (Fig. 2). CYP3A4, the most abundant iso-

form (Abass et al. 2012), was not involved in metabolite

production. In work by Abass et al. (2012), a metabolism

study of 63 pesticides using rCYP isoforms showed that

CYP 2C19 was involved in metabolism at a level of 15 %,

CYP2B6 was involved at a level of 12 %, CYP2C9 at a

level of 10 %, and CYP3A4 at a level of 24 %. The relative

importance of CYP2B6, which showed the highest reac-

tivity in our study, has only recently become apparent in

drug and pesticide metabolism. Recent studies have

demonstrated that CYP2B6 is an important isoform in

human metabolism of pesticides, including alachlor,

metolachlor, acetochlor, butachlor (Coleman et al. 2000)

and endosulfan (Lee et al. 2006).

Single crystal structure of cyazofamid

and molecular docking with rCYPs

In crystal structure, the monoclinic cell parameters and

calculated volumes of cyazofamid crystal were

a = 6.8160(10) Å, b = 13.396(2) Å, c = 16.462(2) Å, and

b = 92.993(3)o, while the torsion angle between the ben-

zene and imidazole rings was 79o (Fig. 3A). These crys-

tallographic characteristics were similar to the reported

data (Ning et al. 2010).

The crystal structure of cyazofamid was docked with

rCYPs 2B6, 2C9, 2C19, and 3A4 using Sybyl 7.3 software

to elucidate the reactivity differences between rCPY

isoforms.

In CYP2B6, the binding pocket of 3IBD.pdb included

Arg98, Ile114, Phe297, Ala298, Glu301, Thr302, Leu363,

Arg434, and Cys436. All of the residues except Thr302 and

Ile114 participated in hydrophobic interactions with cya-

zofamid, and two residues formed hydrogen bonds

(Fig. 3B). The residues of 1OG5.pdb that neighbored the

binding site in CYP2C9 were Ile99, Phe100, Ala103,

Leu208, Gln214, Asn217, Ser365, Leu366, Pro367,

Asn474, Phe476, and Ala477. All of the residues except

Gln214 and Asn217 showed hydrophobic interactions with

cyazofamid, and two residues formed hydrogen bonds. In

the case of CYP2C19, the residues of 4GQS.pdb that

neighbored the binding site were Leu102, Val208, Ile205,

Leu233, Gly296, Ala297, Glu300, Thr301, and Phe476,

and all of the residues showed hydrophobic interactions

with cyazofamid. The distances between the carbon of the

methyl group at C13 of cyazofamid (Fig. 3A), which was

oxidized by rCYPs to form the metabolite CCHS, and the

iron center of a heme in the rCYPs were calculated because

the distance between two molecules is the most important

parameter for their metabolic reaction. Those distances

were 4.949, 14.209, 14.266, and 15.397 Å for CYP2B6:-

cyazofamid, CYP2C19:cyazofamid, CYP2C9:cyazofamid,

and CYP3A4:cyazofamid, respectively. Cyazofamid was

closest to the heme of CYP2B6 (Fig. 3C) and was farthest

from the heme of CYP3A4. This result correlated well with

the different metabolism reaction rates of the three rCYPs

(Fig. 2) and CYP3A4.
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Fig. 2 Formation of metabolite from cyazofamid by cDNA-ex-

pressed P450 isoforms when incubated with 20 lM of cyazofamid at

37 �C for 10 min. Data represent the averages of triplicate

experiments
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Fig. 3 Packing diagram (A) for

cyazofamid and the interaction

of cyazofamid with rCYP2B6.

(B) LigPlot analysis. (C) Protein

structure with the heme group (a

white ball-and-stick) and

cyazofamid (a pink carbon ball-

and-stick)
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