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Abstract The effects of luteolin (LT) and luteoloside (LS)

from Taraxacum coreanum, using lipopolysaccharide

(LPS)/interferon-gamma (IFN-c)-induced RAW264.7

macrophage cells, on anti-inflammation were investigated.

Our study was focused on the ethyl acetate fraction from T.

coreanum (ETC) and its active compounds and their pro-

tective role against inflammation. The ETC and its active

compounds, LT and LS, showed dose-dependent inhibitory

activity against the production of nitric oxide (NO) and

reactive oxygen species (ROS) in LPS/IFN-c-stimulated

RAW264.7 cells. In addition, ETC and its active com-

pounds inactivated nuclear factor-kappa B and down-reg-

ulated inflammatory mediators. The results also showed

that treatment with ETC, LT, and LS decrease pro-in-

flammatory cytokines, tumor necrosis factor-alpha, and

interleukin-6. In conclusion, our studies indicated that ETC

has anti-inflammatory activity owing to inhibition of NO/

ROS generation and down-regulation of inflammatory

mediators and cytokines. Moreover, LT and LS are

bioactive compounds of ETC with protective effects

against inflammation.

Keywords Anti-inflammatory activity � Luteolin �
Luteoloside � RAW264.7 macrophage cell � Taraxacum
coreanum

Introduction

Inflammation is the biological response against pathogens

that cause cell injury in the human body. Normal

inflammation is immune response against harmful stimuli

or damage by up-regulation of anti-inflammatory cytoki-

nes/mediators (Lawrence et al. 2002). However, chronic

inflammation is associated with pro-inflammatory cytoki-

nes production and increased risk of tissue damage and

other degenerative disorders (Allavena et al. 2008). The

stimulation of macrophages with lipopolysaccharide (LPS)

leads to the secretion of inflammatory cytokines. Nuclear

factor-kappa B (NF-jB) is activated by inflammatory

stimuli, such as LPS; activated NF-jB modulates the

expressions of pro-inflammatory enzymes and cytokines

(Karin and Ben-Neriah 2000). Nitric oxide (NO) is a

reactive radical which is produced by inducible nitric

oxide synthase (iNOS), and regulates physiological and

pathological conditions (Sacco et al. 2006). However, the

over-expression of NO induces various harmful responses

such as tissue damage and acute or chronic inflammatory

diseases (Kaplanski et al. 2003). Tumor necrosis factor-

alpha (TNF-a) and interleukin-6 (IL-6) can induce

inflammatory progression through mediators, iNOS and

cyclooxygenase-2 (COX-2) (Warren 1990). NF-jB-tar-
geted treatments might be effective against diseases,
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because of its role in the pathogenesis of inflammatory

gene expression.

Taraxacum coreanum (TC) is a plant native to Korea and

Japan. TC is used as a medicine for the treatment of diuretic

disorder or inflammation (Koo et al. 2004; Lee et al. 2013).

Recent studies also demonstrated that it has hypolipidemic and

anti-oxidant activity against oxidative stress (Chiou et al.

1997). Flavonoids are polyphenol compounds that are impor-

tant to human health. They possess a wide range of biological

effects on inflammation, allergy, and asthma (Middleton and

Kandaswami 1992). Wolbis et al. (1993) identified that fla-

vonoids, quercetin, luteolin (LT), luteolin-7-glucoside (LS),

and quercetin-7-glucoside in dandelion leaves and flower

extracts. In particular, the total content of LT andLS in TCwas

containedmore than that in T. ohwianum and T. officinale (Lee

et al. 2011). However, the anti-inflammatory activity of the

active compounds in TC has not been studied yet.

To investigate the anti-inflammatory effects of ethyl

acetate (EtOAc) fraction of TC (ETC) and its active

compounds, we used LPS- and interferon-gamma (IFN-c)-
stimulated RAW264.7 cells to induce inflammation by

increased NO production. In addition, the regulatory

mechanisms against the inflammatory process were also

studied by measurement of the levels of inflammatory

cytokines and mediators induced by NF-jB activation in

LPS/IFN-c-stimulated RAW264.7 cells.

Materials and methods

Plant materials

Aerial parts of TC collected at sides of the West Coast

Express Highway (geographic coordinates: 36�5303500N
126�3704100E) in the Republic of Korea by permission of

Korea Expressway Corporation were used.

Instruments and reagents

RAW264.7 macrophage cells from Korea Cell Line Bank

(KCLB, Seoul, Korea) were used. To culture cells, fetal

bovine serum (FBS), Dulbecco’s modified eagle’s medium

(DMEM), and penicillin/streptomycin were supplied from

Welgene (Daegu, Korea). IFN-c was from Pepro Tech

(Rocky Hill, NJ, USA). The LPS, Griess reagent, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

(MTT), and dimethyl sulfoxide (DMSO) were supplied

from Sigma Chemical Co. (St Louis, MO, USA).

Preparation of ETC and its active compounds

Freeze-dried TC was extracted with methanol (MeOH) for

3 h; the process of MeOH extraction was repeated 8 times.

The extract was concentrated by a rotary evaporator and

suspended in water. The combined extract was partitioned

with n-hexane, chloroform (CHCl3), EtOAc, and n-butanol

(n-BuOH), successively. A portion of the EtOAc fraction

was subjected to a silica gel column chromatography using

a gradient system of n-hexane–EtOAc and EtOAc–MeOH

to yield LT and LS (Fig. 1).

Cell culture

The RAW264.7 cells maintained at 37 �C in a CO2 (5 %)

incubator with DMEM containing penicillin/streptomycin

(1 %) and FBS (10 %)were sub-culturedweeklywith 0.05 %

trypsin-ethylenediaminetetraacetic acid (EDTA) in PBS.

Cell viability

After the cells reached confluence, the cells were seeded at

5 9 104 cells/well into 24-well plates, for 2 h incubation,

and then treated with samples for 24 h. RAW264.7 cells

were then stimulated with LPS (1 lg/mL)/IFN-c (10 ng/

mL) for 24 h. The cells were incubated with 1 mL of MTT

solution (5 mg/mL) for 4 h at 37 �C, and the medium

containing MTT was removed. And then, the formazan

crystals were dissolved with 1 mL of DMSO, and viable

cells were detected to measure absorbance at 540 nm

(Mosmann 1983).

Measurement of NO production

The NO production was investigated as the nitrite accu-

mulation in the medium treated with the Griess reagent. To
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Fig. 1 Chemical structures of LT and LS
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measure nitrite, the cell supernatants were added with a

same volume of the Griess reagent. And then, the nitrite

concentration was measured using microplate spectropho-

tometer at a wave length of 540 nm.

Measurement of ROS production

The ROS scavenging activity of ETC and its active com-

pounds was measured using dichlorodihydrofluorescein

diacetate (DCFH-DA) (Cathcart et al. 1983). RAW264.7

cells were incubated with LPS/IFN-c for 24 h. After that,

ETC (5, 25, 50, and 100 lg/mL) and its active compounds,

LT and LS (0.5, 2.5, 5, and 10 lg/mL), were added for

24 h at 37 �C. Then florescence was read for 60 min, at

wavelengths of 480 nm for excitation and 535 nm for

emission, using a florescence plate reader (BMG LAB-

TECH, Ortenberg, Germany).

RNA extraction and reverse transcription

polymerase chain reaction (RT-PCR)

According to the manufacturer’s instruction, total RNA

was isolated using a Trizol reagent (Invitrogen, Carlsbad,

CA, USA). Cells were lysed by the Trizol reagent and RT-

PCR was performed using TOP script One-step RT-PCR

(Enzynomics, Daejeon, Korea). The RNA was reverse-

transcribed into cDNA which is used as a template for

amplification of RT-PCR (Table 1). The products of PCR

were analyzed on 1 % agarose gels; the expression was

visualized under LED slider imager (Maestrogen, NV,

USA).

Statistical analysis

Data are expressed as the mean ± SD. Statistical signifi-

cance was measured by one-way ANOVA, followed by

Duncan’s post hoc tests (P\ 0.05).

Results

Effect of ETC and its active compounds on NO

production

LPS/IFN-c treatments induced NO formation in

RAW264.7 cells (Fig. 2). Exposure of LPS/IFN-c-stimu-

lated RAW264.7 cells to ETC (5, 25, 50, and 100 lg/mL)

and its active compounds, LT and LS (0.5, 2.5, 5, and

10 lg/mL), for 24 h did not have any cytotoxic effects at a

concentration lower than 100 lg/mL ETC and 10 lg/mL

active compounds (data not shown). LPS significantly

increased NO levels, whereas the treatment with various

concentrations of ETC remarkably inhibited NO produc-

tion in LPS/IFN-c-activated RAW264.7 cells dose-depen-

dently. In addition, we checked the effects of LT and LS on

NO production. The results showed that NO production

was decreased by LT and LS treatments, in a dose-de-

pendent manner. Especially, treatments with LT at 2.5, 5,

and 10 lg/mL suppressed NO production by 46.07, 43.98,

and 42.18 %, respectively, compared to LPS/IFN-c-stim-

ulated control group (100 %). These results suggested that

both ETC and its active compounds have inhibitory effects

on NO production in LPS/IFN-c-stimulated RAW264.7

macrophage cells.

Effect of ETC and its active compounds on ROS

production

Exposure of RAW 264.7 cells to LPS/IFN-c for 24 h

increased intracellular ROS levels (Fig. 3). In contrast,

ETC treatments prevented the increase of LPS/IFN-c-in-
duced ROS production. When the cells were treated with

ETC at 100 lg/mL, ROS production decreased by 71.27 %

compared to the control group (100 %). In addition, the

active compounds markedly decreased ROS formation in

the presence of LPS/IFN-c (Fig. 3). In particular, LT had a

stronger ROS scavenging activity than LS.

Table 1 Primers and

conditions used in PCR
mRNA Primer sequence PCR conditions

NF-jB F: GCA-GCC-TAT-CAC-CAA-CTC-T

R: TAC-TCC-TTC–TTC-ACC-A

48 �C
Cycle: 35

iNOS F: CCT–CCT-CCA-CCC-TAC-CAA-GT 53 �C
Cycle: 35R: CAC-CCA-AAG-TGC-CTC-AGT-CA

COX-2 F: AAG-ACT-TGC-CAG-GCT-GAA-CT 53 �C
Cycle: 35R: CTT-CTG-CAG-TCC-AGG-TTC-AA

GAPDH F: TCA-TGA-AGT-GTG-ACG-TTG-ACA-TCC-GT 60 �C
Cycle: 35R: CCT-AGA-AGC-ATT-TGC-GGT-GCA-CGA-TG

NF-jB Nuclear factor-kappa B, iNOS inducible nitric oxide synthase, COX-2 cyclooxygenase-2, GAPDH

Glyceraldehyde 3-phosphate dehydrogenase
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Effect of ETC and its active compounds on TNF-a
and IL-6 release

Figure 4 shows the effect of ETC and its active compounds

on production of TNF-a and IL-6 in LPS/IFN-c-stimulated

RAW264.7 cells. As a result, treatments with ETC and its

active compounds inhibited the production of TNF-a and IL-
6 dose-dependently. LT inhibited TNF-a and IL-6 produc-

tion more significantly than LS, suggesting that LT inhibited

TNF-a and IL-6 production more significantly than its gly-

coside LS in LPS/IFN-c-stimulated RAW264.7 cells.

Effect of ETC and its active compounds on mRNA

expression of NF-jB, iNOS, and COX-2

As shown in Fig. 5, LPS/IFN-c significantly increased

mRNA expressions of pro-inflammatory mediators, NF-
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jB, iNOS, and COX-2, in the control group compared to

untreated group. However, treatments with ETC and its

active compounds, LT and LS, suppressed NF-jB, iNOS,
and COX-2 expressions dose-dependently. These results

indicated that treatments with ETC and its active com-

pounds block the degradation of NF-jB activation, and

therefore, iNOS and COX-2 expressions were attenuated in

LPS/IFN-c-stimulated RAW264.7 cells.

Discussion

Chronic inflammatory diseases were accompanied by

increased ROS production and inflammatory gene expres-

sions (Wang et al. 1994; Wiseman and Halliwell 1996).

TC, a member of Asteraceae, has been used as a medicinal

herb to treat diuretic and liver disease. Several reports

suggested that flavonoids, one of the large families of plant

constituents, have inhibitory activity against inflammation

(Havsteen 1983; Kim et al. 2004). According to Hu and

Kitts, LT and LS, which are flavones isolated from dan-

delion flower extract, alleviated oxidative reaction (Hu and

Kitts 2003). In our previous study, the EtOAc fraction had

the strongest anti-oxidant property compared to the other

fractions (Lee et al. 2012). Therefore, we focused on the

anti-inflammatory effects of ETC (5, 25, 50, and 100 lg/
mL) and the active compounds (1, 2.5, 5, and 10 lg/mL)

isolated from ETC. The concentration of active com-

pounds, LT and LS (1, 2.5, 5, and 10 lg/mL), is equivalent

to the 1.7, 8.7, 17.5, and 35 lM of LT and 1.1, 5.6, 11.1,

and 22.3 lM of LS, respectively. We hypothesized that

ETC and its active compounds regulate ROS generation

and inflammatory gene expression.

Macrophage cells are important to inflammation reac-

tion induced by cytotoxicity and multiple inflammatory

diseases through cellular response (MacMiking et al.

1997). RAW 264.7 macrophage cells stimulated by LPS/

IFN-c enhanced the expressions of inflammatory cytokines

and mediators (Xie and Nathan 1994). The over-production

of ROS by macrophage cells is one of the most important

hallmarks of inflammatory reaction. D’Acquisto et al.

(2002) reported that ROS are involved in cellular stress and

modulation of NF-jB activation. Therefore, inhibition of

ROS production is considered a therapeutic target for

preventing inflammatory diseases. ETC, LT, and LS

showed the most potent anti-oxidant and anti-inflammatory

effects through inhibition of ROS generation (Fig. 3).

These results suggested that the anti-oxidative and anti-

inflammatory activities of ETC are attributed to its active

compounds, LT and LS.

NO, a reactive free radical, is produced by L-arginine

and is central role in the inflammatory process or infection

(Marletta 1993). At adequate concentrations, NO can

generate and regulate intracellular signals, thereby affect-

ing the immune cells. However, uncontrolled production of

NO is associated with inflammation. Our results demon-

strated that ETC and its active compounds have concen-

tration-dependent inhibition of NO production. Moreover,

treatments with LT and LS on RAW264.7 cells stimulated

with LPS/IFN-c significantly reduced NO production. The

previous reports demonstrated that cytotoxicity of LS was

lower than its aglycone form, LT. Other reports confirmed

that glycosylation may contribute to reduced toxicity and

that LS had stronger NO suppression activity than LT

(Wang and Mazza 2002a; Hu and Kitts 2004).

To investigate the inhibitory mechanisms of NO pro-

duction, the effects of ETC and its active compounds on

mRNA expressions in LPS/IFN-c-induced RAW264.7

cells were determined. NF-jB is a transcriptional activa-

tion factor that plays a crucial role in the inflammatory

response, including the regulation of iNOS and COX-2

(Spitzer et al. 2002). Therefore, iNOS and COX-2

expressions, and NF-jB activation have been used as

biomarkers for anti-inflammatory activity. The present

results indicated that ETC, LT, and LS suppressed NF-jB
activation as well as LPS/IFN-c-induced iNOS and COX-2

mRNA expression. Previous study mentioned that phenolic

compounds inhibited inflammatory mediators and sup-

pressed inflammatory responses through NF-jB pathway

(Rao et al. 2005; Jung et al. 2007). Therefore, it is strongly

suggested that the inhibition of NO production may be

owing to decreased iNOS and COX-2 expressions.

TNF-a and IL-6 are multifunctional inflammatory

cytokines. These cytokines contribute to tissue damage and

multiple organ failure (Akira et al. 1990; Hirano 1992). IL-

6 is a pro-inflammatory cytokine involved in the regulation

of immune responses, which are induced by macrophages

(Tilg et al. 1994). Moreover, a large amount of TNF-a
secretion produced by LPS leads to NO generation (Ag-

garwal and Natarajan 1996). Thus, the inhibition of cyto-

kine production is important for potential anti-

inflammatory activity. Several studies demonstrated that

phenolic compounds possessed TNF-a and IL-6 inhibitory

activities (Xagorari et al. 2001; Wang and Mazza 2002b).

In addition, dandelion leaf extract suppressed the TNF-a
production by inhibiting IL-1 production in LPS-stimulated

rat astrocytes (Kim et al. 2000). These results indicated that

the production of TNF-a and IL-6 significantly increased in

LPS/IFN-c-stimulated RAW264.7 cells. However, ETC,

LT, and LS possess inhibitory efficacy against the

bFig. 3 Effect of ETC (A), LT, and LS (B) on levels of ROS in

RAW264.7 cells treated with LPS/IFN-c. Values are the mean ± SD.

a–f Means with different letters are significantly different (P\ 0.05)

as determined by Duncan’s multiple range test
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production of TNF-a and IL-6. In particular, ETC and its

active compounds showed stronger inhibitory effects

against IL-6 than TNF-a production. These results sug-

gested that down-regulation of IL-6 might be related to its

production of TNF-a. In addition, compared to the agly-

cone form, the glycoside form had stronger inhibitory

effects against TNF-a and IL-6 production in RAW264.7

macrophage cells.
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To investigate the anti-inflammatory effect of LT agly-

cone and its glycosides, the production of NO and

cytokines, which have crucial role during the inflammatory

process by defensing against foreign agents, was measured.

Our study showed that LT and LS significantly inhibited

production of NO dose-dependently. In particular, LS had a

strong NO scavenging effect rather than LT by down-

regulating iNOS and COX-2 gene expression. In contrast to

inhibitory effect of LS on NO generation, treatment of LT

resulted in a more considerable decrease in TNF-a and IL-

6 secretion in LPS/IFN-c-stimulated RAW264.7 macro-

phage cells. Previous study has also reported that stronger

suppression of NO production was observed in LS-treated

group than LT-treated group (Hu and kitts 2004). However,

Park and Song (2013) found that LT was more effective in

inhibition of LPS-induced prostaglandin E2 (PGE2) pro-

duction and up-regulation of NF-jB and activator protein

(AP)-1 expression. These findings suggest that LT and LS

display a selective activity in secretion of pro-inflammatory

cytokines, NO production, and regulation of inflammation-

related mRNA expression. Taken together, the inhibition of

NO production by LS was attributed to the suppression of

iNOS and COX-2 expression, rather than a cytokines. On

the other hand, LT plays anti-inflammatory role by sup-

pression of TNF-a and IL-6 secretion.

In conclusion, the present study revealed that ETC and

its active compounds, LT and LS, had anti-inflammatory

effects on LPS/IFN-c-induced RAW264.7 cells. They

inhibited the generation of ROS and NO induced by LPS/

IFN-c. In addition, activation of NF-jB was inhibited by

the expressions of iNOS and COX-2, and the production of

TNF-a and IL-6 was inhibited by the treatment with LT

and LS. These results suggest that ETC would play a

beneficial role in alleviating the inflammatory process and

that LS and LT are attributed to the protective role of ETC.
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