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Abstract Agricultural insects and stored-product insects

are influenced by luminance intensities, exposure times,

and wavelengths of light-emitting diodes (LEDs). Based on

the phototactic behaviors of the agricultural insects, green

or blue LEDs are most attractive for Bemisia tabaci, Tri-

aleurodes vaporariorum, Myzus persicae, Liriomyza tri-

folii, Spodoptera exigua, and Spodoptera litura. Green

LED attracts Plutella xylostella and Frankliniella occi-

dentalis. Similarly, green or blue LEDs are more attractive

to agricultural insects, such as Liriomyza sativae, Sogatella

furcifera, and Nilaparvata lugens, than other wavelength

LEDs. Concerning the phototactic behaviors of the stored-

product insects, red LED is attractive for, in descending

order Tribolium castaneum, Sitophilus zeamais, Lasio-

derma serricorne, and Tyrophagus putrescentiae. Blue

LED captures most Sitophilus oryzae and Sitotroga cer-

ealella. Red and blue LEDs are more attractive for stored-

product insect pests rate than ultraviolet LED and green,

yellow, white, and infrared LEDs. Based on the attraction

rate of the stored-product insects on granary, red LED is

most attractive for S. cerealella and Plodia interpunctella.

These light sources are effective in controlling agricultural

and stored-product insects. Applying LED technology for

greenhouses and granaries along with conventional traps

reduces crop loss due to moths, beetles, aphids, and wee-

vils. LEDs have potential value in integrated pest

management.

Keywords Agricultural insect � Behavior response � Light-
emitting diodes � Light perception � Phototaxis � Stored-
product insects

Introduction

Many countries are using synthetic insecticides as the

primary means of controlling insect pests [1, 2]. However,

repeated use of synthetic insecticides can increase the

development of resistance in the insect pests and has

negative effects on the environment and nontarget insects

[2, 3]. Efforts are ongoing to develop sustainable alterna-

tive and eco-friendly methods, such as the use of electric

traps, food traps, and natural insecticides [1–4].

Phototaxis is the behavior of insect species in response to

light sources. This movement is influenced by the light

wavelength, and the quality and intensity of the light source

[5]. In general, insect pests can perceive light ranging in

wavelength from 350 to 700 nm and respond in diverse ways

[6]. The alternative techniques being developed include

phototaxis; electric traps equipped with black and incan-

descent light bulbs are used for surveillance, for example.

The incandescent bulb as the standard light commonly used

in light traps ranges in wavelength from 350 to 700 nm with

a maximum output wavelength at 700 nm [7]. Insect species

can be attracted or repelled to special light sources, such as

artificial lights [8]. Certain insect species exhibit a direc-

tional response to light-emitting sources including high- or

low-intensity light [9]. The use of artificial light sources in

integrated pest management (IPM) has increased globally

[10]. Light-emitting diodes (LEDs) have emerged as an

important technology in the development of agricultural

systems [11, 12]. The many advantages of LEDs include the

eco-friendly technology, functional improvement, plant
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growth, high luminous efficiency, selectivity of specific

wavelength and light intensity, low weight, low electronic

consumption, small size, prolonged lifetime, and environ-

mental affinity [13, 14].

LED traps may be a potential alternative to commercial

traps for mass trapping and phototactic monitoring of

insect pests. Specific wavelength LED sources are being

used for monitoring as well as trapping [7, 15]. Pest insects

will move toward light lamps or other illuminations in

outdoor settings [16]. This phototactic behavior of pest

insects is the basis of the design of electronic insect traps

[16]. The light traps are equipped with LED sources; they

effectively attract agricultural and stored grain insect pests

including aphids, beetles, moths, and weevils and prevent

the entry of these insects into greenhouses and granaries

[17, 18]. Interest is growing in control technology that

exploits insect behaviors to light sources as an alternative

to synthetic insecticides [16, 19]. Here, we review the

advanced control technologies of insect species that

employ new light sources including LEDs.

Classification of phototactic behavioral responses
to light sources of various insects

Insect behavior to light is varied and can be categorized

[20]. The typical behavior is phototaxis. Insects display

several phototactic responses including attraction (move-

ment toward the light source: positive phototaxis) and

repulsion (movement away from the light source: negative

phototaxis). Optimal conditions, which include effective

Fig. 1 Experimental layout for effective examination of HPLEDs in the laboratory [11]: (A) Top view of the test chamber. (B) Side view of

three-dimensional of the test chamber

Fig. 2 Photograph of test chamber used for the laboratory using by

HPLEDs [11]: (A) Facade view, (B) top view, and (C) HPLEDs

circuit board of the test chamber
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wavelengths, exposure time, and intensities to light source,

are diverse among insect species [21, 22]. Negative pho-

totaxis could be useful to prevent entrance of pest insects to

greenhouses and granaries [23, 24]. Behavioral responses

to light by insect species also include light adaptation,

circadian periodicity, photoperiodism, and light toxicity

[20]. Nocturnal insects can adapt to light sources; typical

adaptive behaviors are diminished migration, settling near

the light source, and mating [20]. Circadian periodicity is

daily behavioral response that encompasses courtship,

feeding, flight, and locomotion [25]. Artificial light at night

can change the diurnal or nocturnal responses and timing of

insect species [26], which represents a phase shift in

chronobiology [27]. Photoperiodism is the physiological

behavior of insect species to light, such as day light. The

start of resting can be prevented by repeatedly exposing

insects to light sources for some days [28]. Insects that do

not enter diapause cannot overwinter. Continuous light

irradiation is structurally damaging and causes light toxi-

city [29]. Photo-irradiation is also useful for treatment of

crops before the post-harvest in the greenhouse and granary

settings. Insect behaviors to light sources are significantly

influenced by various factors of the light, such as intensity,

single or combined wavelengths, exposure time, and

Table 1 Phototactic behavior of agricultural insects to LED sources

Pests Wavelength

(color)

Luminous intensity

(lx)

Time

(min)

Number of adults

(mean ± SEM)

Attraction rate

(%)a
References

Light side No choice

Bemisia tabaci 520 ± 5 nm

(green)

40 90 25.6 ± 0.3 4.4 ± 0.3 85.3 [34]

470 ± 10 nm

(blue)

40 90 26.7 ± 1.5 3.3 ± 0.9 89.0

BLB (control) – 90 26.9 ± 0.6 3.1 ± 0.3 89.6

Trialeurodes

vaporariorum

520 ± 5 nm

(green)

40 90 28.9 ± 0.7 1.1 ± 0.8 96.6 [36]

470 ± 10 nm

(blue)

40 90 29.2 ± 1.3 0.8 ± 0.5 97.4

BLB (control) – 90 25.3 ± 1.7 4.7 ± 2.1 84.3

Myzus persicae 520 ± 5 nm

(green)

40 120 25.6 ± 0.9 4.4 ± 1.2 85.3 [37]

470 ± 10 nm

(blue)

60 120 22.5 ± 1.5 7.5 ± 2.9 75.0

BLB (control) – 120 18.5 ± 1.5 11.5 ± 2.2 61.7

Liriomyza trifolii 520 ± 5 nm

(green)

60 120 29.9 ± 0.3 0.1 ± 0.1 99.7 [17]

470 ± 10 nm

(blue)

80 120 27.3 ± 2.0 2.7 ± 2.0 91.2

BLB (control) – 120 21.3 ± 1.7 8.7 ± 2.1 71.1

Spodoptera exigua 520 ± 5 nm

green)

40 100 27.1 ± 0.9 2.0 ± 0.6 90.3 [11]

470 ± 10 nm

(blue)

40 100 24.3 ± 0.3 2.0 ± 0.6 81.1

BLB (control) – 100 24.0 ± 0.6 2.3 ± 0.6 80.0

Spodoptera litura 520 ± 5 nm

green)

40 60 19.3 ± 0.7 6.3 ± 0.3 64.3 [33]

470 ± 10 nm

(blue)

40 60 17.3 ± 0.8 7.0 ± 0.6 57.7

BLB (control) – 60 15.0 ± 1.2 7.3 ± 1.5 50.0

Plutella xylostella 520 ± 5 nm

green)

60 15 29.5 ± 0.2 0.5 ± 0.3 98.3 [32]

BLB (control) – 15 26.0 ± 0.6 0.0 ± 0.0 86.7

Frankliniella

occidentalis

520 ± 5 nm

(green)

40 90 13.3 ± 0.8 15.1 ± 0.9 44.3 [38]

BLB (control) – 90 11.7 ± 1.1 18.3 ± 0.7 39.0

a Attraction rate (%) is the average percentage of pests attracted under optimal conditions
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differences of light intensity and color to those of ambient

lighting [19, 30]. In the remainder of this minireview, we

discuss the technologies being currently being used to

control many insect species.

Phototactic behavior to LED source
for agricultural insect pests

Agricultural insect species include aphids, leaf miners,

moths, and whiteflies. Their reactions are influenced by

various characteristics of light, such as luminance intensity,

light exposure time, and light wavelength [31]. Evaluation

of the phototactic responses of insect species to these

aforementioned aspects typically uses a chamber capable

of dark and illuminated settings (Figs. 1, 2). Phototactic

behavior of agricultural insect species has been amply

correlated with characteristics of light [11, 32–38]. Bemisia

tabaci and Trialeurodes vaporariorum showed a signifi-

cantly more favorable response to the green (520 nm) and

blue (470 nm) LEDs at a luminance intensity of 40 lx and

exposure time of 90 min than to red (625 nm) and yellow

(590 nm) LEDs [34, 36]. Under optimal light exposure

times and luminance intensities, LED light sources that

emit relatively short wavelengths attract agricultural insect

species [11, 32–38] (Table 1). Based on the phototactic

Fig. 3 Model of cross section (A), three dimention (B), and insert tube (C) in modified Y-maze [47]
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behaviors, green and/or blue LEDs show the highest

attraction rate against Bemisia tabaci (85.3 and 89.0%),

Trialeurodes vaporariorum (96.6 and 97.4%), Myzus per-

sicae (85.3 and 75.0%), Liriomyza trifolii (99.7 and

91.2%), Spodoptera exigua (90.3 and 81.1%), Spodoptera

litura (64.3 and 57.7%), Plutella xylostella (green LED,

98.3%), and Frankliniella occidentalis (green LED, 44.3%)

[11, 32–38]. In contrast, the relatively long wavelengths of

red light (625 nm) and infrared light (IR, 730 nm) are

repellent for the leaf miner (L. trifolii), moths (S. litura and

P. xylostella), and whitefly (T. vaporariorum)

[32, 33, 35, 36]. Green and/or blue LEDs are attractive for

several agricultural insect pests including T. vaporariorum,

Liriomyza sativae, Sogatella furcifera, and Nilaparvata

lugens [39, 40]. Matteson and Terry [41] reported that F.

occidentalis exhibited strong attractiveness to the blue

LED traps. Vaishampayan et al. [42] evaluated the ultra-

violet (UV,\400 nm), yellow-green region (520–610 nm),

and red (610 to ca. 700 nm) light in attracting T. vapo-

rariorum and found that the yellow-green region attracted

Table 2 Phototactic behavior of stored-product insects to LED sources

Pests Wavelength

(color)

Luminous

intensity (lx)

Time

(h)

Number of adults (mean ± SEM) Attraction rate

(%)a
References

Light side No choice Dark side

Lasioderma

serricorne

625 ± 10 nm

(red)

100 1.5 9.3 ± 3.4 11.9 ± 4.0 8.8 ± 0.9 31.0 [24]

BLB (control) – 1.5 8.7 ± 1.3 7.6 ± 2.2 13.7 ± 0.9 29.0

Sitophilus oryzae 470 ± 10 nm

(blue)

25 48 25.3 ± 0.7 2.8 ± 0.5 1.9 ± 0.4 84.3 [44]

BLB (control) – 48 17.0 ± 0.9 7.2 ± 0.6 5.8 ± 0.4 56.7

Sitophilus zeamais 625 ± 10 nm

(red)

25 48 18.0 ± 1.0 7.3 ± 1.3 4.7 ± 1.3 59.8 [45]

BLB (control) – 48 8.2 ± 2.0 12.3 ± 2.8 9.5 ± 0.9 27.3

Sitotroga cerealella 470 ± 10 nm

(blue)

60 0.6 18.3 ± 0.6 8.1 ± 1.5 3.6 ± 0.6 61.0 [17]

BLB (control) – 0.6 17.4 ± 2.1 2.2 ± 1.7 10.4 ± 0.6 58.0

Plodia

interpunctella

520 ± 5 nm

(green)

60 0.5 22.0 ± 0.5 2.1 ± 1.1 5.86 ± 1.4 52.2 [12]

BLB (control) – 0.5 8.7 ± 2.1 6.0 ± 1.5 15.32 ± 1.8 28.9

Tribolium

castaneum

625 ± 10 nm

(red)

30 48 29.4 ± 1.6 0.6 ± 0.5 0.0 ± 0.1 97.8 [49]

BLB (control) – 48 8.4 ± 1.5 0.2 ± 0.1 21.8 ± 2.6 28.0

Tyrophagus

putrescentiae

625 ± 10 nm

(red)

40 2 5.4 ± 2.7 41.7 ± 1.7 2.9 ± 1.6 18.0 [47]

BLB (control) – 2 2.2 ± 1.3 44.5 ± 1.7 3.3 ± 2.0 7.3

a Attraction rate (%) is the average percentage of pests attracted under optimal conditions

Table 3 Phototactic behavior of stored-product insects to LED sources in granary settingsa

Pests Wavelength (color) Luminous

intensity (lx)

Time

(days)

Number of adults

(mean ± SEM)

Attraction

rate (%)a
References

Plodia interpunctella 520 ± 5 nm (green) 60 4 199.1 ± 2.5 66.3 [48]

BLB (control) – 4 94.1 ± 1.6 31.4

Sitotroga cerealella 470 ± 10 nm (blue) 60 4 248.4 ± 1.9 82.7 [48]

BLB (control) – 4 105.5 ± 2.1 35.2

Sitophilus zeamais 625 ± 10 nm (red) 60 4 201.4 ± 2.9 67.1 [49]

BLB (control) – 4 92.4 ± 2.0 30.8

Tribolium castaneum 625 ± 10 nm (red) 60 4 244.5 ± 2.6 81.5 [49]

BLB (control) – 4 90.4 ± 0.8 30.1

a Attraction rate (%) is the average percentage of pests attracted under optimal conditions

Appl Biol Chem (2017) 60(2):137–144 141

123



the most individuals compared with ultraviolet and red

light. The collective data indicate that light traps with green

and blue LEDs have the potential to control the agricultural

insects in IPM.

Phototactic behavior on stored-product insects
to LED sources

Similar to the behaviors of agricultural insect species, the

behavior of various stored-product insect pests, such as

weevil and moth, are influenced by light sources

[12, 15, 17, 43–46] (Fig. 3). Under optimal light exposure

times and luminance intensities of each wavelength, red,

green, and blue LEDs have proven to be most attractive for

stored-product insect species [12, 17, 44–46]. Based on the

phototactic behavior under laboratory conditions, red LED

(625 nm) is more efficient in attracting Sitophilus zeamais

(59.8%) and Tribolium castaneum (97.8%), but less effi-

cient in attracting Lasioderma serricorne (31.0%) and Ty-

rophagus putrescentiae (18.0%) [24, 47] (Table 2). Blue

LED is significantly more effective in attracting S. oryzae

and Sitotroga cerealella than UV (365 nm), green

(510–520 nm), red (625–660 nm), and IR (730 nm) LEDs

[17, 44]. Green LED best attracted Plodia interpunctella

(52.2%) [12]. Based on the attraction rate under optimal

conditions (luminous intensity of 60 lx and exposure time

of 4 days), red LED showed the highest attraction rate

against S. cerealella (67.1%) and P. interpunctella (81.5%)

[48, 49] in a granary setting (Table 3). In the same setting,

P. interpunctella (66.3%) and S. cerealella (82.7%)

exhibited strong attractiveness to the green and blue LEDs,

respectively [48] (Fig. 4). The effectiveness of LEDs has

also been chronicled for blossom weevil (Anthonomus

pomorum) and sweet potato weevil (Euscepes postfascia-

tus) [15, 50]. Nakamoto and Kubo [15] reported that light

trapping of E. postfasciatus was more efficient using green

(536 nm) LED. Hausmann et al. [50] found that the green

and blue LEDs were more efficient in attracting and trap-

ping A. pomorum than UV light. These optimal conditions

of LED sources are an advantage to control insect pest

behaviors. In future, the development of LED devices

containing practical application is expected.

Study on physical control of insect pests by using
light sources

The influence of LEDs on insect color and light perception

with different wavelengths and on behavior, and the

development of control technology involving new light

sources has been described [19]. Physiological systems

have been comprehensively utilized to measure the influ-

ence on many insect species in a wide range of wave-

lengths [51]. Phototactic responses of many insect species

to LED sources have been investigated to clarify the rela-

tionship between insect behaviors and light wavelengths,

with the goal of determining the effective attractant and

repellent wavelengths for target insect pests [51]. The

development of LED sources that are able to be used

instead of incandescent light traps is an ongoing research

interest. In addition, wavelengths of light that effectively

attract parasitoids, which are natural enemies of insect

pests, are being investigated [19].

In conclusion, LED equipment with various wave-

lengths can now be manufactured due to current techno-

logical advances, and new agricultural technology using

light is starting to attract attention. Advances are also

expected in the use of light for insect control as the results

of these technological developments in lighting. Based on

the new research being conducted by National Agricultural

Research Organisation, we hope to ensure the further

development of agricultural technology founded on a good

balance of input from basic study in universities and

independent administrative institutions and applied tech-

nology from private companies and public research insti-

tutes to establish the next generation of pest control

technology.
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