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Abstract This study was set to investigate the effect of the

presence of hemoglobin (Hb) in cadmium (Cd)-contami-

nated soil on phytotoxicity and Cd accumulation. The

effect of Hb on the Cd accumulation by Pisum sativum L.

(pea) and seed germination and growth was studied using

pot tests with the artificially Cd-contaminated soil. The

results show that the externally applied Hb to Cd-con-

taminated soil samples did not promote Cd accumulation

by P. sativum. However, the Fe accumulation was greater

in the presence of Hb. The seed germination was not

affected, but the adverse effects on the plant growth

increased with increasing Hb/Cd molar ratio from 0 to

0.015. This can be attributed to toxic effects of the Fe

added with the Hb application. The results suggest that the

presence of Hb may have harmful effects on pea plants

used in phytoremediation of Cd-contaminated soil due to

toxic effects imposed by Fe.

Keywords Cadmium � Hemoglobin � Phytoremediation �
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Introduction

Organic contaminants such as total petroleum hydrocar-

bons (TPHs) and polycyclic aromatic hydrocarbons

(PAHs) and heavy metals such as lead (Pb) and cadmium

(Cd) are often found together in contaminated sites.

Biological processes such as bioremediation have been

widely applied to degrade organic contaminants; however,

the same treatment may not be efficient for heavy metal

removal as they are not biodegraded. Conventionally,

techniques such as soil washing, soil flushing, and solidi-

fication and stabilization have been used for remediation of

heavy metal-contaminated soils [1]. However, physical

and/or chemical techniques often involve high cost, irre-

versible changes in soil properties, and disturbance of

native soil microflora [2, 3]. When biological processes are

preferred for heavy metal removal, phytoremediation can

be used to remove heavy metals from heavy metal-con-

taminated soils [4]. But heavy metals can impose harmful

effects on plants upon exposure [5–9].

Recently, soils with various organic contaminants have

been treated using hemoglobin (Hb)-catalyzed biocat-

alytic reactions [10, 11]. The Hb applied for the biocat-

alytic reaction is likely to remain in the contaminated site

after removal of organic contaminants. Since Hb has a

Fe-containing heme structure, Hb can be a source of iron

(Fe) to the plants under heavy metal stress. Thus, the Hb

remaining in the contaminated sites after biocatalytic

reaction might reduce toxic effects imposed by heavy

metals on plants (i.e., enhanced resistance to heavy metal

stress). This, in turn, may help promoting phytoremedi-

ation of heavy metals from the contaminated sites.

However, the effect of externally applied Hb on plants

has not been studied.

Previous studies used transgenic plants to manipulate

plant resistance to heavy metals, heavy metal uptake and

accumulation, and translocation in order to enhance phy-

toremediation efficiency [12–15]. In particular, various

transgenic plants with Hb genes have been studied to

investigate the role of Hb in plants under stresses, and these
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studies showed that overexpression of plant Hb enhanced

tolerance to stresses due to hypoxia and heavy metals, and

enhanced resistance to diseases [16–18]. When plants are

under stress due to heavy metals such as Pb, reactive

oxygen or nitrogen species such as nitric oxide (NO) are

produced triggering responses at gene expression level for

scavenging of reactive species [19]. Although there are

different observations on the relationship between NO and

heavy metal toxicity, in particular, Cd toxicity, overex-

pression of plant Hb gene resulted in a reduced NO level

[20]. On the other hand, the NO produced may promote

heavy metal uptake and this can contribute to toxic effect

by heavy metals [16]. However, Hb scavenges NO induced

by environmental stresses in plants [21]. For example,

tobacco expressing the NtHb1 gene encoding Hb alleviated

the Cd-induced NO level, and exhibited higher Cd toler-

ance and lower Cd accumulation [22]. When transgenic

plants are used in phytoremediation, there are some pos-

sible risks involved such as uncontrolled spread of trans-

genic plants and risk of ingestion by wildlife [14].

Some studies supplied nutrients in order to alleviate

toxicity of heavy metals [23]. For example, Fe can be used

to alleviate Cd toxicity by limiting Cd uptake and

enhancing photosynthesis [24]. Thus, Fe supplements may

enhance the plant resistant to heavy metal stress, which, in

turn, affect the phytoremediation efficiency [24]. There-

fore, this study is set to investigate the effect of the pres-

ence of Hb (e.g., residual Hb after Hb-catalyzed

biocatalytic reactions for organic contaminant removal) on

plants. Pea is one of common crops that has showed high

potential in phytoremediation [25]. Also, legume-rhizobia

symbiosis-based phytoremediation for Cd removal is get-

ting more attention [4]. Therefore, the effects of the pres-

ence of heme protein-containing Hb in Cd-contaminated

soils on the growth of pea plants and the Cd accumulation

by pea plants were studied.

Materials and methods

Soil preparation

Soil samples were prepared by air-drying and sieving

through a 2-mm sieve. The soil texture was loamy sand

with the organic matter content, pH, and water holding

capacity of 10 ± 0.028%, 6.5, and 17 ± 2.4%, respec-

tively. The background concentrations of Pb, Cd, As, Cu,

and Zn were 35 ± 0.28,\ 0.0048 (i.e., not detected),

5.3 ± 0.064, 37 ± 0.85, and 300 ± 5.2 mg kg-1, respec-

tively. The soil sample was artificially contaminated with a

Cd solution prepared from CdSO4 (99% Junsei Chemical

Co., Tokyo, Japan) to have the soil Cd concentration of

6.0 ± 0.61 mg kg-1. The Cd concentration of the soil

sample was chosen based on the worrisome levels of the

residential area in the Korean Soil Standard.

Pot tests with the Cd-contaminated soil

Phytotoxicity tests are widely carried out to see the effect of

contaminants on the seed germination and plant growth

[26, 27]. The phytotoxicity tests were carried out following

the OECD 208 method, which describes the seedling emer-

gence and seedling growth test methods for terrestrial plants

[28]. The effect of Hb in soil on the Cd accumulation by

Pisum sativum L. (pea) and the seedling growth were studied

using pot tests with the Cd-contaminated soil. Pea is a crop

plant that has been widely used in the phytotoxicity studies of

Cd [29, 30]. For the pot tests, different amounts of Hb were

added to the Cd-contaminated soil (300 g) to have the Hb/Cd

molar ratios of 0.000, 0.001, 0.009, and 0.015 (i.e., the Hb/Cd

mass ratios of 0, 0.8, 5.0, and 8.4). Hb powder was purchased

from Shenzhen Taier Biotechnology Co., Ltd. (Shenzhen,

China). To compare the Cd accumulation and plant growth in

the soil sample without artificial Cd contamination, the same

amounts of Hb added to the Cd-contaminated soil at the Hb/

Cd molar ratios of 0.000 and 0.015 were added. Each pot

contained four seeds of P. sativum, and the pot tests were

carried out in duplicates for each condition.The pot testswere

carried out in a growth chamber at an average temperature of

25 �Cwith the light condition of 18 h day and 6 h night. The

soil moisture was maintained at 70% of water holding

capacity. The seed germination was checked after 10 d, when

the germination in the controls (i.e., without Cd contamina-

tion and Hb application) reached 50%, to see if the seed

germination is affected by the Hb/Cd molar ratios. Also, the

seedling growthwas compared bymeasuring the shoot length

after 10 (i.e., when the germination was compared) and

28 day. The seedlings were taken out of the pots carefully to

prevent any losses in roots, and thewhole plantswere used for

Cd analysis.

Analysis of heavy metals

The collected pea plants were dried at 80 �C for 90 min,

and the heavy metals were extracted from the dried pea

plants by following the EPA 3052 methods [31]. The

extracts were analyzed using inductively coupled plasma–

optical emission spectroscopy (ICP–OES). The method

detection limits of ICP–OES for Fe and Cd were 0.0033

and 0.0048 mg kg-1, respectively. All statistical analyses

(i.e., t test and one-way ANOVA, and Tukey’s test for the

post hoc test, Spearman’s correlation analysis) were per-

formed using SPSS (v 21).
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Results and discussion

Effect of Hb on seed germination

The Cd contamination and Hb application did not have a

significant effect on the seed germination

(p value = 0.634) (Fig. 1). In the Cd-contaminated soils,

the average seed germination rates at the studied Hb/Cd

molar ratios ranged from 83 to 96% (Fig. 1). This suggests

that the Hb application did not impose toxic effects on the

seed germination. In the soil without artificial Cd con-

tamination (referred to as the Cd-control soil, hereafter),

the seed germination rates without Hb and with Hb (i.e.,

the same amount of Hb applied to the Cd-contaminated soil

to have the Hb/Cd molar ratio of 0.015) were 72 ± 26 and

100 ± 0%, respectively, and they did not show a statisti-

cally significant difference (p value[ 0.05). Furthermore,

the seed germination in the Cd-control soil samples did not

show a statistically significant difference with the seed

germination in the Cd-contaminated soil samples

(p value[ 0.05). This indicates that the Hb application or

Cd contamination did not have any statistically significant

influence on the seed germination. A previous study

observed that the seed germination of pea was not affected

when the Cd concentration was less than 0.5 mM [32]. This

study used the average soil Cd concentration of 0.05 mM

(i.e., 6.0 mg kg-1), and the bioavailable Cd concentration

is likely to be lower than 0.05 mM, which is much lower

than 0.5 mM. This explains no statistically significant

influence of the Cd contamination on the seed germination.

Effect of Hb on accumulation of Cd and Fe

Figures 2A and 1B show the Cd accumulation by P. sati-

vum in the Cd-contaminated soils at different Hb/Cd molar

ratios. The Cd accumulation by the plant in the Cd-control

soils was negligible [0.005 ± 0.001 mg (g dry plant

mass)-1] compared to the Cd accumulation in the Cd-
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Fig. 1 Effect of hemoglobin-to-cadmium (Cd) molar ratios in the

Cd-contaminated soil [6.0 ± 0.61 mg Cd (kg soil)-1] on the seed

germination of Pisum sativum. The different small letters indicate

a statistically significant difference (95% confidence level) based on

the Tukey’s test results
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Fig. 2 Effect of hemoglobin-to-cadmium (Cd) molar ratios in the Cd-

contaminated soil [6.0 ± 0.61 mg Cd (kg soil)-1] on (A) the Cd

accumulation in unit dry mass of Pisum sativum, (B) Total mass of the

Cd accumulated in one pot, and (C) Fe accumulation in unit dry mass of

P. sativum. The different small letters indicate a statistically signifi-

cant difference (95% confidence level) based on the Tukey’s test results
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contaminated soils shown in Fig. 2. The different Hb/Cd

molar ratios did not have statistically significant influence

on the Cd accumulation per unit mass of the dried plants

(p value[ 0.05) (Fig. 2A). Similar results were obtained

with the Cd uptake per pot (Fig. 2B). This shows that the

externally applied Hb to Cd-contaminated soils did not

promote Cd accumulation by P. sativum.

On the other hand, the Fe accumulation by P. sativum in

the Cd-contaminated soils was affected by the Hb/Cd molar

ratios (Fig. 2C). Since Hb has a Fe-containing heme struc-

ture, the applied Hb may supply Fe to the plants. After

10-day exposure to the Cd-contaminated soil, the average Fe

accumulation increased with increasing Hb/Cd molar ratio

from 0.000 to 0.001 and decreased with further increase in

Hb/Cd molar ratio to 0.009 and 0.015 (Fig. 2C). But the Hb/

Cd molar ratio did not have any significant influence on the

Fe accumulation (p value[ 0.05). However, there was a

statistically significant monotonic correlation between the

Fe accumulation and Hb/Cd molar ratio at Hb/Cd molar

ratio C 0.001 (r = - 0.956, p value\ 0.01). After 28-day

exposure, there was no statistically significant monotonic

correlation between the Fe accumulation and Hb/Cd molar

ratio at Hb/Cd molar ratio C 0.001 (r = - 0.598,

p value[ 0.05). In general, the average Fe accumulation

after 28 d was greater in the presence of Hb (i.e., at Hb/Cd

molar ratios of 0.01–0.015) than in the absence of Hb

(Fig. 2C), and this can be largely attributed to the greater

amount of Fe present in the soil by the Hb application. This

can be supported by the increased average soil total Fe

concentrations from 19,110 mg kg-1 at Hb/Cd molar ratio

of 0.000–20,859, 21,255, and 21,597 mg kg-1 at Hb/Cd

molar ratios of 0.001, 0.009, and 0.015, respectively, with

the Hb application. After 28 d of the plant growth, the

average soil Fe concentrations were decreased by 4.3% in

the absence of Hb, but by 12%, on average, in the presence

of Hb. This indicates that the Fe added by the Hb application

promoted Fe accumulation by the plants.

Effect of Hb on plant growth

Figure 3 shows the growth of P. sativum in the Cd-con-

taminated soils at different Hb/Cd molar ratios. Although

Fe is an essential nutrient for plants, an excess amount of Fe

can have adverse effects (i.e., iron toxicity) on plant

metabolism by interrupting absorption of other nutrients,

and by reacting with oxygen producing harmful free radi-

cals [33]. The adverse effects of higher amounts of Fe in the

soil can be supported by the statistically lower shoot lengths

in the presence of Hb than in the absence of Hb after 10 day

(p value\ 0.05) (Fig. 3). However, after 28 day, there was

no statistically significant influence of Hb on the shoot

length (Fig. 3). However, apart from the shoot length, the

adverse effects on the physical appearance of the plants

increased with increasing Hb/Cd molar ratios as shown in

Fig. 4. The leafy parts of the plants were reduced with

increasing Hb/Cd molar ratio. Since the Cd accumulation

was not affected by the Hb application (Fig. 2), the adverse

effects on the plant growth (Figs. 3, 4) may be attributed to

the greater Fe accumulation in the presence of Hb. Simi-

larly, the presence of excess Fe resulted in lower dry

weights of pea seedlings suggesting lower growth [34].

Competitive relationship between Cd and Fe

The Fe accumulation was promoted with the Hb application,

while theCdaccumulationwas not affected (Fig. 2). This also

agreeswith previous studies that observed competitive uptake

relationship between Fe and Cd [24, 35]. Heavy metals such

as Cd compete with nutrients such as Ca2? and Fe2? for the

transport systems [23]. In particular, Cd interferes with metal

uptake and translocation, and this often induces Fe-deficient

conditions in the shoot [35, 36]. For example, under Cd stress,

mustard plants grown under Fe-fed conditions had higher

chlorophyll contents than that grown under Fe-deficient

conditions [24]. Although the adverse effect of Cd stress can

be reduced by supplying Fe, higher Fe accumulation can

exhibit adverse effects on the plants growth.

At Hb/Cd molar ratios of 0.009 and 0.015, there was no

statistically significant monotonic correlation between the

Cd accumulation and Hb/Cd molar ratio at Hb/Cd molar

ratio C 0.001 (r = 0.717, p value[ 0.05 after 10 day and

r = - 0.120, p value[ 0.05 after 28 day) (Fig. 2A).

However, after 28 day, the average Cd accumulation seems

to be increasing with increasing Hb/Cd molar ratio

(Fig. 2A). The average Fe accumulation, on the other hand,

Hb:Cd molar ratio
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Fig. 3 Effect of hemoglobin-to-cadmium (Cd) molar ratios in the

Cd-contaminated soil [6.0 ± 0.61 mg Cd (kg soil)-1] on the shoot
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seems to be decreasing with increasing Hb/Cd molar ratio,

although there was no statistically significant correlation

(Fig. 2C). These results suggest the competitive relationship

between Cd and Fe. Furthermore, in the absence of Hb

application, the average Cd accumulation was higher after

28-day exposure, but the average Fe accumulation was

similar (Fig. 2). This also supports the competitive rela-

tionship between Fe and Cd. Similarly, the higher Cd

accumulation rate was observed in the absence of Fe than in

the presence of Fe [24].

This study shows that the presence of Hb in the Cd-

contaminated soils did not enhance the Cd accumulation by

P. sativum. The presence of Hb, however, resulted in the

adverse effect on the plant growth. This could largely be

attributed to iron toxicity due to the Fe supplied by the Hb

application. Overall, the presence of Hb is not likely to

enhance phytoremediation efficiency of Cd-contaminated

soils by pea plants. Thus, it may not be preferred when

phytoremediation is to be applied for heavy metal reme-

diation after organic contaminant removal using Hb-based

biocatalytic reactions from the sites contaminated with

both organic contaminants and heavy metals.
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