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Abstract Twenty-eight metabolites were extracted from

nine Brassicaceae of Korean origin (broccoli, Brussels

sprouts, cabbage, Chinese cabbage, kale, kohlrabi, pak

choi, radish sprouts, and red cabbage) and analyzed using

gas chromatography–mass spectrometry and high-perfor-

mance liquid chromatography. Principal components

analysis (PCA), orthogonal projection to latent structure-

discriminant analysis (OPLS-DA), Pearson’s correlation

analysis, hierarchical clustering analysis (HCA), and batch

learning self-organizing map analysis (BL-SOM) were

used to visualize metabolite pattern differences among

Brassicaceae samples. The PCA score plots from the

metabolic data sets provided a clear distinction between

Brassica species and radish sprouts (genus Raphanus L.).

Additionally, B. oleracea L. varieties were differentiated

from B. rapa L. varieties by PCA and OPLS-DA score

plots. HCA and BL-SOM of these metabolites clustered

metabolites that are metabolically related. This study

demonstrates that plants’ characterization by multivariate

statistical analysis using metabolic profiling allows distin-

guishing their phenotypes and identifying desired

characteristics.
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Introduction

Brassicaceae vegetables are widely recognized for their

contribution to human nutrition and health benefits [1], as

they contain many health promoting and potentially pro-

tective phytochemicals, including tocopherols, carotenes,

plant sterols, and policosanols [2–4]. Although extensively

consumed in Korea, few studies have considered the phy-

tochemicals of Brassicaceae vegetables [5, 6]. However,

studies on the qualitative and quantitative distribution of

primary phytochemicals in Brassicaceae vegetables may

help breeders to develop a germplasm with a high level of

these phytochemicals.

Comprehensive chemical analysis seems to be the most

reliable method for estimating food quality. Recently, with

the development of various analytical techniques, many

chemical data were generated for food identification and

food quality determination. Plants’ identification has been

performed based on genetic and metabolome analyses. A

study used simple sequence repeats (SSRs) to generate

genetic maps in two Brassica spp. populations (Brassica

oleracea L. and B. rapa L.) [7], but, to our knowledge, few

investigations have compared metabolite profiles of Bras-

sicaceae species to identify biomarkers for their discrimi-

nation. In fact, there is only one metabolic classification of

Amaranthaceae, Asteraceae, Brassicaceae, and Malvaceae

[8]. According to the previously mentioned paper by Kim

et al. [8], the plants have been classified by metabolic

components, including policosanol, phytosterol, amyrin,

and tocopherol, but no studies have been done with Bras-

sicaceae vegetables.

Chemometric pattern recognition techniques have been

used for the discrimination of the geographical origin and

variety of plants [9–11]. The application of multivariate
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techniques to biological studies produces weighted com-

binations of the original variables that allow grouping

them, which is often not evident via the classical univariate

analytical approaches [12]. Group classification was ini-

tially performed using unsupervised principal component

analysis (PCA)-based approaches. In previous studies,

PCA and hierarchical clustering analysis (HCA) confirmed

differences between rice and Chinese cabbage in terms of

metabolite contents [10, 11]. Orthogonal projection to

latent structure-discriminant analysis (OPLS-DA) has been

used to maximize differences between samples and to

identify the variables responsible for their differentiation,

and it has provided a clear discrimination between Gladi-

olus sp. genotypes [13]. In addition, the relationship

between two metabolites can be obtained by Pearson cor-

relation analysis, and the correlations can be examined to

acquire information on metabolic associations. In our

previous study, Pearson’s correlation analysis was used to

identify metabolic links in rice seeds [14]. A batch learning

self-organizing map (BL-SOM) was used in another study

to analyze differences in metabolite levels between Ara-

bidopsis thaliana cells cultured under salt stress over time

[9]. The resulting map was used to interpret the metabolic

networks. In addition, BL-SOM has been used to study

transcriptome and metabolome data in plants [15]. How-

ever, there are few published data on the discrimination of

Brassicaceae vegetables using the chemometric pattern

recognition techniques.

This study evaluated lipophilic compounds in nine

Brassicaceae species of Korean origin. Twenty-eight

compounds, including policosanol, phytosterol, amyrin,

carotenoids, and tocopherol, were analyzed and classified

from broccoli, red cabbage, cabbage, Brussels sprouts,

Chinese cabbage, kale, kohlrabi, pak choi, and radish

sprouts. PCA, OPLS-DA, Pearson’s correlation analysis,

HCA, and BL-SOM were used in the present study to

visualize chemical differences between the nine species

analyzed. Through this approach, we were able to dis-

criminate the Brassicaceae vegetables according to their

species. We emphasize that this multivariate statistical

analysis using metabolic profiling is a powerful tool for the

assessment of quality and for the discrimination of species.

Materials and methods

Samples and chemicals

The edible parts of nine Brassicaceae were purchased from

supermarket in the Incheon city, Korea in 2015, and

included leaves (Brussels sprouts, cabbage, Chinese cab-

bage, kale, pak choi, and red cabbage), flowers (broccoli),

sprouts (radish sprouts), and roots (kohlrabi) (three

biological replicates). Each sample was divided into two

portions, one for gas chromatography-mass spectrometry

(GC–MS) analysis and one for high-performance liquid

chromatography (HPLC) analysis. Each sample was

freeze-dried at - 70 �C for 72 h and then crushed using a

mortar and pestle. The resulting powder was stored at -

80 �C until extraction. Pyridine, ascorbic acid, and N-

methyl-N-trimethylsilyl trifluoroacetamide (MSTFA) were

obtained from Sigma-Aldrich (St. Louis, MO, USA). All

the other chemicals used in this study were reagent grade,

unless otherwise stated.

Lipophilic compound extraction and analysis

Nineteen types of lipophilic compounds were extracted as

in the previously described method [8]. Briefly, each

powdered sample (0.05 g) was added to 3 mL 0.1%

ascorbic acid in ethanol (w/v) and 0.005 mL 5a-cholestane

(internal standard; 100 lg mL-1). After saponification

using 120 lL 80% potassium hydroxide (w/v), samples

were immediately put on ice for 5 min, and distilled water

and hexane (1.5 mL of each) were added. After re-ex-

traction using hexane, the hexane layer was then concen-

trated using a centrifugal concentrator (CC-105, TOMY,

Tokyo, Japan), and mixed with MSTFA and pyridine

(30 lL of each) for 30 min, at 60 �C, and under

12009g using a thermomixer (model 5355, Eppendorf AG,

Hamburg, Germany). This mixture was analyzed by GC–

MS in a GCMS-QP2010 Ultra system equipped with an

auto sampler AOC-20i (both Shimadzu, Kyoto, Japan)

prepared with the Rtx-5MS column (0.25 mm diameter and

0.25 lm thickness, 30 m length; Agilent, Palo Alto, CA,

USA). The temperature of injection, interface, and ion

source was 290, 280, and 230 �C, respectively. The flow

rate of carrier gas (helium) was 1.0 mL min-1. The GC

program was set for 2 min at 150 �C, followed by an

increase up to 320 �C, with a ramping rate of 15 �C min-1

and hold time of 10 min. The volume of the injected

samples was 1.0 lL, and the split ratio was 10:1. The mass

spectra were analyzed using the Lab solutions GCMS

solution software version 4.11 (Shimadzu, Kyoto, Japan).

cFig. 1 Representative total ion chromatograms (TIC) (A) of lipo-

philic standards and TIC (B) and selected ion monitoring (SIM)

chromatogram (C) of lipophilic metabolites extracted from radish

sprouts as trimethylsilyl derivatives. The selected compounds in

radish sprouts are displayed in (C). Inverted triangle represents peak

of target compound. 1 C20, eicosanol; 2 C21, heneicosanol; 3 C22,

docosanol; 4 C23, tricosanol; 5 C24, tetracosanol; 6 d-tocopherol; 7

5a-cholestane (internal standard); 8 C26, hexacosanol; 9 b-toco-

pherol; 10 c-tocopherol; 11 C27, heptacosanol; 12 d-tocotrienol; 13

C28, octacosanol; 14 c-tocotrienol; 15 a-tocopherol; 16 cholesterol;

17 brassicasterol; 18 a-tocotrienol; 19 campesterol; 20 C30, triacon-

tanol; 21 stigmasterol; 22 b-sitosterol; 23 b-amyrin; 24 a-amyrin
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Carotenoids were extracted as previously described [16].

In brief, 3 mL 0.1% ascorbic acid in ethanol (w/v) were

added to each sample (0.1 g), vortexed for 20 s, and kept

for 5 min in a water bath at 85 �C. After saponification,

samples were left on ice for 5 min, and 0.1 mL of internal

standard (b-apo-80-carotenal in ethanol; 25 lg mL-1), and

1.5 mL distilled water were added to each tube. Hexane

(1.5 mL) was then added, and samples were centrifuged at

12009g for 5 min. The carotenoid layer was then dried

under a nitrogen stream and dissolved in 0.25 mL metha-

nol/dichloromethane (50:50, v/v). Resulting samples

(20 lL each) were analyzed by HPLC in an Agilent 1100

instrument (Agilent Technologies, Massy, France), equip-

ped with a photodiode array detector set at 450 nm. The

column, mobile phase, and elution program were previ-

ously described [16].

Statistical analyses

All analyses were performed in triplicate, at least. All data

files were scaled for multivariate analysis using unit vari-

ance. Brassicaceae data were analyzed by PCA (SIMCA-P

version 13, Umetrics, Umeå, Sweden) to visualize relation-

ships among vegetables and compounds. The patterns

observed in the PCA score plots and Brassicaceae samples’

loading plots were used to explain the dispersion of veg-

etables in the diagrams. The OPLS-DA model was calcu-

lated in SIMCA-P version 13 using phytochemicals data and

species data as the Y matrix. Pearson’s correlation analysis

was performed in SAS version 9.4 software package (SAS

Institute, Cary, NC, USA), and Multi-Experiment Viewer

version 4.9.0 was used for HCA and visualization as heat

map. A simple self-organizing map [SOM; (http://kanaya.

naist.jp/SOM/] was used in BL-SOM analysis, in which

correlation and clustering were performed among the levels

of 28 metabolites with standardization procedures.

Results and discussion

Lipophilic metabolite profiling of nine Brassicaceae

vegetables

Metabolomics allows visualizing differences in metabolite

patterns among diverse foods. In the present study, GC–MS

and HPLC were used to identify and quantify 28 lipophilic

compounds in the samples of the nine Brassicaceae species

analyzed. The carotenoids violaxanthin, antheraxanthin,

lutein, zeaxanthin, b-cryptoxanthin, 13Z-b-carotene, E-b-

carotene, a-carotene, and 9Z-b-carotene were detected by

HPLC through the co-elution and retention time with

standards as seen in our previous study [16]. Additionally,

19 types of lipophilic compounds in most vegetables were

detected by GC–MS analysis. Quantification was per-

formed using selected ions (Fig. 1).

Evaluation and classification of nine Brassicaceae

vegetables using chemometrics

Multivariate analysis using metabolites’ data is particularly

useful approach to find underlying structures in compli-

cated biological systems [17–19]. Differences in metabolite

levels were evaluated through a PCA, which explored the

structure of the data obtained from GC–MS and HPLC, as

evidenced in the PCA scores plot (Fig. 2). The scores of

principal component 1 (PC 1) and 2 (PC 2), plotted in the

abscissa and ordinate, respectively, accounted for 69.8% of

the total variance within all species data (Fig. 2A, B).

Radish sprouts belong to genus Raphanus L., whereas the

other species belong to genus Brassica L., a difference that

was successfully captured in PC 1. The metabolites loaded

in PC 1 and PC 2 were compared to investigate which

contributed the most to the observed pattern. The pre-

dominant metabolite in PC 1 was a-tocopherol, although

other 26 metabolites (excluding amyrins) had positive

loading scores in PC 1. As a result, radish sprouts, which

were strongly affected by a-tocopherol and had the highest

concentrations of the other 26 metabolites, appeared sep-

arated in the plot.

To verify if PCA could be used as a tool for distin-

guishing Brassica spp., this technique was applied to the

datasets originated from the leaves of Brussels sprouts,

cabbage, Chinese cabbage, kale, pak choi, and red cabbage

(Fig. 3). The first two PCs accounted for 75.5% of the total

variance, and Brassica spp. were separated into two groups

along PC 2 (Fig. 3A, circled within the dotted line). The

predominant contributors in PC 2 were a-amyrin and

cholesterol, which separated B. oleracea varieties from B.

rapa varieties. Loading plots (Fig. 3B) indicated that B.

rapa varieties had higher contents of carotenoids and

phytosterols, except stigmasterol and campesterol, than B.

oleracea varieties. Similarly, Brussels sprouts, cabbage,

and red cabbage were also clearly grouped by PCA.

OPLS-DA can be used to maximize differences between

samples as well as to identify markers for their classifica-

tion. In this study, all samples were clearly separated in the

OPLS-DA score plots (Fig. 4A). The quality of the OPLS-

DA model can be explained by goodness of fit (R2) and

predictive ability (Q2) values, which were 0.747 and 0.937

in our model; in addition, our model seemed to have an

excellent ability as its Q2[ 0.9 [20]. External validation

aims to address the accuracy of a model in samples from

different species. To confirm the performance of our

OPLS-DA model, the four samples were randomly left as a

test data set and the OPLS-DA was established with

training samples (Fig. 4B). The RX
2 and Q2 values of this

134 Appl Biol Chem (2018) 61(2):131–144
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Fig. 2 (A) Scores and (B) loading plots of principal components 1 and 2 of the principal components analysis (PCA) results obtained for the

metabolites of nine Brassicaceae vegetables
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Fig. 3 (A) Scores and (B) loading plots of principal components 1 and 2 of the principal components analysis (PCA) results obtained for the

metabolites of six Brassica vegetables
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Fig. 4 (A) Score plots and (B) external validation test of the orthogonal projection to latent structure-discriminant analysis (OPLS-DA) model

derived from the metabolite data of six Brassica vegetables, and C variable importance in the projection (VIP)

Appl Biol Chem (2018) 61(2):131–144 137
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model were 0.829 and 0.853, respectively, and Q2[ 0.5

indicates a good predictive ability. The variables important

in the projection (VIP) value explains the contribution of

variables to the projection, and VIP[ 1 is used as a cri-

terion to identify the most important variables to the model

[19]. In the present study, nine metabolites, namely a- and

b-amyrins, cholesterol, brassicasterol, b-tocopherol, octa-

cosanol, hexacosanol, triacontanol, and b-sitosterol, pre-

sented VIP[ 1, indicating their important contribution to

discriminate between B. oleracea and B. rapa varieties

(Fig. 4C).

Pearson’s correlation analysis was performed to identify

relationships between metabolites, which were classified

according to a color scale, with red indicating a positive

correlation and green a negative correlation, and color

intensity indicating the strength of the correlation (Fig. 5).

The metabolite-to-metabolite correlation matrix resulting

from Pearson’s correlations was used as input for the HCA

of the 28 metabolites, in which those with the highest

correlations were clustered. These analyses identified two

groups (boxed within dotted lines in Fig. 5): one com-

prising c21, c26, c27, c28, c30, and amyrins, and another

composed mainly of phytosterols, carotenoids, tocopherols,

and policosanols with positive correlations. Phytosterols

are biosynthesized by the mevalonate pathway [21, 22],

while the non-mevalonate pathway, also called the

mevalonic acid (MVA)-independent pathway, promotes

the synthesis of carotenoids and tocopherols [22, 23].

These two pathways have common precursors, such as

isopentenyl diphosphate (IPP), geranylgeranyl diphosphate

(GPP), and farnesyl diphosphate (FPP), which might

explain the positive correlations found within the second

group of metabolites. Among the three b-carotenes, E-b-

carotene was the most abundant, and it was highly corre-

lated with 9Z-b-carotene (r = 0.9883, p\ 0.0001) and

13Z-b-carotene (r = 0.9884, p\ 0.0001).

Batch learning SOM analysis was developed by Kanaya

et al. [24] to replace self-organizing map (SOM) analysis,

which had a low reproducibility. BL-SOM is a multivariate

statistical analysis method that uses existing SOM matrices

from PCA datasets [9], allowing visualizing relative

amounts of metabolites and differences between samples in

a large dataset with high reproducibility [24–27]. In the

present study, the SOMs of nine Brassicaceae vegeta-

bles were obtained (Fig. 6A), each comprising neurons

colored according to the amount of metabolites. A 6 9 5

matrix shows the patterns of phytochemical levels in the

different species (Fig. 6B). For example, in the SOM of

kale (matrix number 5), the upper-right neurons, corre-

sponding to carotenoids except violaxanthin, are indicated

Fig. 4 continued
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in red, meaning kale has higher contents of these

metabolites than the other eight Brassicaceae. The distance

among neurons within SOMs also indicates the correlation

between metabolites: Closely located neurons have high

positive correlations (Fig. 6C). BL-SOM of these

metabolites clustered metabolites that are metabolically

related. Apart from violaxanthin, all carotenoids were

clustered in the upper-middle to the upper-right, amyrins

were clustered on the bottom-right, and phytosterols were

clustered on the left and at the bottom-center. Thus, BL-

SOM results allowed visualization of correlations among

metabolites and characterizing samples.

Fig. 5 Correlation matrix of the 28 metabolites identified from the

nine Brassicaceae vegetables analyzed. Each square indicates the

Pearson’s correlation coefficient obtained between a pair of com-

pounds, and the intensity of green or red (negative or positive

correlation, respectively) corresponds to the value of the correlation

coefficient. Hierarchical clusters are indicated at the top and left of the

figure
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Composition and content of lipophilic metabolites

in nine Brassicaceae vegetables

Tocopherols, phytosterols, policosanols, and amyrins were

quantified in a previous study [8]. Previously, the c26

(hexacosanol) was reported as the main policosanol in leaf

samples [8, 11]. In our study, this compound was the

highest in leaf samples [12.72–388.06 lg g-1 of dry

weight (DW)] (Table 1). Furthermore c22 (docosanol) was

the highest in flower, root, and sprout samples

(17.65–223.00 lg g-1 of DW). In general, kale and radish

sprouts had high policosanols contents. Campesterol and b-

sitosterol were the main phytosterols, and a-tocopherol was

the main tocopherol in Brassicaceae [8, 11]. The results

obtained in the present study confirmed that campesterol

(542.89–1182.18 lg g-1 of DW), b-sitosterol

(638.76–1900.15 lg g-1 of DW), and a-tocopherol

(4.25–254.32 lg g-1 of DW) contents were high in the

nine Brassicaceae, especially in broccoli, which contained

high levels of phytosterols, and radish sprouts, which

contained high levels of tocopherols (Table 1). Lutein

(0.46–251.81 lg g-1 of DW) and E-b-carotene

(0.66–243.61 lg g-1 of DW) were the predominant car-

otenoids (Table 2). In the Chinese cabbage, for example,

lutein comprised about 59.58% of the total carotenoids,

which is in agreement with the previous findings [11]

where lutein was found in plant leaves at a higher ratio than

other components. Carotenoids play an essential role as

accessory light-harvesting pigments [28] and, therefore, the

low levels of carotenoids found in kohlrabi, in which the

edible part was the root, were expected. Total carotenoids

levels were much higher in kale, pak choi, and radish

sprouts than in other vegetables (Table 2).

In conclusion, 28 metabolites were identified in nine

Brassicaceae spp. samples by GC–MS and HPLC, includ-

ing amyrins, carotenoids, tocopherols, phytosterols, and

policosanols. To visualize the several components, PCA,

OPLS-DA, HCA, and BL-SOM were used. The PCA

separated the nine species into two groups, Brassica sp.

and Raphanus sp. (Fig. 2). A separation between B. rapa

and B. oleracea was observed in PCA and OPLS-DA plots,

and several variables were identified as candidate

biomarkers that could be used in Brassica sp. authentica-

tion (Figs. 3, 4). Pearson’s correlations and HCA indicated

a positive correlation between carotenoids, phytosterols,

and tocopherols, and their clustering (Fig. 5). BL-SOM

demonstrated patterns in the relative quantity changes of

each metabolite within the different species and allowed

discriminating Brassicaceae vegetables by using relative

differences in the amounts of components (Fig. 6). These

bFig. 6 Batch learning self-organizing map (BL-SOM) analysis

(A) based on the 6 9 5 SOMs derived from the principal components

analysis (PCA) of the 28 metabolites. The SOMs show metabolites’

clustering (numbers), and neurons within SOMs are arranged in two-

dimensional lattice matrices. Color of SOMs corresponds to the

relative amounts of compounds: red (most increased), pink (in-

creased), pale blue (decreased), and blue (most decreased). 1 broccoli;

2 Brussels sprouts; 3 cabbage; 4 Chinese cabbage; 5 kale; 6 kohlrabi;

7 pak choi; 8 radish sprouts; 9 red cabbage. The amounts of

compounds in Brassicaceae (B) and the metabolite clusters (C) dis-

played in the 6 9 5 matrices obtained in the BL-SOM analysis. In

(B), Brassicaceae vegetables are displayed in the X-axis and

standardized compounds levels in the Y-axis

Fig. 6 continued
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multivariate statistical analyses techniques can be used to

establish plant metabolite profiles, which can later be used

to select cultivars with a specific compound. Plant identi-

fication and differentiation at the species and population

levels are important to plant scientists and breeders [29].

Qualitative variations in the phytochemical profiles of

Brassicaceae vegetables could contribute to differences in

health-promoting properties. Thus, multivariate character-

ization using metabolic profiling should be used in phe-

notype visualization and discrimination.
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