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Abstract Many bacteria found in the rhizosphere provide

contribution for the host plant’s growth and protection that

are known as plant growth-promoting rhizobacteria

(PGPR). Plant–microbe interactions in the rhizosphere are

important factors in determining the health of plants.

Research for commercialization of these PGPR as an

alternative to the use of chemical fertilizers for a more

environmentally friendly treatment is continuously being

improved. In this review, we discuss the essential traits that

rhizobacteria must possess for them to be considered PGPR

and report the bacterial species that exhibit these essential

plant growth-promoting activities and which are approved

for use by the South Korean regulations.

Keywords Biocontrol � Ethylene synthesis � Nitrogen

fixation � Phosphate solubilization � Phytohormones � Plant

growth-promoting rhizobacteria (PGPR) in South Korea �
Siderophore

Introduction

One of the great challenges currently under consideration is

to developing environmentally wide-ranging and sustain-

able crop production methods. Crop production must be

increased to provide food for the increasing population.

Although the use of chemical fertilizers is a viable option,

there are health risks associated when their improper use

and these agents can cause environmental destruction.

Plant biotechnology has provided insight and aided the

development of new crops to overcome complications

caused by abiotic stresses (soil salinization and sodifica-

tion, drought, soil pH, and temperature) and biotic factors

such as pathogenicity by other living organisms, including

bacteria, viruses, fungi, and parasites [1, 2].

In plant–microbe interactions, which have been widely

examined, the host plant and bacteria present along the

rhizosphere exhibit intimate interactions. These interac-

tions promote host plant growth and pathogen suppression.

The rhizosphere is a well-characterized ecological niche

affected by root exudates [3]. Bacteria with direct and

indirect positive effects on the growth and health of the

plant are known as plant growth-promoting rhizobacteria

(PGPR). In this review, we describe various important

properties required by bacterial species to be considered

PGPR and report various bacterial species exhibiting PGP

qualities in South Korea.

Phytohormone production

Most distinguished phytohormones are consisted of cyto-

kinins, auxins, gibberellins, ethylene, and abscisic acid, and

PGPR show potential for the production of these hormones.

These phytohormones can facilitate processes such as plant

cell enlargement, division, and extension of symbiotic and

non-symbiotic roots [1, 4, 5]. Furthermore, plant-associated

bacteria may influence the hormonal balance of a plant.

Indole acetic acid (IAA), also known as auxin, governs

different stages of plant growth and development, namely

cell division, cell elongation, and tissue differentiation, and

assists in apical dominance. IAA produced by rhizobacteria

affects the root system through the increase of weight and
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size, the number of branches, and the surface area in

contact with the soil.

Similarly, plant responses to cytokinin application

include enhanced cell division, enhanced root develop-

ment, enhanced root hair formation, inhibited root elon-

gation, shoot initiation, and other physiological responses.

Gibberellins, in contrast, are a group of phytohormones

that affects developmental strategies in higher plants and

include stem elongation, seed germination, flowering, and

fruit setting [6, 7].

Ethylene synthesis inhibition

Ethylene is another growth regulator that affects physio-

logical processes in plants. It is related primarily to the

plant’s growth and defense systems which are triggered by

stress responses. Factors such as light, temperature, salin-

ity, pathogen attacks, and nutritional status alter ethylene

levels. Moreover, ethylene also facilitates additional pro-

cesses not related to stress such as ripening, root elonga-

tion, and seed development. As ethylene levels decrease,

root system growth increases, as described above. Degra-

dation of 1-aminocyclopropane-1-carboxylic acid (ACC), a

direct precursor of ethylene, creates a concentration gra-

dient that favors its exudation. Maintaining a balance

between the ethylene and auxin is important since the two

are related growth regulators, some effects attributed to

auxin-producing bacteria result from ACC degradation

[1, 8].

Free nitrogen fixation

Nitrogen is a key component in the synthesis of cellular

enzymes, proteins, chlorophyll, DNA, and RNA, and, as a

result, it is important in plant growth. Bacterial strains

capable of nitrogen fixation are divided into two categories:

root/legume-associated symbiotic bacteria and free nitro-

gen-fixing bacteria. The former specifically infect the roots

to produce nodules, while the latter are non-specific and

can form symbiotic relationships with other plants and

organisms [1, 9].

Phosphate solubilization

Phosphorus is the second most important mineral nutrient

after nitrogen limiting plant growth. Although soils contain

a high concentration of total phosphorus, the amount

available for plant uptake is limited because P is in an

insoluble form. Bacteria present in the rhizosphere can

solubilize phosphate through different mechanisms. The

most common method of solubilizing phosphorus is by

secreting organic acids that act as chelators. Solubilization

of P in the rhizosphere is the most common mode of action

that increases the availability of nutrients for host plant

uptake [10].

Production of siderophore

Another essential plant nutrient is iron. Iron serves as a

cofactor for numerous enzymes that are important in

physiological processes such as photosynthesis, nitrogen

fixation, and respiration. Similar to phosphorus, iron is

abundant in the soil but is not available for plant uptake

because Fe3? predominates and reacts to form insoluble

hydroxides. In a similar manner to solubilizing phosphates,

bacteria present in the rhizosphere release organic com-

pounds for chelation. A different strategy involves

absorbing the iron-organic compound complex, where the

iron is reduced in the plant and directly assimilated [11].

Enzyme synthesis that hydrolyzes fungal cell walls

PGPR may be applicable in agriculture for the biocontrol

of plant pathogens. Production of cell wall-degrading

enzymes plays a very important role in controlling patho-

gens. Cell wall-degrading enzymes including chitinase, b-

1,3-glucanase, cellulase, and protease that are secreted by

PGPR directly inhibit the hyphal growth of fungal patho-

gens through the degradation of their cell which may be an

alternative method for replacing chemical fungicides

[2, 10, 12].

PGPR species in South Korea

South Korea is one of the top countries leading research

and development for biotechnology. Development of

PGPR is one focus of this field. The South Korean gov-

ernment approved the use of 108 total species of bacteria,

yeast, and fungi as fertilizers and some species as feeds.

However, there was some misunderstanding because of

changes in taxonomy and some isolates were found to be

the same species. In the present study, only 51 bacterial

species have been identified to have strains included in the

Korean Agricultural Culture Collection (KACC). Among

these, 40 were found to have PGP activities in previous

studies (Table 1), while the 11 species require further

examination. Additional research is needed to evaluate the

PGP characteristics of these 11 species (Table 2).

Conclusion

The PGP activities of rhizosphere bacteria show great

promise for applications in sustainable and ecofriendly

agriculture. PGPR not only promote growth by providing

nutrients but are also useful as biocontrol agents to protect
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plants from pathogens. While the fundamentals of how

PGPR promote growth are well known, there is still much

more to learn about the mechanisms underlying plant–mi-

crobe interactions for commercial production for the

microbes as an alternative to chemical fertilizers.
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