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A comparison of the nutrient composition 
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Abstract 

Red peppers are a remarkable source of nutrients in the human diet. However, comprehensive studies have not 
reported on the effects of genotype, cultivation region, and year on pepper fruit characteristics. To address this, 12 
commercial pepper varieties were grown at two locations in South Korea, during 2016 and 2017, representing four 
environments, and concentrations of proximate, minerals, amino acids, fatty acids, capsaicinoids, and free sugars in 
pepper pericarps were determined. Variation in most nutrients was observed among the 12 varieties grown within 
each location in each year, indicating a significant genotype effect. Statistical analysis of combined data showed 
significant differences among varieties, locations, and years for the measured components. The % variability analysis 
demonstrated that environment (location and year) and genotype‑environment interaction contributed more to 
the nutritional contents than genotype alone. Particularly, variation in many amino acids, capsaicinoids, free sugars, 
and myristic acid was attributed to location. Year effect was significant for palmitoleic acid, ash, tryptophan, cop‑
per, linolenic acid, crude fiber, and tyrosine. Insoluble dietary fiber, soluble dietary fiber, sodium, sulfate, linoleic acid, 
and alanine were primarily varied by genotype–environment interaction. Palmitic acid was the trait the most highly 
affected by genotype. Cultivation and the genotype–environment interaction have a major role in determining the 
composition of 12 pepper varieties across four environments. The data from this study could explain the natural varia‑
tion in the compositional data of peppers by genotypes and environments.
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Introduction
Capsicum annum L. belongs to the Solanaceae family 
along with other crops such as tomatoes, eggplants and 
potatoes. Their fruits are known as peppers or chilies. 
Peppers are one of the oldest domesticated crops in the 
western hemisphere. Peppers are the most widely grown 
spices in the world and are one of major ingredients in 
most global cuisines. Economically, peppers are a high 

value crop in many countries. The top 10 pepper pro-
ducing countries produced 30.7 and 3.85 million tons 
of green and dry pepper, respectively, in 2017, and pro-
duction has dramatically increased over the past dec-
ades (Food and Agriculture Organization of the United 
Nations). The wide variability and genetic diversity of 
peppers allows the development of new varieties for use 
in the industry and market [1]. Recently, the genome 
sequence of C. annum provided more advanced associa-
tions between genomic studies and important traits [2, 
3].

Peppers are excellent source of essential vitamins, min-
erals, and nutrients and, thus, have great importance 
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for human health. Peppers are also rich in a number of 
phytochemicals such as carotenoids, capsaicinoids, flavo-
noids, ascorbic acid, and tocopherols. These compounds 
are known to prevent inflammatory diseases associated 
with oxidative damages to maintain optimum health. Dif-
ferent pepper varieties show variation in the nutritional 
composition and level of metabolites [4–6]. Wahyuni 
et  al. [6] showed great variations in the composition of 
phytonutrients of 32 capsicum accessions. The amount 
of proximates, minerals, fatty acids, and amino acids 
were found to vary significantly among different varieties 
[4, 7]. Comparative analysis of metabolite compositions 
have been conducted in a diverse collection of peppers 
for genetic improvement of metabolic traits, especially 
health related-compounds [6, 8, 9].

Even within the same variety, nutritional composition 
of peppers varies depending on developmental stages, 
growing regions, and agricultural practices [10–14]. 
Pérez-López et  al. [14] showed that levels of ascor-
bic acid, total carotenoid, phenolic, and mineral were 
affected by the fruit maturation and types of agricul-
tural practice. Capsaicinoid contents were significantly 
different among cultivars, environments, and by culti-
var-environment interaction [15, 16]. The quantity of 
capsaicinoid was affected more by the genotype than the 
cultivation region [15, 16]. However, free sugar quantity 
was more affected by the cultivation region than by the 
genotype [16]. Comparative metabolite studies in pepper 
fruits and crop grains by multisite cultivation have sug-
gested that selection of appropriate cultivars and growing 
regions enables increased metabolites in plants [17–19]. 
Although numerous studies of metabolite composition in 
pepper fruits have reported, they have mainly focused on 
determining the concentrations of carotenoids, capsaici-
noids, vitamins, and phenolic compounds. In contrast, 
information is limited for other nutritional compositions 
such as proximates, minerals, amino acids, and fatty acid 
profiles in pepper varieties [20]. Furthermore, few stud-
ies about genotypic and environmental effects on those 
compounds in pepper fruits are available. Therefore, 
it is important to identify genotypes and environmen-
tal factors that influence the levels of these nutritional 
compounds in pepper in order to generate baseline infor-
mation and to select appropriate cultivars and growing 
regions.

In this study, 12 commercial varieties of pepper were 
grown at two places in South Korea, Imsil (IS) and Yeo-
ngyang (YY), during 2 consecutive years. IS and YY are 
the representative areas for pepper production localized 
in the western and eastern region of South Korea, respec-
tively. We analyzed and quantified proximates, minerals, 
fatty acid profiles, amino acids, capsaicinoids, and free 
sugars. Statistical methods were performed to determine 

the relative roles of genotype, environment, and geno-
type–environment interactions, accounting for the varia-
bility in nutrient composition of pepper fruits. This study 
could explain natural variation in the compositional data 
of pepper by genotype and environment.

Materials and methods
Plant materials, fruit collection, and sample preparation
Twelve pepper cultivars were cultivated at two sites, 
Imsil (IS) and Youngyang (YY), in South Korea in 2016 
and 2017. At each location, 12 cultivars were planted in 
May and fruits were harvested in October. All cultivars 
were planted in two blocks with a strip-plot design. Pep-
per fruits were collected randomly from each block and 
pooled together and then oven dried at 55  °C for 30  h. 
After the stalks, seeds, and placenta were removed from 
the whole fruits, pericarps were ground with a laboratory 
mill (Retsch planetary mono mill, PM100) and stored at 
− 70 °C until the compositional analysis was performed. 
All of experiments were conducted in triplicate by col-
lecting three samples from pooled powered samples. 
Weather data such as temperature, relative humidity, 
wind speed, and total rainfall were recorded (Additional 
file 1: Table S1 and Figure S1).

Compositional analysis
Proximates
Moisture was measured by gravimetric measurement 
using hot-air oven at 105  °C. Crude fat was analyzed 
using Soxhlet extraction method [21] while crude pro-
tein amount was calculated from total nitrogen content 
using Kjeldahl method [22]. Ash content was determined 
by incinerating the sample in a furnace at 600 °C for 22 h 
to constant weight [23]. Carbohydrates were calculated 
by 100% minus sum of % protein, % lipid, and % ash. 
Crude fiber content was determined according to AOAC 
method 962.09 [24]. Insoluble dietary fiber (IDF) and 
soluble dietary fiber (SDF) contents were determined by 
enzymatic–gravimetric methods using amylase, protease, 
and amyloglucosidase according to the MFDS Food Code 
2.1.4.3 [25].

Minerals
Calcium, magnesium, phosphorus, potassium, sulfate, 
copper, iron, manganese, sodium, and zinc were deter-
mined using inductively coupled plasma optical emission 
spectrometry (Inegra XL; GBC Co., Melbourne, Aus-
tralia) according to the MFDS Food Code [26].

Fatty acids profile
Individual fatty acids were determined according to the 
AOCS method Ce 1–62 [27] using a Shimadzu GC-2010 
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gas chromatograph (Shimadzu, Japan) and expressed as 
% of total fatty acids.

Amino acids profile
Amino acids were analyzed directly after protein hydrol-
ysis using an automatic amino acid analyzer with hydro-
chloric acid [28]. The sulfur-containing amino acids 
(cysteine and methionine) were oxidized using performic 
acid before hydrolysis with 6N hydrochloric acid. The 
contents of individual amino acids were expressed as % 
of total protein.

Capsaicinoids analysis
The capsaicinoid extraction was carried out as described 
by Jeon and Lee [29] with slight modifications; 
1.0 ± 0.05 g of red pepper powder sample was extracted 
with methanol at 70  °C using water bath for 5  h. The 
extract liquid was filtered (Whatman No. 2, Whatman 
International Ltd., Maidstone, UK) and filled with metha-
nol to 100 mL. Before analyzing for HPLC, samples were 
filtered with a 0.45  μm nylon membrane. Capsaicinoids 
were analyzed using Agilent-1100 HPLC equipped with 
autosampler and UV-FID detector. Luna C18(2) 100 A 
column (5  µm, 4.6 × 250  mm, Phenomenex Inc., Tor-
rance, CA, USA) was used and compounds were detected 
by FID (Exλ = 280 nm, Emλ = 320 nm).

Free sugars analysis
Sugar contents (fructose and glucose) of red pepper 
powder were analyzed with a simultaneous quantitative 
method with HPLC-RI according to Won et  al. [30]. A 
ZORBAX carbohydrate column (4.6  mm ID × 250  mm, 
5 µm) was used for analysis. The analysis conditions were 
as follows: mobile phase of 75% acetonitrile, column tem-
perature of 35 °C, sample injection amount of 10 µL and 
flow rate of 1 mL/min. Standard solutions were isolated 
without an interfering peak within 30 min, and the cali-
bration curves of standards were confirmed excellent lin-
earity from 0.10 to 1.00% with  R2 ≥ 0.999.

Statistical analyses
Statistical analysis of the data was carried out with SAS 
Enterprise Guide 7.0. To identify differences among 
pepper varieties within each location per year and 
across four environments, the significance probability 
(p-value) was calculated by one-way analysis of variance 
(ANOVA). The mean discrimination was performed 
applying Bonferroni corrected t-tests, and statistically 
significant differences were determined at the probability 
level of p ≤ 0.05. The difference in components between 
two locations or between 2 cultivation years was calcu-
lated by paired t-test. Pearson’s correlation analysis was 
conducted with SAS Enterprise Guide 7.0. Hierachical 

cluster analysis (HCA) and heat mapping were conducted 
in the MultiExperiment Viewer, version 4.0. The heat 
map visualization of all the correlation coefficients with 
Pearson’s correlation analysis was performed for correla-
tions between analytes.

Results and discussion
Crop composition is significantly affected by genetics and 
environmental conditions including rainfall, temperature, 
soil types, and the interactions between these two factors 
[19, 31]. To investigate variations in nutritional composi-
tion among 12 pepper cultivars, we analyzed data within 
each location per year to exclude the influence of the 
environment. This enabled us to assume the variance for 
components was attributed to genotypes. Statistical anal-
ysis demonstrated that most components showed sig-
nificant variation among 12 pepper cultivars, indicating 
a clear genotypic effect (Additional file 1: Figures S2–S6). 
The nutritional composition of the 12 pepper cultivars 
across four environments are presented in Tables 1, 2, 3, 
4 and 5 as the mean and ranges. Further, the nutritional 
compounds across the 12 cultivars were compared by 
location and year, respectively, in order to determine the 
effect of the environment on composition (Tables 1, 2, 3, 
4 and 5). The random effect of individual varieties, loca-
tion, year, and the mix of these factors on the nutritional 
variation was described using the linear mixed model in 
R statistics (Fig.  1). The variation in nutritional compo-
nents is apportioned between the effects of variety, year, 
location, interaction of location:variety:year (hereafter 
referred to as the G × E interaction) and that which can-
not be explained by these factors (termed the residual). 
Then, correlations between the nutrient compositions 
were determined by the Pearson’s correlation and pre-
sented by HCA (Fig. 2).      

Eight proximate compositions
Moisture, protein, crude fat, carbohydrate, ash, and 
crude fiber, including SDF and IDF, were measured and/
or calculated for the 12 varieties obtained from IS and 
YY cultivated during 2016 and 2017. When these com-
pounds were compared among all cultivars within loca-
tion by year, all of cultivars showed high variance among 
all varieties except ash (all conditions), protein from 
cultivars obtained from YY in 2016, and crude fiber 
from cultivars obtained from YY in 2017 (Additional 
file  1: Figure S2). Table  1 shows combined proximates 
data obtained from the four environments. Carbohy-
drates were the major component (~ 60%), followed by 
IDF (~ 22%), and crude fiber (~ 19%). Crude protein and 
crude fat were present in similar levels (~ 13%). Ash was 
present at ~ 9%. SDF was present at the lowest amount 
(~ 2%). Variation in proximate contents was observed 
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among pepper varieties in previous studies [4, 32]. Sta-
tistical significance was observed in moisture, protein, 
SDF, and IDF among all varieties across four environ-
ments, indicating a genetic contribution to the variation 
in these compounds. The location effect across 12 pep-
per varieties was significant for moisture, protein, ash, 
and carbohydrates. All compounds across all 12 pepper 
varieties were influenced by cultivation year. The results 

of % variability for proximate from R statistics (Fig.  1) 
showed that the quantity of ash, crude fiber, moisture, 
and crude fat were significantly affected by year, the 
effects of which account for 69.0, 66.3, 59.8, and 41.8%, 
respectively, of the total variation. The level of SDF 
(79.1%) and IDF (69.7%) were primarily determined by 
the G × E interactions. The amount of protein showed 
the highest variability due to location (50.7%).

Table 1 Eight proximate compositions in  the  pericarps of  12 capsicum varieties grown across  four environments 
by variety, location, and year

Data are the mean and range (parentheses), expressed as % dry weight

NS not significant

*p < 0.05; **p < 0.01; ***p < 0.001. The means in the same column followed by the same letter(s) are not significantly different at (p < 0.05) by least significant difference

Components (%)

Moisture Protein Crude fat Ash Crude fiber SDF IDF Carbohydrate

Varieties

 BST 10.3ab

(8.3–13.3)
13.9ab

(11.9–16.8)
12.8a

(10.4–14.2)
9.8a

(5.9–13.1)
19.8a

(14.6–24.4)
1.7ab

(1.2–2.7)
24.1ab

(21.4–28.1)
63.4a

(58.8–67.9)

 MCB 11.5ab

(9.6–14.6)
13.1ab

(11.7–14.7)
12.6a

(10.6–14.8)
9.6a

(6.6–14.4)
20.6a

(14.7–25.2)
1.8ab

(1.0–3.0)
22.8abc

(20.1–28.6)
64.7a

(59.3–68.4)

 HBC 8.7a

(6.04–12.4)
12.2ab

(11.4–13.6)
13.1a

(11.7–14.4)
10.0a

(5.9–13.6)
20.5a

(18.3–22.3)
1.8ab

(0.3–2.9)
22.5abc

(19.2–25.9)
64.7a

(60.6–69.4)

 GCH 9.9ab

(7.6–13.2)
13.5ab

(10.9–15.3)
13.8a

(10.8–16.2)
11.0a

(6.6–17.1)
21.5a

(18.2–26.0)
2.7a

(1.6–4.3)
22.9abc

(18.7–29.6)
61.7a

(57.1–65.1)

 JSN 9.6ab

(6.6–13.5)
13.0ab

(10.7–15.1)
13.6a

(12.6–14.7)
11.1a

(6.4–13.6)
21.4a

(13.0–26.5)
2.2ab

(1.2–3.4)
22.1abc

(18.6–26.0)
62.3a

(55.7–67.6)

 AJB 10.6ab

(8.2–14.1)
11.9a

(10.3–14.9)
12.3a

(9.4–14.6)
10.2a

(6.3–13.0)
19.1a

(14.2–22.7)
2.2ab

(1.4–3.4)
21.8abc

(18.3–25.9)
65.6a

(61.9–70.2)

 PJDG 13.2b

(9.1–19.2)
13.4ab

(11.5–14.6)
13.8a

(11.4–16.5)
10.0a

(6.4–14.7)
19.3a

(14.2–23.6)
1.2b

(0.3–2.1)
23.3abc

(19.0–28.4)
62.8a

(57.8–66.4)

 PMBI 10.8ab

(8.3–13.9)
12.9ab

(11.5–14.6)
12.4a

(9.9–13.7)
9.9a

(6.2–13.2)
18.7a

(13.9–24.2)
2.1ab

(1.5–3.4)
20.1bc

(17.2–24.1)
64.8a

(59.2–68.7)

 PSUL 11.0ab

(8.6–13.7)
13.3ab

(11.3–16.9)
13.3a

(9.6–15.4)
9.9a

(6.7–13.8)
18.2a

(13.6–24.5)
2.6a

(1.7–3.7)
20.8abc

(18.8–23.4)
63.4a

(55.5–71.7)

 PKST 10.0ab

(7.5–13.9)
13.6ab

(11.0–16.8)
13.6a

(10.2–15.8)
10.4a

(6.5–17.3)
19.0a

(13.5–24.2)
2.0ab

(1.1–4.0)
20.6bc

(17.0–23.1)
62.4a

(56.9–67.0)

 MM 10.5ab

(7.8–14.7)
12.8ab

(11.5–15.8)
12.5a

(10.7–13.9)
10.0a

(6.2–13.3)
20.2a

(16.7–23.2)
1.2b

(0.3–2.1)
19.3c

(16.9–23.3)
64.7a

(60.0–67.8)

 PEVR 12.0ab

(9.1–16.7)
14.0b

(11.5–18.5)
13.2a

(10.8–16.4)
11.1a

(7.3–15.3)
21.1a

(16.6–25.0)
1.7ab

(0.3–2.7)
24.8a

(20.9–30.5)
61.8a

(54.2–66.3)

 p‑value ** * NS NS NS *** *** NS

Location

 IM 11.2
(6.04–15.5)

10.1
(6.04–19.2)

13.2
(9.42–16.2)

9.5
(5.90–17.3)

19.7
(13.0–26.5)

1.9
(0.34–4.08)

21.7
(17.4–29.6)

65.1
(56.8–71.7)

 YY 10.1
(9.36–19.2)

12.2
(10.3–14.6)

13.0
(10.2–16.6)

11.0
(6.83–15.5)

20.2
(14.3–24.9)

1.9
(0.28–4.28)

22.4
(16.9–30.5)

61.9
(54.2–67.0)

 p‑value * *** NS ** NS NS NS ***

Year

 2016 12.5
(9.36–19.2)

13.7
(11.4–18.5)

13.9
(11.5–16.5)

8.1
(5.90–12.9)

22.3
(18.9–26.5)

2.1
(0.28–4.28)

21.1
16.9–28.4

64.3
55.4–69.4

 2017 8.8
(6.04–14.6)

12.6
(10.3–15.1)

12.3
(9.42–16.4)

12.4
(6.56–17.3)

17.5
(13.0–24.9)

1.7
(0.99–3.11)

23.0
(16.9–30.5)

62.8
(54.2–71.7)

 p‑value *** *** *** *** *** ** *** **
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Ten mineral compositions
Pepper fruits contain many essential minerals. Most 
minerals showed variation among the 12 pepper varie-
ties produced at the same location by year (Additional 
file 1: Figure S3). Only magnesium of YY 2016, sulfate of 
IS 2017, copper of IS 2016 and YY 2016, iron of YY 2017, 
and zinc of YY 2017 did not show variance among the 12 
varieties (Additional file  1: Figure S3). Mineral content 
is provided in Table 2. Potassium is the most abundant 

mineral, followed by phosphorus, sulfate, magnesium 
and calcium. Calcium, phosphorus, sulfate, iron, and 
sodium showed significant difference, while others were 
not varied among varieties across the four environments. 
The levels of each mineral across four environments 
showed a high variation, indicating these compounds 
are strongly influenced by environmental factors. Previ-
ous studies have shown that amounts of minerals in pep-
pers depend on the ripening stage, agricultural practices, 

Table 2 Ten mineral contents in  the  pericarps of  12 capsicum varieties grown across  four environments by  variety, 
location and year

Data are the mean and range (parentheses), expressed as mg/100 g dry weight

NS not significant

*p < 0.05; **p < 0.01; ***p < 0.001. The means in the same column followed by the same letter(s) are not significantly different at (p < 0.05) by least significant difference

Components

Calcium Magnesium Phosphorus Potassium Sulfate Copper Iron Manganese Sodium Zinc

Varieties

 BST 106.2ab

(90–121)
158.8a

(130–207)
289.9a

(268–323)
3525a

(2576–5015)
259.4a

(230–311)
0.9a

(0.43–2.4)
6.2ab

(4.6–8.1)
0.9a

(0.74–1.15)
32.5ab

(23.1–43.0)
1.9a

(1.6–3.0)

 MCB 96.5b

(73–127)
154.5a

(96–230)
270.2a

(237–305)
3777a

(2129–6400)
241.2abc

(213–712)
0.9a

(0.4–2.2)
5.9ab

(4.2–8.9)
0.9a

(0.79–1.2)
35.8a

(20.2–47.8)
1.9a

(1.5–2.4)

 HBC 92.8b

(71.8–111)
149.8a

(125–179)
289.6a

(232–412)
2878a

(2059–3670)
233.0abc

(198–290)
1.0a

(0.33–2.0)
5.0b

(4.1–6.3)
0.8a

(0.52–1.2)
22.6cd

(12.2–32.3)
2.3a

(1.5–3.8)

 GCH 92.2b

(63.6–112)
144.4a

(123–175)
296.5a

(277–328)
3478a

(2786–4806)
221.4abcd

(154–306)
1.2a

(0.51–4.04)
5.8ab

(4.49–8.35)
0.9a

(0.71–1.1)
28.7abc

(18.6–43.3)
1.8a

(1.34–2.27)

 JSN 105.9ab

(75.3–103)
146.9a

(103–189)
269.6a

(229–318)
3638a

(2652–4470)
208.8bcd

(165–269)
1.0a

(0.38–1.83)
5.8ab

(4.4–7.3)
1.0a

(0.67–1.28)
22.9cd

(16.1–32.9)
1.9a

(1.48–2.5)

 AJB 98.8b

(57.8–132)
140.1a

(109–167)
261.4a

(209–313)
3822a

(2021–4022)
182.7d

(143–224)
1.2a

(0.53–3.92)
6.0ab

(4.4–8.6)
0.9a

(0.32–1.74)
28.9abc

(20.2–43.7)
1.9a

(1.29–2.97)

 PJDG 108.7ab

(94–127)
148.7a

(133–167)
280.7a

(252–304)
3800a

(3024–5394)
198.6cd

(168–231)
1.0a

(0.52–1.67)
6.7ab

(4.54–10.0)
0.9a

(0.74–1.1)
25.3bcd

(15.7–34.1)
2.2a

(1.51–2.88)

 PMBI 115.8ab

(80.7–135)
148.9a

(121–179)
266.8a

(219–301)
3418a

(2353–4481)
201.1cd

(161–236)
1.6a

(0.55–5.5)
7.0ab

(5.5–10.3)
0.9a

(0.7–1.46)
27.0abcd

(15.9–41)
1.9a

(1.22–2.45)

 PSUL 131.0a

(104–164)
162.4a

(133–192)
280.1a

(244–327)
3504a

(2660–4630)
228.4abcd

(208–263)
1.1a

(0.69–2.04)
7.7a

(4.91–10.7)
1.1a

(0.74–1.62)
24.0bcd

(17.6–35.8)
2.2a

(1.53–3.17)

 PKST 124.4a

(107–151)
145.5a

(127–175)
278.9a

(232–313)
3203a

(2437–4586)
205.0bcd

(97.4–282)
1.1a

(0.66–1.78)
5.8ab

(4.68–8.2)
1.0a

(0.56–1.32)
19.3d

(14.0–15.6)
2.0a

(1.54–2.37)

 MM 110.8ab

(18.4–146)
146.8a

(122–194)
263.9a

(222–304)
3360a

(2496–5069)
214.8abcd

(161–257)
1.2a

(0.58–3.67)
6.6ab

(4.0–9.38)
0.9a

(0.51–1.31)
21.5 cd

(1.32–32.4)
1.8a

(1.2–2.3)

 PEVR 126.3a

(100–154)
160.9a

(136–205)
297.2a

(250–377)
3647a

(2709–5564)
252.0ab

(210–287)
1.1a

(0.53–2.37)
7.6a

(4.59–10.4)
1.0a

(0.7–1.21)
23.3bcd

(13.7–34.8)
2.2a

(1.5–4.57)

 p‑value *** NS * NS *** NS *** NS *** NS

Location

 IM 114.4
(74.3–164)

137.9
(109–230)

292.2
(229–412)

2821
(2021–3939)

208.9
(97.4–283)

1.0
(0.33–5.53)

6.1
(4.08–10.7)

1.0
(0.69–1.74)

26.9
(16.2–47.8)

2.1
(1.35–3.85)

 YY 103.8
(57.8–152)

163.4
(96.2–160)

265.3
(210–377)

4125
(2656–6400)

232.2
(143–311)

1.2
(0.52–4.05)

6.6
(4.0–10.3)

0.9
(0.32–1.46)

25.1
(12.3–47.7)

1.9
(1.20–4.57)

 p‑value ** *** *** *** *** NS NS *** NS *

Year

 2016 101.5
(57.8–164)

140.7
(96.2–189)

272.0
(210–377)

3160
(2021–4171)

215.8
(97.4–311)

0.9
(0.33–5.53)

6.5
(4.0–10.7)

1.0
(0.32–1.74)

25.5
(13.7–47.7)

1.9
(1.20–3.17)

 2017 116.7
(82.8–151)

160.6
(125–230)

285.4
(227–412)

3785
(2320–6400)

225.3
(175–272)

1.4
(0.61–4.05)

6.2
(4.48–8.91)

0.9
(0.52–1.32)

26.4
(12.3–47.8)

2.1
(1.75–3.70)

 p‑value *** *** * *** NS *** NS NS NS NS
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genotype, and environments [4, 9, 14, 33]. Consistently, 
significant variance in mineral compounds was found 
by location, except potassium, iron, and sodium in this 
study. The levels of calcium, magnesium, phosphorus, 
potassium, and copper varied significantly between 
2016 and 2017. The results of % variability for minerals 
(Fig. 1) showed that five minerals exhibited high percent-
ages of variance by the G × E interaction: this interac-
tion accounts for 79.1%, 63.7%, 55.4%, 55.2%, and 47.9% 

in the content of sodium, sulfate, potassium, phospho-
rus, and zinc, respectively. The level of copper (66.5%) 
was primarily determined by year. The range of natural 
variation in calcium and manganese were associated 
with variety (22.9%), year (19.9%), and G × E interac-
tion (28.2%). Magnesium was mainly affected by location 
(42.8%) and then by year (25.8%). It is worth noting that 
calcium, manganese, phosphorus, and sulfate were traits 
explained by genotype.

Table 3 Ten fatty acid compositions in the pericarps of 12 capsicum varieties grown across four environments by variety, 
location, and year

Data are the mean and range (parenthesis), expressed as % dry weight

NS not significant

*p < 0.05; **p < 0.01; ***p < 0.001. The means in the same column followed by the same letter(s) are not significantly different at (p < 0.05) by least significant difference

Components

Lauric Myristic Palmitic Palmitoleic Stearic Oleic linoleic Linolenic Arachidic Behenic

Varieties

 BST 1.53a

(0.83–2.69)
3.99a

(2.35–6.55)
19.1bc

(18.5–19.6)
1.4b

(0.79–2.04)
4.3ab

(3.58–4.79)
11.3a

(9.04–15.1)
40.7abc

(34.8–43.7)
15.8ab

(12.1–19.9)
0.78a

(0.62–0.92)
0.49a

(0.43–0.59)

 MCB 1.71a

(0.81–2.29)
4.67a

(2.31–6.11)
18.6bcd

(17.4–20.2)
1.2ab

(0.58–1.93)
4.3ab

(3.76–4.96)
11.9a

(10.1–15.3)
39.2abc

(35.4–43.8)
16.7ab

(11.7–19.4)
0.71ab

(0.63–0.82)
0.43a

(0.00–0.60)

 HBC 1.82a

(1.23–2.52)
5.06a

(3.88–6.41)
20.8a

(20.1–21.5)
1.3ab

(0.83–1.76)
3.2c

(2.56–3.69)
10.3a

(8.10–12.6)
39.2abc

(37.1–41.7)
16.5ab

(14.0–19.1)
0.56c

(0.49–0.61)
0.46a

(0.39–0.61)

 GCH 1.83a

(0.79–2.90)
4.81a

(2.30–6.65)
18.9bcd

(17.9–19.9)
1.4ab

(0.95–1.97)
4.6a

(3.54–5.47)
9.8a

(7.05–14.9)
38.2bc

(31.8–43.1)
18.4ab

(12.4–23.7)
0.80a

(0.64–0.97)
0.51a

(0.00–0.62)

 JSN 1.84a

(0.94–2.71)
4.79a

(2.73–6.31)
19.7ab

(19.5–20.0)
1.4ab

(0.68–1.99)
4.1ab

(3.54–4.94)
11.2a

(8.75–15.2)
36.6c

(31.3–43.5)
18.4ab

(12.1–22.4)
0.72ab

(0.62–0.85)
0.54a

(0.44–0.72)

 AJB 1.69a

(1.15–2.67)
4.13a

(3.22–5.79)
17.5de

(16.6–19.7)
1.0ab

(0.64–1.35)
3.7c

(3.27–4.30)
12.2a

(9.61–14.5)
43.7a

(40.3–46.7)
14.2b

(12.5–17.7)
0.65bc

(0.57–0.72)
0.49a

(0.40–0.58)

 PJDG 2.02a

(0.81–3.43)
5.09a

(2.43–7.67)
17.6cde

(16.6–19.7)
1.0ab

(0.81–1.29)
4.4a

(3.65–4.82)
9.5a

(6.76–14.5)
40.2abc

(33.8–43.9)
18.1ab

(12.4–23.0)
0.76a

(0.65–0.89)
0.55a

(0.00–0.72)

 PMBI 1.94a

(0.93–3.04)
5.05a

(2.77–7.59)
17.5cde

(16.4–19.3)
1.4ab

(0.83–2.09)
4.1ab

(3.81–4.60)
9.41a

(5.54–14.1)
42.9a

(37.3–48.0)
15.9ab

(13.0–19.3)
0.72ab

(0.67–0.80)
0.44a

(0.00–0.66)

 PSUL 2.10a

(0.93–3.17)
5.17a

(2.99–7.11)
17.4de

(15.8–20.1)
1.1a

(0.79–1.65)
4.6a

(3.80–5.75)
8.58a

(3.40–15.6)
39.2abc

(34.3–44.3)
19.7a

(12.0–24.4)
0.77a

(0.66–0.96)
0.50a

(0.00–0.68)

 PKST 1.58a

(0.67–2.63)
4.17a

(2.70–6.35)
18.1bcd

(16.5–19.9)
1.4ab

(0.74–2.18)
4.2ab

(3.84–4.95)
12.3a

(6.48–21.4)
40.1abc

(37.6–43.2)
16.2ab

(10.2–23.7)
0.74ab

(0.61–0.84)
0.53a

(0.41–0.63)

 MM 2.01a

(0.75–3.72)
4.86a

(2.17–8.60)
18.1bcd

(16.7–19.7)
1.2ab

(0.67–1.73)
4.3ab

(3.65–4.79)
9.01a

(2.67–14.9)
42.1ab

(33.8–45.4)
16.7ab

(12.3–21.3)
0.72ab

(0.63–0.85)
0.42a

(0.00–0.59)

 PEVR 1.73a

(0.84–2.83)
4.57a

(2.51–7.02)
16.3e

(14.3–19.5)
1.0ab

(0.71–1.50)
4.4a

(3.71–5.16)
8.76a

(5.62–14.8)
41.9ab

(36.1–44.1)
19.2ab

(12.2–24.0)
0.73ab

(0.63–0.80)
0.56a

(0.48–0.67)

 p‑value NS NS *** * *** * *** ** *** NS

Location

 IM 1.4
(0.75–3.36)

3.9
(2.17–7.85)

18.7
(14.8–21.0)

1.3
(0.58–2.09)

3.9
(2.56–4.82)

11.4
(2.67–15.7)

42.5
(36.9–48.0)

15.1
(11.7–21.0)

0.5
(0.0–0.66)

0.7
(0.49–0.92)

 YY 2.2
(0.67–3.72)

5.5
(2.70–8.60)

17.9
(14.3–21.5)

1.2
(0.64–2.18)

4.5
(2.96–5.75)

9.3
(3.40–21.4)

38.1
(31.3–45.5)

19.2
(10.2–24.4)

0.5
(0.0–0.72)

0.7
(0.53–0.97)

 p‑value *** *** ** NS *** *** *** *** * NS

Year

 2016 1.9
(0.67–3.36)

4.9
(2.70–7.85)

17.7
(14.3–21.0)

1.5
(0.97–2.18)

4.3
(2.56–5.75)

9.1
(2.67–21.4)

40.8
(32.4–48.0)

17.8
(10.2–24.2)

0.5
(0.39–0.72)

0.8
(0.49–0.97)

 2017 1.8
(0.75–3.72)

4.5
(2.17–8.60)

18.9
(15.7–21.5)

0.9
(0.58–1.39)

4.1
(2.96–5.26)

11.6
(5.62–15.7)

39.8
(31.3–45.5)

16.5
(11.7–24.4)

0.4
(0.0–0.66)

0.8
(0.49–0.97)

 p‑value NS NS *** *** ** *** NS * *** ***
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Ten fatty acid compositions
Lipids and fatty acids compose a small portion of the 
edible part of peppers. However, they play important 
roles in the structure of the pepper, which is expected, 
considering several bioactives, vitamins, and carotenoids 
are liposoluble. Fatty acid composition is observed dif-
ferentially in different pepper fruit components [14]. Lin-
oleic acid is very highly concentrated in the seed while 
linoleic, linolenic, and palmitic acids are the major fatty 
acids in the pericarp [34]. In our study, only pericarp tis-
sue was used for analysis. Most fatty acid compositions 
showed variation among 12 pepper varieties produced at 
same location per year. Only linoleic acid of YY 2016 and 
behenic acid of IS 2017 and YY 2017 did not show signifi-
cant variance among 12 varieties (Additional file 1: Figure 
S4). Table  3 shows the percentage composition of fatty 
acids of pepper pericarp. The results showed that linoleic 
acid is the major compound, followed by palmitic, lino-
lenic, oleic, myristic, and steric acids. Lauric, palmitoleic, 
arachidic, and behenic acids were present in traces. Most 
fatty acids were significantly different among varieties 
across the four environments, with the exception of lau-
ric, myristic, and behenic acids. The location effect was 
significant for all the fatty acids except palmitoleic and 
behenic acids. All the fatty acids, with exception of lauric, 
myristic and linoleic acids, varied significantly by year.

The genotypic effect on fatty acid composition of cap-
sicum has previously been reported [4]. A few studies of 
environmental and the G × E interaction effects on fatty 
acid composition of pepper are available. In our study, 
further statistical analysis suggested that genotype and 
the G × E interaction primarily determined levels of 
all fatty acids measured. The results of % variability for 
fatty acids (Fig. 1) showed that palmitoleic and linolenic 
acids were highly affected by year, accounting for 72.2% 
and 66.5% of the variation, respectively. Myristic and 
lauric acids were affected by location, the effect of which 
accounts for 51.3% and 35.6% of the variation, respec-
tively. Myristic and lauric acids were influenced by G × E 
interactions, accounting for 31.7% and 25.8% of the varia-
tion, respectively. Linoleic (63.7%) and oleic (52.2%) acids 
were also highly affected by G × E interaction. Arachidic 
acid was mainly affected by G × E interaction (55.4%) but 
also showed a location effect (24.9%). Palmitic, stearic, 
and behenic acids were affected by genotypes, location, 
year, and G × E interactions in similar proportions. Nota-
bly, palmitic, stearic, behenic, and oleic acids were one of 
top ranked traits influenced by genotype.

Eighteen amino acid compositions
We analyzed 18 amino acids profiles in pepper pericarps 
and expressed as % composition to total protein. Most 

amino acid compositions showed variation among 12 
pepper varieties produced in same place by year (Addi-
tional file 1: Figure S5), with exception of alanine, aspar-
tic acid, glycine, leucine, methionine, tyrosine, and valine 

Table 5 Contents of  capsaicin, dihydrocapsaicin, fructose, 
and  glucose in  the  pericarps of  12 capsicum varieties 
grown across  four environments by  variety, location, 
and year

Data are the mean and range (parentheses). Capsaicin and dihydrocapsaicin 
data are expressed as mg/100 g dry weight. Fructose and glucose data are 
expressed as g/100 g dry weight

NS not significant

*p < 0.05; **p < 0.01; ***p < 0.001. The means in the same column followed by 
the same letter(s) are not significantly different at (p < 0.05) by least significant 
difference

Component

Capsaicin Dihydrocapsaicin Fructose Glucose

Varieties

 BST 40.0a

(2.37–104)
18.4a

(0.65–61.4)
15.7a

(13.0–21.7)
8.7a

(4.96–14.0)

 MCB 37.4a

(2.85–142)
19.2a

(1.21–80.6)
15.2a

(11.6–22.1)
9.3a

(5.36–14.6)

 HBC 24.8a

(8.63–41.0)
11.0a

(3.12–19.0)
14.9a

(12.4–17.0)
8.6a

(6.01–10.8)

 GCH 22.8a

(3.17–44.0)
11.2a

(1.64–23.3)
15.0a

(12.7–19.0)
7.8a

(5.69–12.0)

 JSN 20.8a

(0.02–98.0)
10.9a

(0.01–53.5)
15.9a

(12.2–22.0)
9.1a

(5.36–13.8)

 AJB 12.9a 7.3a 18.8a 10.9a

(0.38–55.2) (0.25–35.8) (17.1–21.4) (7.16–13.8)

 PJDG 23.8a

(2.12–113)
13.9a

(1.36–65.4)
17.7a

(14.8–21.4)
10.7a

(8.13–13.5)

 PMBI 31.0a

(1.51–102)
16.5a

(0.44–62.1)
17.6a

(15.0–21.5)
11.0a

(7.95–13.6)

 PSUL 51.3a

(4.08–130)
28.9a

(1.84–76.0)
16.8a

(12.9–22.0)
10.2a

(6.37–14.6)

 PKST 42.6a

(4.91–125)
23.7a

(2.38–70.9)
16.9a

(12.0–22.0)
9.7a

(5.24–14.2)

 MM 23.2a

(2.32–88.4)
12.0a

(1.44–51.8)
16.6a

(14.2–20.3)
10.2a

(6.97–13.1)

 PEVR 37.1a

(2.92–93.1)
23.1a

(1.66–55.6)
14.9a

(12.2–21.7)
8.7a

(5.40–14.1)

 p‑value NS NS * NS

Location

 IM 51.5
(1.71–142)

27.8
(0.06–80.6)

17.8
(12.3–22.1)

11.6
(5.7–14.6)

 YY 33.7
(0.02–40.0)

20.7
(0.01–21.3)

14.9
(11.6–19.2)

7.5
(5.0–10.8)

 p‑value *** *** *** ***

Year

 2016 20.9
(0.02–73.0)

10.1
(0.01–46.3)

14.8
(11.6–19.9)

8.6
(5.0–12.8)

 2017 40.4
(0.30–142)

22.6
(0.22–80.6)

17.9
(12.6–22.1)

10.5
(5.0–14.6)

 p‑value *** *** *** ***
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produced in YY 2016. This result suggests a genotypic 
effect on these compounds was not expressed in the YY 
2016 environment (Additional file 1: Figure S5). Table 4 
shows the percentage composition to total protein of 
18 amino acids in 12 pepper varieties. The main amino 
acids were glutamic acid and aspartic acid, followed by 
proline, serine, leucine, alanine, arginine, valine. The 
contents of methionine, cysteine, tyrosine, tryptophan, 
isoleucine, and lysine were low. Significant differences 
were observed in arginine, cysteine, glutamic acid, gly-
cine, phenylalanine, proline, and serine content among 
12 varieties across four environments. The location effect 
was significant for all amino acid except glutamic acid 
and proline. All amino acids displayed significant differ-
ence by year, with the exception of alanine, aspartic acid, 
glycine, isoleucine, serine, and threonine. The results of 
% variability for amino acid (Fig.  1) showed that serine, 
leucine, methionine, valine, phenylalanine, isoleucine, 
cysteine, and lysine were highly affected by growing 
regions ranging from 74.6 to 45.7%. Tryptophan (67.6%), 
tyrosine (65.6%), histidine (43.2%), and threonine (42.5%) 
variation was mainly explained by the year effect. Ala-
nine, proline, aspartic acid, glutamic acid, and glycine 
were affected by the G × E interaction ranging from 62 
to 39.7%. The content of arginine varied by genotype, 
year, location, and the G × E interaction with similar 
proportions.

Capsaicinoid and free sugar compositions
Capsaicinoids are a group of alkaloids that contribute to 
pungency. Peppers are a popular food ingredient world-
wide due to their heat characteristics. Capsaicin and 
dihydrocapsaicin are the major capsaicinoids, constitut-
ing approximately 90% of total capsaicinoids in pepper 
fruits [35]. Capsaicinoid content in fruit is influenced by 
several factors such as genotype, geographical location, 
fruit development, and environmental stresses [15, 17]. 

In our study, capsaicinoids were highly variable among 
12 varieties grown in IS 2016, IS 2017, and YY 2016 
(Additional file 1: Figure S6). The range of capsaicin and 
dihydrocapsaicin in an individual variety is very broad. 
In nearly all varieties, capsaicinoid content was higher 
in peppers produced from IS than YY both years (Addi-
tional file  1: Figure S6). The amount of capsaicinoid in 
the 12 varieties was dramatically higher in peppers pro-
duced from IS 2017 than those from IS 2016, while it was 
similar between YY 2016 and YY 2017 (Additional file 1: 
Figure S6). However, levels of capsaicin and dihydrocap-
saicin were not significantly different among 12 varie-
ties across four environments (Table  5). It is likely that 
the high increase in capsaicinoids varieties from IS 2017 
has influenced the disappearance of variability among 
the varieties. For example, JSN, AJB, and PJDG showed 
lower capsaicinoid levels compared to other varieties in 
IS 2016 and YY 2016. However, their capsaicinoid con-
tents were ~ eightfold higher in peppers grown in IS 
2017. In alignment with this observation, capsaicinoid 
content showed significant differences between sites and 
years, respectively (Table 5). Previous reports [15, 17, 36] 
showed that variations in capsaicinoids were the result of 
environmental differences including location, soil type, 
solar radiation, and precipitation. It was suggested that 
choosing the appropriate combination of environment 
and genotype is an important factor to produce suitable 
nutritional trait.

The concentration of free sugars is one of the compo-
nents, along with organic acids, that determine fruit fla-
vor attributed to sweetness in the red mature stage of 
pepper fruit [37]. Both fructose and glucose composition 
differed by year in varieties when plants were grown in 
the same place (Additional file 1: Figure S6). The level of 
fructose across all samples was higher than that of glu-
cose (Table 5). Concentrations (mg/100 mg DW) of fruc-
tose and glucose in 12 pepper pericarps ranged from 
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11.6 to 22.1 and 5.0 to 14.6, respectively. Jarret et al. [5] 
showed the great diversity of free sugars within the C. 
chinense gene pool. Further, free sugar quantity was 
affected by pepper cultivars, fruit maturation, cultiva-
tion region, and year in Korea [10, 16, 38]. The contents 
of fructose and glucose across varieties were higher in 

peppers produced from IS than those of YY and both 
compounds significantly varied by year (Table  5). The 
results of % variability for capsaicinoids and free sugars 
from R statistics (Fig. 1) showed that they were affected 
significantly by location, G × E interaction, and year. The 
location effect for capsaicin, dihydrocapsaicin, fructose, 

Fig. 2 Correlation matrix and cluster analysis of 50 nutritional components analyzed from pericarps of 12 pepper varieties across two growing 
regions for 2 cultivation years. Each square of the heat map shows the Pearson’s correlation coefficient for a pair of compounds. The value of 
coefficient is represented by the intensity of the blue or red color as indicated on the color scale. Hierarchical clusters are represented by a cluster 
tree. Cluster I and cluster II were marked by a black line
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and glucose explained 54.6%, 49.2%, 54.6%, and 49.2% 
of variability, respectively. The genotype effects for these 
compounds were very small portion, ranging from 1.3 to 
0.7%.

Correlation of analytes measured from 12 varieties 
across four environments
Correlation between the concentrations of various 
metabolites provides information regarding metabolic 
associations. To examine detailed relationships between 
the 50 nutritional components in pepper, we calculated 
the Pearson’s correlation matrix between nutritional 
components and applied HCA on the datasets (Fig.  2). 
The HCA results showed two clusters: cluster I consisted 
of ash, IDF, carbohydrates, minerals (except iron), amino 
acids, capsaicinoids, free sugars, oleic, and linoleic acids. 
Cluster II consisted of SDF, iron, protein, crude fat, crude 
fiber, and other fatty acids. These results showed that 
analytes in the same or related biosynthetic pathways 
were generally closely clustered. For example, capsaicin 
and dihydrocapsaicin showed a strong positive correla-
tion (r = 0.989, p < 0.0001). Likewise, significant positive 
relationships were observed between fructose and glu-
cose (r = 0.875, p < 0.0001). In addition, most amino acids 
were positively correlated among each other. The Pear-
son correlation coefficients among leucine, isoleucine, 
and valine, which are branched amino acids, were higher 
than 0.7 (p < 0.0001). In regard to fatty acids, palmitic 
acid was positively correlated with oleic acid (r = 0.6048, 
p < 0.0001), while it showed negative correlation with 
other fatty acid. Similar results have been reported in 
maize and rice [39, 40]. Correlations between 18-carbon 
fatty acids were either significantly positive at p < 0.01 
(stearic and linolenic, oleic and linoleic) or significantly 
negative at p < 0.01 (stearic and oleic, stearic and linoleic, 
oleic and linolenic, linoleic and linolenic).
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