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Abstract 

Organic farming has positive effects on soil microbial population, process, and activity. To examine effects of two 
different management methods (organic farming vs. conventional farming) on the cultivation of Japanese apricot, 
contents of fatty acid methyl ester (FAME), total glomalin, and soil chemical properties were analyzed and compared. 
The organic farming practice resulted in significantly higher contents of organic matter, total FAME, total bacteria, 
Gram-negative bacteria, arbuscular mycorrhizal fungi, and total glomalin than the conventional farming practice. 
Soil organic matter showed positive correlation with contents of soil microbial biomass, total bacteria, total glomalin, 
Gram-positive bacteria, Gram-negative bacteria, actinomycetes, and arbuscular mycorrhizal fungi. In 2018, the organic 
farming practice resulted in lower ratios of cy17:0 and 16:1ω7c than the conventional farming practice, indicating that 
microbial stress was reduced by the input of organic fertilizer into soil. Based on principal component analyses (PCA) 
of soil microbial communities, ratios of cy17:0 to 16:1ω7c in orchid soil can be used as microbial indicators to distin‑
guish organically farmed orchard soil from conventionally farmed orchard soil.
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Introduction
The market for organic agricultural produce is rapidly 
expanding because more and more people are prefer-
ring safe food due to widespread awareness about envi-
ronmental friendliness, wellness, and food safety. In the 
global organic produce market, the supply is quickly out-
paced by the demand [1]. The number of organic farmers 
and certified cultivation area have increased steadily from 
2000 to 2017 at annual growth rates of 23.6% and 28.1%, 
respectively. The market size of organic agricultural 
products has increased by an annual average of 3.6%. It is 
expected to be reach 574.5 billion won in 2025 [2].

Although soil physio-chemical properties are primar-
ily considered for soil management in the case of organic 
farming, soil microorganisms are also very important for 
material cycling as key members of the natural ecosystem 
[3, 4].

In soil–plant systems, soil microbes play a very impor-
tant role in the formation of soil structure, decomposi-
tion of organic matter, and nutrient cycling [5]. Some 
soil microbes can maintain and stimulate plant growth. 
They can also suppresses several diseases caused by soil 
mediated plant pathogens [5]. The use of soil microbial 
community structure as an indicator of soil quality has 
been proposed because it is altered by environmental and 
anthropogenic factors [6, 7].

As microorganisms are directly or indirectly related 
to crop growth in nutrient cycling (including carbon, 
nitrogen, and inorganic matter) and antagonism between 
microorganisms, it is necessary to analyze microbial dis-
tribution characteristics and increase microbial activity 
to effectively manage organic farms [8–10].
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Soil microbial communities have been evaluated con-
ventionally by culture-dependent techniques [11, 12]. 
Cavigelli et al. [13] have suggested that soil microorgan-
isms by culture-dependent techniques may represent 
very small and ecologically insignificant parts of the 
overall diversity present in various soils. Torsvik et  al. 
[14] have reported the presence of at least 4000 bacte-
rial strains per 30 g in forest soil, with culturable strains 
representing less than 1% of the total strains present. 
Although culture-dependent methods allow for the iso-
lation of microbial colonies and spores, there are limita-
tions in understanding microbial community structures 
within the soil environment. Most soil microorganisms 
cannot be characterized by classical microbial culture 
techniques. It is estimated that about 80–90% of soil 
microorganisms cannot be cultured by classical micro-
bial culture methods [15].

For this reason, the need for new technologies to 
understand the soil microbial community structure is 
emphasized. Recently, several useful approaches (culture-
independent techniques) have been developed to solve 
problems with conventional culture-dependent methods, 
including fatty acid methyl ester (FAME) analysis, 16S 
rRNA probes, and restriction fragment length polymor-
phism (RFLP) analysis [9, 13, 16–21].

Most of recent studies comparing organic farming with 
conventional farming practice have focused on biodiver-
sity [22–24]. Studies that perform a comprehensive com-
parative analysis on soil microbial properties and fertility 
are limited.

Therefore, the purpose of this study was to provide 
useful information about soil management of organic 
farms by examining changes in soil microbial communi-
ties and activities and comparing soil chemical properties 
between organic farming and conventional farming prac-
ticed in Japanese apricot orchards. To determine effects 
of these two different management practices on soil 
microbial properties, microbial communities were ana-
lyzed by FAME, total glomalin, and chemical properties 
in soils from organic farming system (OFS) and conven-
tional farming system (CFS) of Japanese apricot orchards.

Materials and methods
Experimental sites and soil sampling
We selected three leading farms respectively from organ-
ically certified farms and conventional farms located in 
Hadong, Gyeongnam Province. Three replications of 
500 g soil samples were taken from each plot at a depth of 
20 to 40 cm during harvesting seasons in 2017 and 2018. 
Collections of soil samples from different farming sys-
tems in Japanese apricot orchards are shown in Table 1. 
Average temperature and precipitation in experimental 
sites during the experimental period are shown in Fig. 1. 
Irrigation was dependent on natural rainfall. The variety 
of Japanese apricot was Namgo in these orchards. Japa-
nese apricot was harvested from June 1st to June 15th 
annually by hand.

Analysis of soil chemical properties
The collected soil samples that were dried in the shade 
and sieved by a 2 mm sieve were analyzed using the soil 
chemical analysis method [25]. In terms of the pH and 
EC of orchard soil, a mixture of soil and distilled water 
at a ratio of 1:5 was analyzed using the pH meter (Orion 
520A pH meter, Orion Research Inc., Boston, USA) and 
the EC meter (Orion 3STAR EC meter, Orion Research 
Inc., Boston, USA). Organic matter contents were 
measured by Tyurin method, and effective phosphate 
was analyzed using Lancaster method with a colorim-
eter (Shimadzu Co., Kyoto, Japan). Substituent cations 
were extracted with 1 M NH4OAc and analyzed by ICP 
(Optima 5300 DV, PerkinElmer Co., Shelton, USA).

Analysis of microbial communities and total glomalin 
in soil samples
Soil microbial contents and communities were analyzed 
using subsoil with the fatty acid methyl ester (FAME) 
method to analyze the intrinsic cell wall-bound fatty 
acids specifically possessed by microorganisms, and the 
quantification of microorganisms was done using the 
internal standard 19:0 [26]. The analysis of fatty acids 
was performed using GC Agilent 6890N (Agilent Tech-
nologies, USA) and HP-ULTRA 2 capillary columns 

Table 1  Collection of soil samples from different farming system in Japanese apricot orchard

Farming system Latitude Longitude Field size (m2) Soil texture Disease and pest control

Organic farm 35° 05′ 22.73″ 127° 43′ 31.14″ 42,975 Loam Bordeaux mixture, cinnamon and garlic extract, sulfur 80%

35° 11′ 12.17″ 127° 42′ 02.82″ 9917 Loam Shrubby sophora extract, pyrethrum flower, sulfur

35° 06′ 44.39″ 127° 44′ 17.27″ 14,214 Loam Shrubby sophora extract, castor oil, plant extract

Conventional farm 35° 01′ 33.24″ 127° 55′ 11.46″ 6611 Loam Buprofezin, imidacloprid, chromafenozide, trifloxystrobin

35° 05′ 27.29″ 127° 46′ 00.80″ 3966 Loam Acetamiprid, trifloxystrobin

35° 05′ 19.31″ 127° 46′ 08.31 13,223 Loam Sulfoxaflor, acetamiprid, trifloxystrobin
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(25 m × 0.2 mm × 0.33 μm film thickness, Agilent Tech-
nologies, USA). The column temperature was increased 
from 170 to 270  °C by 5  °C  min−1, and then was main-
tained at 27 °C for 2 min. In case of analysis on microbial 
cell wall-bound fatty acids, the microbial communities 
of each fatty acid were analyzed using a MIDI software 
program package (MIDI, Inc., Newark, DE) [27]. Total 
bacteria were analyzed by adding up the contents of 
i15:0, a15:0, 15:0, i16:0, 16:1ω9, 16:1ω7, i17:0, a17:0, 17:0, 
cy17:0, 18:1ω7c, and cy19:0 [18, 26]. Gram-negative bac-
teria were analyzed by adding up the contents of fatty 
acids 16:1ω7c, 18:1ω7c, cy17:0, and cy19:0, whereas 
Gram-positive bacteria were analyzed by adding up the 
contents of fatty acids i15:0, a15:0, i16:0, i17:0, and a17:0 
[28]. Actinomycetes were represented by the fatty acids 
10Me18:0 [29], and fungi were represented by the fatty 
acids 18:1ω9c and 18:2ω6c. The fatty acid 16:1ω5c was 
used as a biomarker of arbuscular mycorrhizal fungi [30–
32]. And the cy17:0 to 16:1ω7c ratios were used as indica-
tors of microbial stress in soil [33].

Total glomalin content was determined using the 
100  mM (pH 9.0) sodium pyrophosphate extraction 
method [34]. 2.0 g of subsoil was placed in a tube and 
then was added by 8 mL of 100 mM sodium pyrophos-
phate (pH 9.0). After closing it with a cap, the tube was 
shaken for about 10  s, and was pressurized at 121  °C 
for 1 h for extraction. After separating the supernatant 
by centrifugation at 5000×g for 10 min, glomalin con-
tent was analyzed using the Bradford dye-binding assay 
method with the colorimeter (UV-1650PC, Shimadzu 
Co., Kyoto, Japan).

Statistical analysis
All data were statistically analyzed using the SAS soft-
ware version 9.2 for Windows (SAS Institute, Cary, NC). 

Comparisons of chemical properties, total glomalin, 
microbial biomass and communities in soil samples were 
performed using two-way ANOVA. The F-test was used 
to detect and separate the mean treatment differences 
at 0.1% (p < 0.001), 1.0% (p < 0.01), and 5.0% (p < 0.05) 
levels of significance when significant effects of interac-
tions between independent variables were detected. In 
addition, significant effects of cy17:0/16:1ω7c ratios in 
soils were detected, and the LSD was used to detect and 
separate the mean treatment differences at 5.0% (p < 0.05) 
levels of significance. The microbial communities in soil 
were analyzed by principal component analysis (PCA) to 
determine the overall effects of OFS and CFS.

Results and discussion
Soil chemical properties and yield of Japanese apricot
Analysis results of soil chemical compositions of organic 
Japanese apricot orchards and their conventional coun-
terparts in 2017 and 2018 are summarized in Table  2. 
Soil organic matter contents in organic farm soil samples 
were measured to be 58 g kg−1 in 2017 and 46 g kg−1 in 
2018, whereas those in conventional farming soil samples 
were measured to be 34 g kg−1 in 2017 and 32 g kg−1 in 
2018, with organic farms showing significantly (p < 0.05) 
higher levels than conventional farms, consistent with 
results of Li [35] which reported that organic pear 
orchards had higher organic matter content than their 
conventional counterparts.

This result might be because organic farming inputs 
a large quantity of organic matter manure every year to 
maintain soil organic contents and supply nutrients [35, 
36]. However, the study by Kim et al. [37] reported that 
the organic pear orchard showed a higher level of effec-
tive phosphorus at 754 mg kg−1 than the conventional 
pear farm, although the difference was not statistically 

Fig. 1  The average temperature and precipitation in experimental sites
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significant. There was no significant year-over-year dif-
ference in soil organic matter content for organic farms 
or conventional farms in the present study. Composi-
tions other than organic matter did not show any signif-
icant difference depending on farming type or by year 
either in this study.

The study by Li [35] reported that organic farming 
showed a higher level of substitutional potassium con-
tent than conventional farming, although the difference 
was not statistically significant. These results might be 
due to different input amounts of organic matter such 
as livestock manure which is used by organic farms 
instead of chemical fertilizer commonly used by con-
ventional farms (Table 3) [38, 39].

Comparative analysis results on application rates of 
livestock manure, organic fertilizer, nitrogen, phosphoric 
acid, and potassium fertilizer, as well as damages caused 
by the outbreak of Eurytoma maslovskii between organic 
farms and conventional farms are summarized in Table 3. 
In 2018, the application amount of livestock manure in 
organic farms was measured to be 1167 kg 10a−1, which 
was higher than that in conventional farms at 800  kg 

10a−1. In case of organic matter fertilizers, organic farms 
used an amount of 488 kg 10a−1 in 2017, which was not 
significantly higher than that in conventional farms. 
However, organic farms’ Japanese apricot fruit damage 
rate caused by Eurytoma maslovskii was measured to be 
36.7% in 2017 and 23.3% in 2018, both of which were sig-
nificantly higher than conventional farms’ fruit damage 
rate. Choi et  al. [40] reported that the overall Japanese 
apricot fruit damage rate caused by Eurytoma maslovskii 
was 67.3% in 2013 and 33.3% in 2014 in Jeonnam Prov-
ince. It soared to 90% in one of the most serious cases 
in the past [41]. This might be because the conventional 
farm can easily control Eurytoma maslovskii with an 
insecticide. In the case of organic farming, although sev-
eral studies have reported that various plant extracts can 
be used by organic farms [42], it is difficult to verify their 
effects at a field site. Japanese apricot yield in organic 
farms was decreased to 302 kg 10a−1 in 2017 and 400 kg 
10a−1 in 2018 due to fruit damages caused by the out-
break of Eurytoma maslovskii. In contrast, Japanese apri-
cot yield in conventional farms was 650 kg 10a−1 in 2017 
and 727  kg 10a−1 in 2018, showing significant (p < 0.01) 

Table 2  Soil chemical properties of the OFS and CFS in soils cultivated with Japanese apricot

OFS organic farming system, CFS conventional farming system, OM soil organic matter
a  Significant effects were obtained from two-way analysis of variance: NS not significant; * p < 0.05

System Year pH (1:5) EC (dS m−1) OM (g kg−1) Av. P 2O5 
(mg kg−1)

K (Ex. Cat. 
cmolc kg−1)

Ca (Ex. Cat. 
cmolc kg−1)

Mg (Ex. Cat. 
cmolc kg−1)

Na (Ex. Cat. 
cmolc kg−1)

OFS 2017 6.0 0.48 58 370 1.54 6.2 1.6 0.12

2018 6.0 0.48 46 391 1.28 5.6 1.3 0.05

CFS 2017 5.8 0.61 34 238 0.82 6.2 1.2 0.05

2018 4.9 0.53 32 268 0.57 2.6 1.1 0.05

Sig.a System NS NS * NS NS NS NS NS

Year NS NS NS NS NS NS NS NS

System × year NS NS NS NS NS NS NS NS

Table 3  Amount of  fertilizer, damaged fruit rate due to  Eurytoma maslovskii and  yield by  OFS and  CFS in  Japanese 
apricot orchard

OFS organic farming system, CFS conventional farming system
a  Significant effects were obtained from two-way analysis of variance: NS not significant; * p < 0.05

System Year Compost (kg 
10−1)

Organic fertilizer 
(kg 10−1)

Total application of fertilizer 
(kg 10−1)

Damaged fruit 
rate (%)

Yield (kg 10−1)

N P K

OFS 2017 568 488 24.5 14.8 13.5 36.7 302

2018 1167 153 23.5 25.6 18.4 23.3 400

CFS 2017 590 149 9.0 5.9 7.7 0.0 650

2018 800 184 21.3 26.7 16.3 0.0 727

Sig.a System NS NS NS NS NS * **

Year NS NS NS NS NS NS NS

System × year NS NS NS NS NS NS NS
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differences in the yield between these two different farm-
ing practices. Fruit yield decrease and the outbreak of 
Eurytoma maslovskii showed a negative correlation as 
shown in Fig. 2 (y = − 6.76x + 621, p < 0.05). These results 
suggest that although soil nutrient management is impor-
tant for organic farms to secure a stable yield, how to pre-
vent the outbreak of Eurytoma maslovskii in an organic 
way is also very important.

Soil microbial biomass
Comparative analysis results of soil microbial content 
between organic Japanese apricot orchards and conven-
tional orchards are shown in Table  4. In 2017, organic 
farms showed the following mean contents: FAME at 
363  nmol  g−1, total bacterial at 114  nmol  g−1, Gram-
negative bacteria at 52 nmol g−1, arbuscular mycorrhizal 
fungi at 13.5 nmol g−1, and glomalin at 3.22 mg g−1. In 
2018, organic farms showed the following mean contents: 
FAME at 227  nmol  g−1, total bacteria at 70  nmol  g−1, 
Gram-negative bacteria at 31  nmol  g−1, arbuscu-
lar mycorrhizal fungi at 6.5  nmol  g−1, and glomalin at 

2.26  mg  g−1. In contrast, in 2017, conventional farms 
showed the following mean contents: FAME at 
155 nmol g−1, total bacteria at 49 nmol g−1, Gram-nega-
tive bacteria at 20 nmol g−1, arbuscular mycorrhizal fungi 
at 5.0  nmol  g−1, and glomalin at 1.32  mg  g−1. In 2018, 
conventional farms had the following mean contents: 
FAME at 221 nmol g−1 of, total bacteria at 68 nmol g−1, 
Gram-negative bacteria at 29  nmol  g−1, arbuscular 
mycorrhizal fungi at 4.7  nmol  g−1 of, and glomalin at 
1.12  mg  g−1. Organic orchards showed significantly 
higher contents of FAME, total bacteria, Gram-negative 
bacteria, arbuscular mycorrhizal fungi, and glomalin 
than conventional orchards (all p < 0.05). However, there 
was no significant difference in the content of Gram-
positive bacteria, actinomycetes, or fungi between the 
two. On the other hand, there was no significant differ-
ence in microbial content depending on the year. These 
results were consistent with findings of a previous study 
which reported that the organic farming practice showed 
higher levels of microbial contents and bacterial contents 
than the conventional farming practice [10, 43, 44]. These 
results were also consistent with findings of a study by 
Lee and Yun [20], which reported that organic farming 
showed a significantly higher content of glomalin than 
conventional farming. More studies on soil microbial 
diversity at genus level between organic and conventional 
farming practices need to be conducted in the future.

Ratio of cy17:0 to 16:1ω7c as an indicator of microor-
ganisms’ activities are shown in Fig. 3. In 2018, organic 
farming soil showed a cy17:0 to 16:1ω7c ratio at 0.52, 
which was significantly lower than conventional farm-
ing soil at 0.90 (p < 0.05). Generally, if the ratio of cy17:0 
to 16:1ω7c ratio is higher, the activity of microorganism 
is lower [45]. This is due to the accumulation of cyclo-
propyl fatty acids caused by various factors such as acid 
soil, nutrient source, and lack of soil moisture, lead-
ing to a decrease in microbial activity but an increase 

Fig. 2  Correlations between rate incident of Eurytoma maslovskii and 
yield of Japanese apricot

Table 4  Soil microbial properties of the OFS and CFS in soils cultivated with Japanese apricot

OFS organic farming system, CFS conventional farming system, FAME total ester-linked fatty acid methyl ester, TB total bacteria, G(−) Gram negative bacteria, G(+) 
Gram positive bacteria, A actinomycetes, F fungi, AMF arbuscular mycorrhizal fungi, TG total glomalin
a  Significant effects were obtained from two-way analysis of variance: NS not significant; *p < 0.05

System Year FAMEs 
(nmol g−1)b

TB (nmol g−1) G(−) 
(nmol g−1)

G(+) 
(nmol g−1)

A (nmol g−1) F (nmol g−1) AMF (nmol g−1) TG (mg g−1)

OFS 2017 363 114 52 56 6.4 60 13.5 3.22

2018 227 70 31 35 4.4 29 6.5 2.26

CFS 2017 155 49 20 26 2.8 29 5.0 1.32

2018 221 68 29 36 6.1 37 4.7 1.12

Sig.a System * * * NS NS NS * *

Year NS NS NS NS NS NS NS NS

System × year * * * NS NS NS NS NS
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in stress [46, 47]. This study found that the organically 
farmed soil had higher pH and organic matter content 
than the conventionally farmed soil, thus leading to an 
increase in microbial activity but a decrease in micro-
bial stress.

Relationship among organic matter and microbial biomass
Analysis results on the correlation between soil organic 
matter and microbial content are shown in Table  5. 
Soil organic matter content showed positive correla-
tions with soil FAME (p < 0.01), total bacteria (p < 0.01), 

Gram-negative bacteria (p < 0.01), Gram-positive bac-
teria (p < 0.05), arbuscular mycorrhizal fungi (p < 0.05), 
and glomalin content (p < 0.001). These results were con-
sistent with findings of Lee and Lee [48] and Lee et  al. 
[49], both of which reported that microbial content was 
reduced because of an insufficient amount of feed when 
the soil organic matter content was low. Dinesh et al. [50] 
have also reported that the addition of organic matter to 
the soil can increase microbial biomass. Results of the 
correlation between organic matter content and gloma-
lin content in Japanese apricot orchard soil in the present 
study were consistent with findings of Kim et al. [51] and 
Lee et  al. [52], both of which reported that the organic 
matter content had a positive correlation with glomalin 
content in greenhouse cultivation farms and paddy soil.

Soil microbial community
Results of analyzing microbial communities by dividing 
soil microbial contents by FAME contents are shown 
in Table  6. In 2017, the organic farm soil consisted of 
31.6% of total bacteria, 14.3% of Gram-negative bacte-
ria, 15.6% of Gram-positive bacteria, 1.7% of actinomy-
cetes, 16.3% of fungi, and 3.6% of arbuscular mycorrhizal 
fungi. In 2018, the organic farm soil consisted of 31.1% 
of total bacteria, 13.9% of Gram-negative bacteria, 15.4% 
of Gram-positive bacteria, 1.9% of actinomycetes, 12.9% 
of fungi, and 3.0% of arbuscular mycorrhizal fungi. In 
2017, the conventional farm soil consisted of 31.2% of 
total bacteria, 13.2% of Gram-negative bacteria, 16.8% of 
Gram-positive bacteria, 1.7% of actinomycetes, 18.3% of 

Fig. 3  Ratio of cy17:0 to 16:1w7c in soils subject to the different 
soil managements. OFS organic farming system, CFS conventional 
farming system. The bars represent one standard deviation of the 
mean. The LSD was used to detect and separate the mean treatment 
differences at 5.0% levels of significance. Means with the same letter 
are not significantly different

Table 5  Relationship among organic matter and microbial concentrations in soils

FAME fatty acid methyl ester, TB total bacteria, G(−) Gram negative bacteria, G(+) Gram positive bacteria, A actinomycetes, F fungi, AMF arbuscular mycorrhizal fungi, 
TG total glomalin

* p < 0.05, ** p < 0.01, *** p < 0.001

FAME TB G(−) G(+) A F AMF TG

Organic matter 0.804** 0.787** 0.779** 0.767* 0.544 0.473 0.681* 0.934***

Table 6  Soil microbial communities of the OFS and CFS in soils cultivated with Japanese apricot

OFS organic farming system, CFS conventional farming system, TB total bacteria, G(−) Gram negative bacteria, G(+) Gram positive bacteria, A actinomycetes, F fungi, 
AMF arbuscular mycorrhizal fungi
a  Significant effects were obtained from two-way analysis of variance: NS not significant

System Year TB (%) G(−) (%) G(+) (%) A (%) F (%) AMF (%)

OFS 2017 31.6 14.3 15.6 1.7 16.3 3.6

2018 31.1 13.9 15.4 1.9 12.9 3.0

CFS 2017 31.2 13.2 16.8 1.7 18.3 3.5

2018 30.7 13.4 15.9 2.8 16.8 2.2

Sig.a System NS NS NS NS NS NS

Year NS NS NS NS NS NS

System × year NS NS NS NS NS NS
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fungi, and 3.5% of arbuscular mycorrhizal fungi. In 2018, 
the conventional farm soil consisted of 30.7% of total bac-
teria, 13.4% of Gram-negative bacteria, 15.9% of Gram-
positive bacteria, 2.8% of actinomycetes, 16.8% of fungi, 
and 2.2% of arbuscular mycorrhizal fungi. In general, the 
organically farmed soil showed higher distributions of 
total bacteria, Gram-negative bacteria, and arbuscular 
mycorrhizal fungi than the conventionally farmed soil, 
although differences between these two soil samples were 
not statistically significant.

Comparative analysis results of microbial commu-
nity between the organic orchard and the conventional 
orchard are shown in Fig. 4. After extracting several com-
ponents from soil microbial communities, main compo-
nents were analyzed, explained, and used for prediction 
[20, 49]. The primary component was 35.2% and the sec-
ondary component was 26.7%, both of which accounted 
for 63.9% of all components. In terms of primary com-
ponents, Gram-positive bacteria and actinomycetes in 
soil made positive contributions, while arbuscular myc-
orrhizal fungi and Gram-negative bacteria made negative 
contributions. According to analysis results of second-
ary components, the ratio of cy17:0 to 16:1ω7c made the 
largest contribution. Thus, it could be used as a microbial 
biomarker to distinguish organically farmed soil from 
conventionally farmed soil.
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