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Abstract 

The nitrogen cycle and the associated microbes play an important role in natural ecosystems, including terrestrial 
habitats; they also have a major effect on climate change. The aim of this study was to explore microbial communi‑
ties in rice paddy soil by detecting and quantifying some key functional genes involved in the nitrogen cycle using 
molecular techniques such as conventional polymerase chain reaction (PCR), clone library construction, sequencing, 
phylogenetic analysis, and real‑time PCR. The genes analyzed were as follows: nitrogenase reductase gene (nifH), 
hydrazine synthase gene (hzsA), nitrous oxide reductase gene (nosZ), copper‑containing (nirK) and cytochrome 
cd1‑containing (nirS) nitrite reductase genes, nitrite oxidoreductase gene (nxrB), and ammonium monooxygenase 
gene (amoA). The sequence assessment using the clone library targeting these genes revealed high diversity and 
dominance of bacterial communities. Furthermore, real‑time PCR using SYBR green dye and some primers specific 
for each gene revealed the high abundance of nxrB (4.1 × 109 ± 0.4 × 109 copies  g−1 soil) and low abundance of hzsA 
(4.0 × 105 ± 1.1 × 105 copies  g−1 soil). The findings of our study will be useful to explore microbial communities in ter‑
restrial habitats, such as agricultural paddy fields.
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Introduction
Soil is a mixture of organic matter, minerals, gases, water, 
and microorganisms, which together support life on 
earth. Soil is considered a major component of the earth’s 
ecosystem as it plays various roles owing to its physi-
ochemical heterogeneity; for example, it acts as a car-
bon reservoir, water storage system, modifier of earth’s 
atmosphere, and habitat for plants and microorganisms 
including bacteria and fungi [1]. The high heterogeneity 
of soil may lead to the heterogeneity of habitats. A small 
amount of soil can contain up to one billion bacteria [2]. 
Furthermore, the diversity and composition of soil com-
munities determine the functionality of an ecosystem [3]. 
Moreover, ecosystems are affected by processes occur-
ring in the soil, especially those driven by microbes, 
such as the nitrogen cycle. The nitrogen cycle and the 

associated microbial communities play a crucial role in 
terrestrial habitats; they also have a major effect on the 
environment. They have been a subject of interest for 
researchers and the general public because the nitrogen 
cycle and the associated microbial communities deter-
mine the fate and availability of nitrogen, which is essen-
tial to support life [4].

The nitrogen cycle involves the transformation of 
nitrogen from one form to other. Nitrogen fixation, 
nitrification or ammonia oxidation, and denitrification 
are the major processes of the nitrogen cycle. Most of 
these processes are mediated by microbial communi-
ties, which obtain energy or accumulate nitrogen via 
these processes according to their growth require-
ments. In nitrogen fixation, nitrogen gas is transformed 
to ammonium by nitrogen-fixing bacteria. This pro-
cess involves the nitrogenase enzyme, whose multiple 
subunits are encoded by nifH, nifD, and nifK (Rubio 
Lm 2002). Among these three genes, nifH has been 
the most sequenced and extensively used marker gene 
for studying phylogeny, diversity, and abundance of 
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nitrogen-fixing bacteria [5, 6]. In nitrification, ammo-
nia or ammonium is oxidized to nitrite, and this step 
is catalyzed by the ammonium monooxygenase enzyme 
encoded by amoA [7]. Nitrite is then oxidized to nitrate, 
which is catalyzed by nitrite oxidoreductases encoded 
by genes such as nxrB [8]. Mostly ammonia-oxidizing 
bacteria (AOB) and ammonia-oxidizing archaea (AOA) 
mediate the nitrification process [7]. Furthermore, 
with the discovery of anammox bacteria, it has been 
reported that ammonia oxidation is also anaerobically 
mediated by hydrazine synthase encoded by hzsA [9]. 
During denitrification, nitrate is reduced ultimately 
to nitrogen gas via a series of enzymatic reactions by 
diverse nitrogen oxide reductases encoded by nirS, 
nirK, and nosZ. Any disturbance in this process due 
to an imbalance in diverse nitrogen compounds might 
lead to negative consequences such as global warming 
and climate change. Therefore, understanding, investi-
gating, and obtaining detailed information about the N 
cycle-related microorganisms are major requisites for 
improving the current state of the environment.

Although the nitrogen cycle has been investigated 
and reported in diverse types of soils such as agricul-
tural field soils [10], acidic forest soils [11], paddy soils 
[12], intertidal soils [13], and wetland soils [14], infor-
mation about these processes and probes for detecting 
specific genes is limited. The most widely used phylo-
genetic marker for studying microbial communities is 
the 16S rRNA gene. However, some microorganisms 
performing a common function are not numerically 
dominant and are hardly detectable using 16S rRNA 
gene-based probes. Thus, the use of functional gene 
markers has been the alternative approach for study-
ing environmental samples. Furthermore, this method 
provides resolution below species level, because of the 
high evolutionary rates of the less conserved func-
tional molecules [15, 16]. Considering the advantages 
of functional genes over the 16S rRNA gene, in the pre-
sent study, we detected and quantified nitrogen cycle-
related genes in a rice paddy field using functional gene 
markers.

Materials and methods
Rice paddy soil sampling
A rice paddy field site, located in Iksan, South Korea (lati-
tude 35° 49′ 42.4" N and longitude 127° 02′ 38.4" E), was 
selected for soil sampling. Soil samples were collected at 
20 cm depth from the surface of the field using a small 
shovel. Soil slurry with water was prepared at a ratio of 
1:5 by shaking for 30 min in a shaker to measure pH and 
electrical conductivity using portable probes (Thermo 
Scientific, Pittsburgh, PA, USA).

DNA extraction from soil samples and conventional 
polymerase chain reaction
Genomic DNA was extracted from 0.25 mg of paddy soil 
using the MoBio Powersoil DNA kit (Carlsbad, CA, USA), 
following the manufacturer’s protocol. The DNA quantity 
was measured by fluorometry (Qubit 3.0 Fluorometer, Inv-
itrogen, Pittsburgh, PA, USA). Genomic DNA was diluted 
with ultra-pure water to 1–5 ng µL−1 for further use. All 
the primers used in this study are summarized in Addi-
tional file  1: Table  S1. The PCR mixture of total volume  
50 µL contained 1–2 µL of 1–5 ng µL−1 genomic DNA and 
1 µL each of 10 µM forward and reverse primers. The con-
ditions for the PCR cycles for each target gene are sum-
marized in Additional file  1: Table  S2. The quality and 
quantity of the purified DNA were determined by gel elec-
trophoresis and fluorometer, respectively.

Construction of clone libraries and confirmation of positive 
clones
Clone libraries were constructed by using DNA frag-
ments of specific band sizes after amplification by PCR 
and purification. DNA amplicons were ligated into pTOP 
TA V2 (vector) using the TOP Cloner TA Kit (Enzynom-
ics, Daejon, South Korea) or pLUG-Prime TA Cloning Kit 
II (Intron Biotechnology, Seongnam, South Korea) and 
transformed into Escherichia coli DH5α™ competent cells 
(Enzynomics, Daejon, South Korea). Blue–white screen-
ing was performed using ampicillin (0.1 mg  mL−1), IPTG 
(0.1 mM), and X-gal (40 µg  mL−1) in lysogeny broth (LB) 
agar plates. White colonies were selected and incubated 
overnight in LB broth supplemented with 100 µg  mL−1 
ampicillin. Plasmid DNA extraction was carried out using 
the Inclone Mini Plasmid Preparation Kit (Inclone bio-
tech, Yongin, South Korea). The plasmid DNAs isolated 
from the white colonies were subjected to PCR amplifica-
tion using the multiple cloning site (MCS) primer sets from 
the respective vector kits, M13F (-20) and M13R (-40) for 
pTOP-TA-V2 vector and M13F and M13R for pLUG-prime 
vector. The PCR product was checked on a 1% agarose gel 
to confirm positive clones. DNA isolated from the clone 
library was sequenced at Genotech (Daejeon, South Korea).

Phylogenetic analysis
The forward and reverse nucleotide sequences of cloned 
functional fragments of each gene were assembled together. 
The obtained sequences were compared with those in the 
NCBI GenBank by a BLAST search (https ://blast .ncbi.
nlm.nih.gov) [17] in order to identify known sequences, for 
each gene. Phylogenetic trees of the cloned sequences of 
each gene were constructed along with similar sequences 
retrieved from the GenBank using Mega 7 [18]. The evo-
lutionary history was inferred using the neighbor-joining 
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method [19, 20]. All the sequences were deposited in 
the GenBank with accession numbers as follows, nifH: 
MT109314-MT109333, amoA: MT140205-MT140224, 
nxrB: MT140190-MT140204, hzsA: MT140225-MT140241,  
nosZ1: MT140150-MT140169, nosZ2: MT140170-
MT140189, nirS: MT140262-MT140281, and nirK: 
MT140242-MT140261, respectively.

Quantitative PCR analysis
qPCR was used to quantify nitrogen-fixing bacterial gene 
(nifH), nitrifying bacterial genes (nxrB and amoA), deni-
trifying bacterial genes (nirK, nirS, and nosZ), and anaer-
obic ammonia oxidizing bacteria-specific gene (hzsA). It 
was performed using the primer sets listed in Additional 
file  1: Table  S1 and Greenstar Accupower Mastermix 
(Bioneer, Daejeon, South Korea), according to the man-
ufacturer’s protocol, on the Biorad CFX Connect Real-
Time System (Bio-Rad Laboratories, Inc., Hercules, CA, 
US). To calculate the gene copy numbers in a known con-
centration of DNA, Eq. 1 was used.

Each reaction was carried out with a mixture of total 
volume 20 μL, containing 10 μL of 2 × Greenstar qPCR 
master mix, 1 µL of DNA template, and 1 μL each of for-
ward and reverse primer specific for each gene. To pre-
pare the standard, the confirmed clones of each gene 
after sequencing were used as shown in Additional file 1: 
Table  S3. Serial dilution was performed from  10−1 to 
 10−7. The PCR of the standard and unknown samples 
of each gene was performed in triplicate. The gene copy 
number of unknown samples was determined using the 
standard regression curves of gene copy number.

Results and discussion
Physico–chemical properties of soil
The soil was found to be slightly alkaline with a pH of 
7.86. Soil electrical conductivity  (EC1:5) was 12.7 dS  m−1 
indicating high salinity, as reported for saturated paste 
equivalent in all soils [21].

Functional gene amplification and clone library 
construction
Genomic DNA isolated from the paddy soils was used to 
amplify functional genes using specific primer sets. A com-
prehensive evaluation was conducted of PCR primers specific 
for the nitrogen fixation (nitrogenase reductase) gene, that 
is, nifH [6], using the IGK3/DVV primer set, this being the 

(1)

Gene copy number =
(

DNA concentration [ng/µL]
)

(

1 g/10003 ng
)

(

1 mol bp DNA/660 g DNA
)

×

(

6.023× 1023 bp/mol bp
)

(

1 copy/genome or plasmid size [bp]
)

× (volume of template [µL])

best with a wide coverage for environmental samples includ-
ing soil samples. A DNA band of approximately 394 bp was 
noted. Similarly, primers covering a wide range of samples 
and with high specificity such as amoA-1F/amoA-2R spe-
cific for ammonium monooxygenase gene (amoA), nxrB169f/
nxrB638r specific for nitrite oxidoreductase gene (nxrB), 
hzsA_382F/hzsA_1857R specific for hydrazine synthase gene 
(hzsA), nirKC2F/nirKC2R specific for copper-containing 
nitrite reductase gene (nirK), nirSC1F/nirSC1R specific for 
cytochrome cd1-containing nitrite reductase gene (nirS), and 
nosZC1F/nosZC1R specific for nitrous oxide reductase gene 
(nosZ1 and nosZ2), yielded DNA bands of approximately 491, 
485, 1496, 400–500, 400–500, 450, and 700 bp, respectively. 
To obtain more details, the PCR products were visualized on 
an agarose gel (Additional file 1: Fig. S1).

Sequencing and phylogenetic analysis
The cloned fragments after the conventional PCR were 
sequenced, and the results revealed successful clon-
ing of all the genes. After comparing and analyzing the 
sequences of the cloned genes with the known sequences 
of bacterial genes retrieved from the NCBI GenBank, the 
phylogenetic trees were constructed using the retrieved 
bacterial genes with high sequence similarities.

Twenty selected isolates with nifH (nifH-1 to nifH-20) 
showed a high similarity, of 90–98%, with bacteria con-
taining known nifH sequences. They were closely related 
to uncultured bacteria, Asaia bogorensis [22], Pseu-
domonas stutzeri, Azotobacter vinelandii, and Rhodoblas-
tus acidophilus carrying nifH [23] (Fig.  1). Similarly, 20 
isolated clones containing the amoA fragment (camoA-1 
to camoA-20) showed 96%–100% sequence similarity 
with bacteria containing amoA, and they were closely 
related to Nitrospira sp. [16] and uncultured ammonia 
oxidizing bacteria carrying amoA (Fig. 2). Fifteen clones 
with nxrB gene (cnxrB-1 to cnxrB-20) showed 90–98% 
similarity with nxrB from GenBank database. They were 
closely related to Nitrospira moscoviensis [24], Nitros-
pira calida, ‘Candidatus Nitrospira bockiana’, and uncul-
tured bacteria carrying nxrB (Fig. 3). Similar results were 
reported by Pester et  al. [8], in a microbial community 
analysis of nxrB in different environment samples such 
as activated sludge and climatically distinct soil samples. 
Moreover, in 17 isolated colonies with hzsA (hzsA-2 to 
hzsA-7, hzsA-9 to hzsA-16, hzsA-18 to hzsA-20), the 
sequence similarity ranged from 90 to 98% (Fig. 4), and 
sequences were closely related to those of the enrich-
ment culture clone, ‘Candidatus Brocadia fulgidia’ [25], 
‘Candidatus Brocadia anammoxidans’ [26], ‘Candidatus 
Jettenia caeni’ [27], ‘Candidatus Kuenenia stuttgartiensis’ 
[28], uncultured anaerobic ammonium-oxidizing bacte-
ria, and uncultured anaerobic ammonium-oxidizing bac-
terial enrichment clones [29].
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Azohydromonas lata AB188122.1
Azohydromonas australica AB188121.1

Derxia gummosa AB188123.1
Sinorhizobium sp. TAJ505315.1
Sinorhizobium sp. TJ170 AJ505315.1

Rubrivivax gelatinosus DSM 149 KF800058.1
Burkholderia xenovorans CAC124 EF158805.1
Burkholderia phytofirmans FJ829460.1
Methylocystis parvus  AF484662.1
Methylocystis echinoides AJ563951.1
Burkholderia cepacia  RREM25 HQ699896.1
Pseudacidovorax intermedius KM103912.1
Pelomonas saccharophila AB188120.1

nifH-17
Uncultured temperate forest soil bacterium AF315429.1
Azoarcus tolulyticus U97122.1
Azoarcus sp. CIB KJ814970.1

Azospirillum brasilense KX686984.1
Azospirillum brasilense NifH gene X51500.1

Rhodoblastus acidophilus KF800054.1
Uncultured microorganism clone KP750855.1
Uncultured bacterium clone KY011793.1

Uncultured nitrogen-fixing bacterium EF208189.1
Uncultured cyanobacterium JX079652.1

Methylococcaceae bacterium KP870211.1
Azotobacter chroococcum X03916.1
A.vinelandii X13519.1
Pseudomonas putida MB-L JN600442.1
A.faecalis nidH gene X96609.1
Pseudomonas stutzeri strain KMS88 KY313621.1
Pseudomonas azotifigens AB189453.1
nifH-13

Thiocapsa bogorovii EU622783.1
Ectothiorhodospira sp. B7-7 HM149325.1
Ectothiorhodospira shaposhnikovii EF199955.1
Ectothiorhodospira shaposhnikovii EF199955.1
Ectothiorhodospira shaposhnikovii EF199953.1
Ectothiorhodospira mobilis EF199954.1
Azomonas agilis AF216883.1
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Uncultured Azotobacter. sp 3 LN624093.1
A.chroococcum M73020.1
Bacillus sp. Z22 EU693342.1
Azotobacter chroococcum EU693338.1

nifH-8
nifH-15
nifH-3

nifH-6
Uncultured bacterium clone  HQ190136.1
Uncultured beta proteobacterium AM946242.1
Uncultured soil bacterium clone EU331522.1
Uncultured soil bacterium clone  EU331522.1
Uncultured nitrogen-fixing bacterium AB208313.1
Uncultured nitrogen-fixing bacterium  AB208313.1
nifH-7
nifH-4

Uncultured bacterium clone KF847226.1
Uncultured marine bacterium clone HQ455884.1
Uncultured nitrogen-fixing bacterium  D26298.1

Uncultured bacterium clone HQ190157.1
nifH-16
Uncultured bacterium AM746524.1

Azovibrio restrictus U97119.1
Azoarcus sp. KY860535.1
Uncultured Azoarcus sp. KC445684.1
Uncultured Azoarcus sp.  KC445684.1

Zoogloea oryzae AB201045.1
Zoogloea oryzae  AB201046.1

nifH-18
nifH-10

Roseateles depolymerans AM501479.1
Asaia platycodi AS6 JF736511.1

Asaia bogorensis HQ269799.1
Asaia siamensis  HQ269800.1
Pelomonas puraquae AM501475.1

Uncultured microorganism clone KJ647063.1
Roseateles terrae AM501480.1

Methylobacterium thiocyanatum KR075979.1
nifH-2

Uncultured bacterium partial nifH gene LN734655.1
Pseudomonas aeruginosa DQ287356.1

Uncultured bacterium FR687720.1
Cryptococcus laurentii HQ316495.1

nifH-19
nifH-5

nifH-11
Gamma Proteobacterium AY972874.1

Bradyrhizobium japonicum GQ289564.1
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Fig. 1 Neighbor‑joining phylogenetic tree of the cloned nifH gene sequences
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camoA-8

Uncultured beta proteobacterium KF561094.1

Uncultured ammonia-oxidizing bacterium clone KR081177.1

Uncultured Nitrosomonadaceae bacterium KC735981.1

Uncultured ammonia oxidising bacterium HQ594941.1

Uncultured ammonia oxidising bacterium HQ594937.1

Uncultured bacterium clone KX137053.1

Uncultured ammonia-oxidizing bacterium clone KR081197.1

Uncultured beta proteobacterium clone KP783340.1

Uncultured Nitrosomonadaceae bacterium clone KC735947.1

Uncultured Nitrosomonadaceae bacterium clone ds KC735803.1

Uncultured beta proteobacterium clone KP783343.1

Uncultured bacterium clone KM030955.1

Uncultured bacterium clone KJ093928.1

Uncultured archaeon clone KX467539.1

Nitrosospira sp. sNsp.1 KU747135.1

camoA-1

camoA-9

Uncultured bacterium clone KJ093914.1

camoA-18

Nitrosospira sp. LT2MFa AY189145.1
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Fig. 2 Neighbor‑joining phylogenetic tree of the cloned amoA gene sequences
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Uncultured Nitrospira sp. KC884866.1

Uncultured bacterium clone AB846882.1

Uncultured bacterium clone KU751835.1

Uncultured bacterium clone KU751844.1

cnxrB-1

Uncultured Nitrospira sp. clone KC884868.1

Uncultured Nitrospira sp. clone KC884869.1

Uncultured bacterium clone KU751836.1

Nitrospira sp. enrichment culture clone KC884938.1

Nitrospira moscoviensis M-1 KC884857.1

Nitrospira moscoviensis M-1 KC884854.1

Nitrospira moscoviensis M-1 KC884855.1

Nitrospira calida KC884905.1

Nitrospira calida Ns10 KC884895.1

Uncultured Nitrospira sp. KC884909.1

Nitrospira calida KC884904.1

Uncultured bacterium clone KU751839.1

Candidatus Nitrospira bockiana KC884860.1

Pseudomonas aeruginosa GU137304.1

Aeromonas hydrophila DQ536502.1
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Fig. 3 Neighbor‑joining phylogenetic tree of the cloned nxrB gene sequences
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chzsA-15

chzsA-18

chzsA-6

chzsA-11

Anammox bacterium enrichment culture clone JN703689.1

chzsA-7

Anammox bacterium enrichment culture clone JN703688.1

Anammox bacterium enrichment culture clone JN703687.1
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Anammox bacterium enrichment culture clone JN703686.2
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Fig. 4 Neighbor‑joining phylogenetic tree of the cloned hzsA gene sequences
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Uncultured forest soil bacterium (nosZ) AY913066.1
Uncultured bacterium isolate DGGE FJ866582.1
cnosZ1-19

cnosZ1

a

-17
Uncultured soil bacterium DQ387499.1
cnosZ1-20
cnosZ1-16
cnosZ1-15
cnosZ1-14
cnosZ1-13
cnosZ1-12
cnosZ1-10
Uncultured soil bacterium KR066498.1
Uncultured soil bacterium KR066499.1
Uncultured forest soil bacterium clone AY913224.1
Uncultured forest soil bacterium AY913223.1
Uncultured denitrifying bacterium EU447815.1
Uncultured denitrifying bacterium JX465260.1
Uncultured bacterium JF509072.1
Uncultured bacterium (nosZ) HM628794.1
Uncultured bacterium (nosZ) JF509053.1
Uncultured bacterium (nosZ) JF509053.1

Uncultured Azospirillum sp. GU136479.1

Uncultured alpha proteobacterium KT340998.1
Pseudomonas stutzeri KY313621.1
Paracoccus sp. EU192075.1
cnosZ1-9

cnosZ1-8
cnosZ1-1

Uncultured denitrifying bacterium JX465274.1
cnosZ1-2
cnosZ1-5
cnosZ1-7

cnosZ1-11
cnosZ1-3

cnosZ1-4
cnosZ1-6
cnosZ1-18
Uncultured bacterium isolate DGGE gel (nosZ) KR267384.1
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Fig. 5 Neighbor‑joining phylogenetic trees of the cloned a nosZ gene fragment‑1 sequences and b nosZ gene fragment‑2 sequences
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cnosZ2 -4

cnosZ2-11

cnosZ2-2

nosZ2-5

cnosZ2-8

cnosZ2-12

cnosZ2-14

cnosZ2-18

cnosZ2-20

cnosZ2-19

cnosZ2-6

cnosZ2-15

Nicotiana tabacum mRNA NM 001326236.1

Aeromonas hydrophila DQ536502.1

Pseudomonas aeruginosa GU137304.1

Candidatus Liberibacter asiaticus KY323723.1

Pseudomonas sp. KU192988.1

cnosZ2-16

cnosZ2-9

cnosZ2-1

Uncultured bacterium (nosZ) gene JQ647647.1

cnosZ2-3

cnosZ2-13

Uncultured bacterium clone AbCMFAb5 (nosZ) JQ514015.1

cnosZ2-7

Uncultured bacterium JQ514041.1

cnosZ2-17
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Uncultured bacterium JQ514048.1
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b

Fig. 5 (continued)
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Fig. 6 Neighbor‑joining phylogenetic tree of the cloned nirS gene sequences
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Fig. 7 Neighbor‑joining phylogenetic tree of the cloned nirK gene sequences
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For both fragments of nitrous oxide reductase genes 
(nosZ-1 and nosZ-2), 20 colonies were selected for each 
of the gene clones. The denitrifying gene clones with the 
nosZ-1 gene fragment (cnosZ1-1 to cnosZ1-20) showed 
88–97% sequence similarity (Fig.  5a), and they were 
found to be closely related to the uncultured denitrifying 
bacteria, uncultured Azospirillum sp. [30], uncultured 
proteobacteria, Pseudomonas stutzeri, and Paracoc-
cus sp. Furthermore, the 20 isolated colonies with the 
nosZ-2 gene fragment (cnosZ2-1 to cnosZ2-20) exhib-
ited 74–100% similarity (Fig.  5b), and they were closely 
related to uncultured bacterial clones harboring nosZ. 
Both primer pairs used for the identification and deter-
mination of nosZ functioned well. However, these results 
suggest that nosZ amplified by the primer pair nosZC1F/
nosZC1R was more conserved in the soil than nosZ 
amplified by the other primer set nosZC2F/nosZC2R.

All the isolated colonies (20 colonies) from the clone 
library of denitrifying gene insert (nirS gene fragment; 
cnirSc1-1 to cnirSc1-20) were found to share 96–99% sim-
ilarity with clones containing known sequences (Fig.  6). 
The sequenced clone genes were closely related to nirS 
from Caulobacter segnis, Pseudoxanthomonas suwonensis, 
Stenotrophomonas nitritireducens, Rhodanobacter deni-
trificans, Ralstonia sp., Curvibacter sp., and Pseudomonas 
stutzeri, and nirS uncultured prokaryotic clone.

For the denitrifying gene nirK, 20 clones (cnirKc2-1 
to cnirKc2-20) showed 73–100% similarity (Fig.  7). The 
cloned genes were found to be closely related to those of 
Thauera sp. and Sulfuricella denitrificans.

Quantitative PCR analysis
Quantitative PCR of all the genes was performed 
using the absolute quantification method on the basis 

of the gene copy number. The copy numbers of nifH, 
amoA, hzsA, nxrB, nirK, nirS, nosZ1, and nosZ2 were 
8.93 × 107 ± 2.00 × 107, 1.79 × 107 ± 0.32 × 107, 4.00 ×  
105 ± 1.10 × 105, 4.10 × 109 ± 0.45 × 109, 3.93 × 106 ± 0.77 ×  
106, 2.22 × 109 ± 0.61 × 109, 9.50 × 107 ± 1.58 × 107, and 
2.99 × 108 ± 1.26 × 108 copies/g soil, respectively (Fig. 8). 
Among the studied nitrifying genes, namely, nxrB and 
amoA, the abundance of nxrB was two-times higher than 
that of amoA. Similar results were reported by Ramana-
than et al. [31], in their study on nitrifier gene abundance 
in a sediment affected by acid mine drainage. Among 
various genes used in this study, namely, nifH, amoA, 
nxrB, hzsA, nirK, nirS, nosZ1, and nosZ2, the abundance 
of nxrB and nirS was relatively higher than that of the 
others, whereas the abundance of hzsA was found to be 
relatively lower. This suggests the high occurrence of 
nitrifying microbial communities in the surface environ-
ment of paddy soils. As indicated by the relatively high 
nirS abundance, denitrifiers are known to be active in 
paddy soils [32, 33]. However, under partially oxic con-
ditions, anammox bacteria may not flourish, as indicated 
by hzsA abundance.

Here, we explored the diversity of microbial commu-
nities in a rice paddy soil by detecting and quantifying 
some key functional genes involved in the nitrogen cycle 
by using molecular techniques. Our study will help bet-
ter understand the nitrogen cycle and the diversity of 
associated microbial communities in terrestrial habi-
tats, such as paddy fields. Although we used primers to 
determine the nitrogen cycle-related genes based on the 
nitrogen-transforming reactions mediated by bacteria, 
there are several undiscovered nitrogen-transforming 
reactions that are thermodynamically feasible and the 
microorganisms that catalyze these reactions.
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