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Abstract 

Repeated chromatographic separations of the EtOAc fraction of Schisandra chinensis fruits on silica gel, octadecyl 
silica gel, and Sephadex LH‑20 led to the isolation and identification of seven dibenzocyclooctadiene lignans (1–7). 
The NMR data reported in the literature for angeloyl gomisin H (5) were shown to be incorrect. We unambiguously 
identified the compounds based on detailed analysis of the 1D and 2D NMR data, especially from HMBC and NOESY 
experiments. In addition, MTT assays and cell viability experiments verified the cytotoxicity of the isolated dibenzocy‑
clooctadiene lignans against the human cancer cell lines AGS, HeLa, and HT‑29.
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Introduction
Schisandra chinensis is a deciduous woody vine native 
to Far East Asia. The fruits, red berries called “Omija” 
in South Korea, have been used as food as well as a tra-
ditional medicine with hepaprotective, cardiovascular, 
and antibacterial benefits [1, 2]. The Korean word Omija, 
meaning “five flavors” (sweet, sour, bitter, salty, and 
spicy), indicates that the fruit has a variety of components 
that exhibit pharmacological effects. To date, phytochem-
ical studies of S. chinensis fruits have led to the isolation 
of lignans, triterpenoids, monoterpenes, sesquiterpenes, 
organic acids, and sterols, [3, 4] among which dibenzo-
cyclooctadiene lignans are overwhelmingly the major 
components [5]. Among its major components, the NMR 
data reported in the literature for angeloyl gomisin H (5) 
were identified to be a little bit incorrect. Therefore, we 

unambiguously identified the compound 5 to correct its 
NMR value based on detail NMR analysis technics espe-
cially gHMBC and NOESY. Also, S. chinensis extracts and 
some dibenzocyclooctadiene lignans from this plant have 
been reported to be cytotoxic to certain cancer cell lines 
[6–9]. Despites their significant anti-cancer effects, there 
has been no report concerning their chemical structures 
relationship between their cytotoxic activity against vari-
ous cancer cells.

This paper describes the isolation for seven dibenzo-
cyclooctadiene lignans from the fruits of S. chinensis, 
structure determination of the isolation ones, especially 
angeloyl gomisin H (5). In addition, their cytotoxicities 
were evaluated against several human cancer cell lines 
(AGS, HeLa, and HT-29), and the relationship of their 
structure to their activity.

Materials and methods
General experimental procedures
The instruments and chemicals used in these experi-
ments were prepared according to previous studies 
[10–12].
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Plant materials
Schisandra chinensis fruits were provided by RDA, 
Eumseong, Korea, in 2019 and identified by Prof. Dae-
Keun Kim, Woo Suk Univ., Jeonju, Korea. A voucher 
specimen (KHU-NPCL-201904) has been stored in 
Prof Nam-In Baek’s Laboratory.

Extraction and isolation of dibenzocyclooctadiene lignans
The dried fruits of S. chinensis (5.4 kg) were soaked in 
70% aqueous EtOH (54 L × 3) at room temperature for 
24  h. After filtration, the extract was concentrated to 
afford 1.3  kg of crude material. The obtained concen-
trate was suspended in  H2O (4.2 L) and sequentially 

Fig. 1 Isolation of dibenzocyclooctadiene lignans from Schisandra chinensis fruit.  SiO2: silica gel; ODS: octadecyl‑silica gel; CC: column 
chromatography
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washed with EtOAc (4.2 L × 3) and n-BuOH (3.4 L × 3). 
The partitioned extracts were concentrated to obtain 
the EtOAc (SCE, 329  g), n-BuOH (SCB, 247  g), and 
 H2O (SCW, 723  g) fractions. SCE (329  g) was applied 
to a  SiO2 column chromatography (c.c.) (Fig. 1), and the 
eluate was monitored using TLC and separated into 12 
(SCE-1–SCE-12) fractions. Subsequent c.c. separations 
of fractions 7 (SCE-7) and 9 (SCE-9) using  SiO2, ODS, 
and Sephadex LH-20 were carried out (Fig. 1) to yield 
seven purified lignans, 1–7.

Schisandrin A (1): colorless solid; [α]25D  +128° (c 0.8, 
MeOH); IR (LiF plate, v) 2947, 1651, 1459 cm−1; EIMS 
m/z 416  [M]+; 1H and 13C NMR spectroscopic data, see 
Additional file 1: Table S1.

(-)-Gomisin K1 (2): colorless solid, [α]25D  –98° (c 0.2, 
 CHCl3); IR (LiF plate, v) 3420, 2930, 1582, 1496 cm−1; 
EIMS m/z 402  [M]+; 1H and 13C NMR spectroscopic 
data, see Additional file 1: Table S2.

Gomisin J (3): colorless solid; [α]25D  –38° (c 0.6, ace-
tone); IR (LiF plate, v) 3426, 2920, 1583, 1458  cm−1; 
EIMS m/z 388  [M]+; 1H and 13C NMR spectroscopic 
data, see Additional file 1: Table S3.

Gomisin A (4): colorless solid; [α]25D  +71° (c 0.7, 
 CHCl3); IR (LiF plate, v) 3332, 2947, 1647 cm−1; EIMS 
m/z 416  [M]+; 1H and 13C NMR spectroscopic data, see 
Additional file 1: Table S4.

Angeloyl gomisin H (5): colorless solid, [α]25D  +17° 
(c 1.1,  CHCl3); IR (LiF plate, v) 2953, 1733, 1596, 
1457 cm−1; EIMS m/z 500  [M]+; 1H and 13C NMR spec-
troscopic data, see Table 1.

Schisandrin (6): colorless solid; [α]25D  +92° (c 0.8, 
 CHCl3); IR (LiF plate, v) 3420, 2934, 1594, 1456 cm−1; 
EIMS m/z 432  [M]+; 1H and 13C NMR spectroscopic 
data, see Additional file 1: Table S5.

Gomisin C (7): colorless solid; [α]25D  –132° (c 0.6, 
 CHCl3); IR (LiF plate, v) 3502, 2923, 1720, 1595 cm−1; 
EIMS m/z 536  [M]+; 1H and 13C NMR spectroscopic 
data, see Additional file 1: Table S6.

Cell viability assay
Cell reasonability was dictated by MTT measure as 
recently portrayed [13]. Cells were seeded at a thick-
ness of 1 × 103 cells/well in a 96-well plate and refined 
with sans serum DMEM or RPMI-1640 for 16 h. At that 
point, the cells were treated with sequential groupings of 
Angeloyl gomisin H, Gomisin A, Gomisin C, Gomisin J, 
(-)- Gomisin K1, Schisandrin, in different concentration 
(10, 25, 50 μg/mL) for 24 h. Treatment at every fixation 
was acted in triplicate. After medicines, the medium 
was suctioned and cells were washed with PBS. Cells 
were in this manner hatched with MTT arrangement 
(5  mg/mL) for 6  h. The supernatant was expelled, and 
formazan was solubilized in isopropanol and estimated 

spectrophotometrically at 570 nm. The level of practical 
cells was assessed in examination with untreated cells. 
The information shows the mean ± SD of at least three 
free trials.

Hoechst 33258 and propidium iodide staining
All the cells were seeded onto amplifying instrument 
coverslip in a 6-well plate until further notice and were 
treated with  IC50 union of ginger blends. In the wake of 
washing twice with PBS, cells were fixed with 4% para-
formaldehyde for 15 min. The joined cells were recolored 
with 500 μL Hoechst 33258 (5 μg/mL) plan and 500 μL 
propidium iodide (PI, 5 μg/mL) course of action at room 
temperature for 30 min, exclusively. Apoptotic cells with 
combined and partitioned centers were overviewed using 

Table 1 1H and  13C NMR data of  angeloyl gomisin H (5) 
(600 MHz,  CDCl3)

No of C δH δC

1 151.70

2 140.31

3 152.57

4 6.52, 1H, s 110.17

5 133.15

6 2.70, 1H, d, J = 13.8 Hz
2.30, 1H, d, J = 13.8 Hz

40.69

7 72.05

8 1.83, 1H, m 41.94

9 2.67, 1H, br. d, J = 13.8 Hz
2.37, 1H, dd, J = 13.8, 7.2 Hz

34.29

10 133.91

11 6.66, 1H, s 112.77

12 151.78

13 139.66

14 142.27

15 123.22

16 122.85

17 0.81, 3H, d, J = 7.2 Hz 15.90

18 1.20, 3H, s 29.89

1‑OMe 3.50, 3H, s 60.63

2‑OMe 3.79, 3H, s 60.79

3‑OMe 3.83, 3H, s 56.04

12‑OMe 3.86, 3H, s 56.04

13‑OMe 3.79, 3H, s 60.79

Angeloyl‑1′ 165.89

Angeloyl‑2′ 127.63

Angeloyl‑3′ 5.85, 1H, q, J = 7.2 Hz 137.38

Angeloyl‑4′ 1.72, 3H, d, J = 7.2 Hz 15.31

Angeloyl‑5′ 1.71, 3H, s 20.33
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Fig. 2 Chemical structures of dibenzocyclooctadiene lignans from Schisandra chinensis fruit

Fig. 3 Selected key gHMBC and NOESY correlations in angeloyl gomisin H (5)
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a Leica DMLB fluorescence amplifying focal point (Wet-
zlar, Germany) [14, 15].

Results and discussion
Dried S. chinensis fruits were extracted with aqueous 
EtOH, and the concentrated extract was partitioned into 
EtOAc, n-BuOH, and  H2O. Repeated separations of the 
EtOAc fraction by  SiO2, ODS, and Sephadex LH-20 c.c. 
led to the isolation of dibenzocyclooctadiene-type lig-
nans 1–7, identified as schisandrin A (1), [16] (-)-gomisin 
K1 (2), [17] gomisin J (3), [6] gomisin A (4), [6, 17] ang-
eloyl gomisin H (5), [2, 17, 18] schisandrin (6), [6, 19, 20] 
and gomisin C (7) [17] through detailed analysis of the 
spectroscopic data from 1D and 2D NMR and IR spec-
troscopy, FAB/MS, and specific rotation data as well as 
comparison with the data in the literature (Fig. 2). Of the 
seven compounds, The NMR data reported in the litera-
tures for angeloyl gomisin H (5) were identified to be a 
little bit incorrect [2, 4, 13, 17, 18].

Compound 5, a colorless powder, showed UV absorp-
tions at 254 and 365 nm and developed a yellowish color 
after spraying with 10%  H2SO4 and heating. Its IR spec-
trum suggested the presence of carbonyl (1733  cm−1) 
and conjugated double bonds (1596 and 1457 cm−1). Its 
molecular weight was determined to be 500  Da from 
the molecular ion peak m/z 500  [M]+ in the EIMS. The 
1H NMR spectrum (Table 1) exhibited signals typical of 
a dibenzocyclooctadiene lignan moiety, two aromatic 
methines (δH 6.66, 1H, s, H-11; δH 6.52, 1H, s, H-4), 
two methylenes with germinal coupling (δH 2.70, 1H, d, 
J = 13.8  Hz, H-6a; δH 2.30, 1H, d, J = 13.8  Hz, H-6b; δH 
2.67, 1H, br. d, J = 13.8 Hz, H-9a; δH 2.37, 1H, dd, J = 13.8, 
7.2  Hz, H-9b), one methine (δH 1.83, 1H, m, H-8), two 
methyl groups (δH 1.20, 3H, s, H-18; δH 0.81, 3H, d, 
J = 7.2  Hz, H-17), and five methoxy groups (δH 3.50, 
3H, s, H-1-OMe; δH 3.79, 3H, s, H-2-OMe; δH 3.83, 3H, 
s, H-3-OMe; δH 3.86, 3H, s, H-12-OMe; δH 3.79, 3H, s, 
H-13-OMe). In addition, one olefin methine (δH 5.85, 1H, 
q, J = 7.2 Hz, H-angeloyl-1’) and two allylic methyl groups 
(δH 1.72, 3H, d, J = 7.2 Hz, H-angeloyl-4’; δH 1.71, 3H, s, 
H-angeloyl-5′) were observed, indicating a 2-methyl-but-
2-enoyl substituent [17, 18, 21]. The chemical shifts and 
coupling patterns confirmed that the organic acid moiety 
was not tiglic acid but angelic acid because the chemi-
cal shifts of the olefin methine proton signal for tiglic 
acid with the Z-configuration and angelic acid with the 
E-configuration are δH 6.78 and δH 5.88, respectively, and 
the two methyl carbon signals were also consistent with 
this assignment (angeloyl, δC 21, 16; tigloyl, δC 12, 14) 
[17, 18, 21]. methoxy proton signals for methoxy groups 
at C-1 or C-14 are usually observed more upfield, δH 
3.50, compared to those at C-2, C-3, C-12, and C-13, δH 

3.79 to 3.86 [21]. Therefore, four of the methoxy groups 
were confirmed to be located at C-2, C-3, C-12, and 
C-13 and another was present at C-1 or C-14. The posi-
tion of the hydroxyl group on the cyclooctane ring was 
determined to be C-7 because  CH3-17 was observed as 
a doublet, while  CH3-18 was a singlet. Taken together, 
these results suggest that compound 5 is a dibenzocy-
clooctadiene lignan with four methoxy groups at C-2, 
C-3, C-12, and C-13; a hydroxyl and an angeloyl group 
at C-1 and C-14; and another hydroxyl group at C-7. 
The two benzene rings are positioned in an R-biphenyl 
configuration [5] (Fig.  2). The 13C NMR spectrum also 
showed signals indicative of a dibenzocyclooctadiene 
derivative with a hydroxyl group at C-7, six oxygenated 
aromatic quaternary carbons (δC 152.57, C-3; δC 151.78, 
C-12; δC 151.70, C-1; δC 142.27, C-14; δC 140.31, C-2; 
δC 139.66, C-13), four aromatic quaternary carbons (δC 
133.91, C-10; δC 133.15, C-5; δC 123.22, C-15; δC 122.85, 
C-4), two aromatic methines (δC 112.77, C-12; δC 110.17, 
C-4), one oxygenated quaternary carbon (δC 72.05, C-7), 
one methine (δC 41.94, C-8), two methylenes (δC 40.94, 
C-6; δC 34.29, C-9), two methyl carbons (δC 29.89, C-18; 
δC 15.90, C-17), and five methoxy carbons (δC 60.63, 
C-1-OMe; δC 60.79, C-2-OMe; δC 56.04, C-3-OMe; δC 
56.04, C-12-OMe; δC 60.79, C-13-OMe). In addition, sig-
nals indicative of an angeloyl moiety, namely, one ester 
(δC 165.89, C-angeloyl-1′), one olefinic quaternary car-
bon (δC 127.63, C-angeloyl-2′), one olefinic methine (δC 
137.38, C-angeloyl-3′), and two methyl groups (δC 20.33, 
C-angeloyl-5′; δC 15.31, C-C-angeloyl-4′), were observed. 
However, the position of the angeloyl moiety remains 
undefined. The HMBC experiment offers no solution 
because it provides long-range correlations via J2 or J3, in 
general. The NOESY experiment alternatively provided 
proof that the organic acid was on C-1 or C-14. The two 
allylic methyl proton signals (δH 1.72, H-angeloyl-4′; δH 

Table 2 Inhibitory effects of  dibenzocyclooctadiene 
lignans (1–7) from Schisandra chinensis fruit on the growth 
of AGS, HeLa, and HT29 cells

AGS: human stomach adenocarcinoma cells; Hela: human cervical cancer cells; 
HT29: human colon cancer cells; Raw264.7: Murine macrophage cells

Compound IC50 (μM)

AGS Hela HT29 Raw264.7

1 – – – 4.43 ± 0.24

2 – 5.46 ± 0.24 – 7.03 ± 0.22

3 – 6.51 ± 0.26 – 6.54 ± 0.14

4 14.81 ± 1.02 13.76 ± 0.38 – 17.51 ± 0.64

5 12.94 ± 0.12 9.36 ± 0.39 7.94 ± 0.19 15.18 ± 0.91

6 – – – 15.42 ± 0.59

7 – – – 3.22 ± 0.09
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Fig. 4 Cell viability of Hela, AGS, HT29, Raw264.7 cells and cancer cells staining after treatment with different concentration of compounds for 
24 h. Cell viability was measured by MTT assay a Hela Cell, b AGS Cell, c HT29, d Raw264.7. Effect of dibenzocyclooctadiene lignans from Schisandra 
chinensis fruit on the activation of apoptosis in HeLa (e), AGS (f), and HT‑29 (g) cells. Hoechst staining was used to detect nuclear condensation of 
treated and untreated cells. Propidium iodide (PI) staining was used to measure the cell death caused by treatment with the compounds. The white 
arrows show the unstained cell, the yellow and green arrows show the necrotic and apoptotic cells. The percentage of apoptosis were showed in h, 
i and j 
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1.71, H-angeloyl-5′) of the angeloyl moiety showed NOE 
correlations with the methoxy proton signal (δH 3.79, 
H-13-OMe), which was already identified as  OCH3-13 
from the cross peak between H-11 (δH 6.66) and C-13 (δC 
151.78) in the HMBC spectrum. Ultimately, compound 5 
was identified as angeloyl gomisin H (Fig. 3), and all the 
NMR data were unequivocally assigned.

Schisandra chinensis extract and major components 
from this plant are previously reported to have an anti-
cancer activity including cytotoxicity on human cancer 
cell lines [22]. Especially almost compounds which have 
dibenzocylooctadiene-type lignans structure, deoxy-
schisandrin, gomisin A, and γ-schisandrin, have signifi-
cant anti-cancer effect [23–26]. However, there are no 
reports for the cytotoxicity of dibenzocylooctadiene-
type lignans on gastric (AGS), cervical (HeLa), and colon 
(HT-29) human cancer cells. Therefore, we evaluated the 
dibenzocylooctadiene lignans (1–7) from S. chinensis 
fruits for the cytotoxicity of the human cancer cells using 
MTT assay.

Accordingly, to investigate the cytotoxic effects of 
lignans 1–7, we examined their effects on the viabil-
ity of AGS, HeLa, HT-29, and RAW 264.7 cells (Table 2 
and Fig.  4). The lignans were screened for their cyto-
toxic effects on RAW 264.7 cells at various concentra-
tions ranging from 10 to 100  μg/mL for 24  h using an 
MTT assay. Results of MTT assay are presented as 
the mean ± standard deviation of three independent 
experiments. The MTT assay showed that compounds 
2–5, especially angeloyl gomisin H (5), concentration-
dependently suppressed the proliferation and viabil-
ity against three cancer cells. Even though  IC50 in AGS 
(22.01 ± 1.87  μM), HeLa (32.68 ± 2.21  μM), and HT29 
(156.04 ± 6.71  μM) cells were low relative to those of 
the well-known and clinically used anticancer com-
pound doxorubicin’s  IC50 value (AGS, 0.25  μM; HeLa, 
1.45 ± 0.15 or 3.7 ± 0.3  μM; HT29, 11.39 or 0.75  μM), 
[27–31] the  IC50 values are very high in comparison 
to naturally occurring compounds (baicalein on AGS, 
85 μM; galactosyl diglyceride on AGS, 49–83 μM; clause-
nidin on HT29, 42  μM; quercetin on HT29, 75  μM) 
[30–33].

Compounds 4–6, which have a hydroxy group at C-7, 
showed relatively weak toxicity on RAW 264.7 cells com-
pared with lignans without a hydroxyl group at C-7. In 
comparison, compounds 2, 3, and 7, which have S-biphenyl 
positions, and compound 1, in which all the hydroxy groups 
in the benzene ring are substituted by methoxy groups, 
showed relatively strong toxicity toward RAW 264.7 cells. 
Additionally, compounds 2 and 3, which have S-biphenyl 
positions and one or two hydroxyl groups on the benzene 
ring, showed significant inhibition of HeLa cells. Com-
pounds 4 and 5, which have relatively low toxicity toward 

normal cells, suppressed the proliferation and viability of 
AGS and HeLa cells. In particular, compound 5, with its 
angeloyl moiety, exhibited a slightly stronger effect on AGS, 
HeLa, and HT29 cells than compound 4. These results 
indicate that the stereochemistry, the presence of an ang-
eloyl or a hydroxy group at C-7, and the benzene ring could 
be key factors of dibenzocyclootadiene-type lignans affect-
ing the cytotoxicity against AGS, HeLa, and HT29 cells.

After treatment of the compounds, the cell nuclei were 
stained with Hoechst 33258 and PI were observed by fluo-
rescence microscopy, respectively. The treated cells exhib-
ited apoptotic morphology, such as cell shrinkage with 
DNA condensation, high fluorescence, and formation of 
the apoptotic body. And the  IC50 value represents the con-
centration of each compound that inhibits cell activity by 
50% (Table 2).

In conclusion, our data reveal that dibenzocycloocta-
diene lignans 2–5 from S. chinensis fruits can be effective 
candidates as anticancer materials for stomach, cervical, 
and colon cancers.
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