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Abstract 

In the present study, we evaluated new sources of plant proteases from fruits of Bromelia karatas (BK) and Bromelia 
pinguin (BP) to obtain antioxidant hydrolyzates/bioactive peptides (BPs) derived from chicken by‑products (CH) and 
fish by‑products (FH). The profile of the peptides was identified by reverse‑phase high‑resolution liquid chromatog‑
raphy (RP‑HPLC) and the size weight distribution by molecular exclusion chromatography (SEC). The hydrolysates 
obtained with BK in both sources of by‑products showed greater antioxidant capacity compared to those obtained 
with BP, presenting similar or higher values when compared to a commercial plant enzyme. The use of new sources 
of plant proteases allowed to obtain hydrolysates of hydrophilic character with a high percentage (> 50%) of peptides 
with molecular weights < 17.5 kDa from chicken and fish by‑products. Therefore, based on the results obtained in 
antioxidant capacity it is possible to consider the hydrolysates as potential ingredients, food additives, and pharma‑
ceutical products.

Keywords: Antioxidant capacity, Bioactive peptides, By‑products, Hydrolysates, Proteases

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/.

Introduction
Antioxidants are bioactive compounds of vital impor-
tance in food processing and human health [1], they can 
be obtained from different food matrices of plant and ani-
mal origin. Free radicals and oxidative stress are involved 
in the pathogenesis of a wide variety of conditions that 
include inflammatory diseases, cancer, atherosclerosis, 
diabetes mellitus, neurodegenerative diseases, HIV/AIDS 
as well as stimulating premature skin aging [2, 3]. Up 
to date, a large number of studies have been published 

about the antioxidant properties of hydrolysates or food-
derived peptides [2], which are considered health-pro-
moting biomolecules with medical applications, besides 
to possess a nutraceutical potential and application in the 
food industry [4]. BPs are the usual name of short amino 
acid sequences (AA), which could be generated from the 
protein hydrolysis obtained from different sources, but 
mainly of animal origin such as beef, pork, lamb, poultry, 
duck and various species of marine organisms [5]. The 
BPs are conformed by chains of 2–30 AA with molecular 
weights less than 10 kDa [6, 7]. BPs has a positive impact 
on the functions or conditions of the body and influences 
human health [8].

It is important to use proteins of animal origin from dif-
ferent species to obtain BPs [9, 10]. In the last few years, 
the interest for the production of these biomolecules 
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from by-products such as bird feathers, blood, viscera, 
skin, among others has increased [7, 11, 12], which rep-
resent a valuable source of protein and other essential 
nutrients [13]. In  vitro studies have evaluated the anti-
oxidant capacity and activity of different hydrolysates/
peptides derived from poultry, chicken and ducks by-
products [1–3, 14–16] and fish by-products [17–22].

Enzymatic hydrolysis by the action of different pro-
teases of animal origin (i.e. trypsin and pepsin), microbial 
(i.e. alcalase and neutrase) and plants (i.e. bromelain and 
papain), has been the technological process commonly 
used for the production of hydrolyzates/peptides derived 
from food [4, 6]. The proteases of plant origin are rela-
tively limited to the use of bromelain and papain, these 
proteases have been employed to obtain hydrolysates and 
bioactive peptides from fish by-products [17, 23, 24] and 
blood from livestock animals [23, 24]. In recent years, 
research on new sources of proteolytic enzymes has 
been encouraged, as well as their possible applications in 
industry. The obtaining of new sources of plant proteases 
is increasing due to their low production costs, relative 
abundance in some plants and attractive biochemical 
characteristics [25], such as their stability over a wide 
range of pH and temperature [26]. The fruits of Bromelia 
pinguin “guamara” and Bromelia karatas “cocuixtle” are 
presented as an alternative to obtaining plant proteases 
[4, 26–29]. However, little information exists on the 
application of these sources of proteases in different food 
matrices to obtain protein hydrolysates. In this regard, 
the objective of this work is to obtain and characterize 
peptides with antioxidant capacity from the enzymatic 
hydrolysis of chicken by-products and fish by-products 
using new plant sources of proteases from B. karatas 
“cocuixtle” and B. pinguin “guamara.”

Materials and methods
Reagents
ABTS (2,2′-azinobis (3-ethyl benzothiazoline-6-sul-
fonic)), TPTZ (2,4,6-tri (2-pyridyl)-s-triazine), DPPH 
(2,2-diphenyl-1-picrylhydrazyl), Trolox (6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid), ace-
tonitrile, trifluoroacetic acid was obtained from Sigma 
Aldrich (St. Louis, MO) and TNBS (2,4,6-trinitroben-
zene sulfonic acid) was acquired from Thermo Fisher 
Scientific.

Organic material
The fruits of B. karatas, B. pinguin, chicken by-products 
(viscera 44.5% w/w, heart 44.5% w/w and blood 11% w/w) 
and fish by-products Centropomus ssp. (Scales 50% w/w 
and skin 50% w/w) were collected from a local market at 
Tepic, Nayarit, Mexico. The organic material was packed 
in polyethylene bags and transported to the integral food 

research laboratory of the Instituto Tecnológico de Tepic, 
Nayarit, Mexico. Organic material was frozen at − 80 °C 
and then lyophilized. (70020, Labconco Corporation, 
Kansas City, MI, USA).

Extraction, semi‑purification and proteolytic activity of B. 
pinguin (BP) and B. karatas (BK) proteases
Enzyme extraction and semi-purification of the fruits 
from B. pinguin and B. karatas was carried out using 
the methodology used by García-Magaña et  al. [30]. 
The semi-purified enzyme extracts were centrifuged at 
6000×g for 30 min at 4 °C, the recovered supernatant was 
lyophilized and then stored for further analysis.

Proteolytic activity
The proteolytic activity of the semi-purified protease 
extracts was determined by the methodology described 
by Natalucci et  al. [31] with slight modifications by 
García-Magaña et  al. [30], using egg albumin as a sub-
strate. 1.1  mL of egg albumin solution (1  g/100  mL) 
was mixed with phosphate buffer (pH 6.0, 12.5  mM of 
l-cysteine) and 0.1  mL of protease extract (2.6  mg of 
the lyophilized enzyme in 1.5 mL of buffer) at 37 °C. The 
reaction was stopped by adding 1.8 mL of trichloroacetic 
acid (50 g/L). The solution was centrifuged (14,000×g for 
10  min at 4  °C; Hettich, Mikro 200R, Tuttlingen, Ger-
many) and the absorbance of the supernatant was meas-
ured at 280 nm (JENWAY, 6705, Bibby Scientific Limited, 
OSA, United Kingdom). A calibration curve with tyros-
ine (3  M) was used to determine the specific activity 
expressed as tyrosine units (UT), defined as the change 
in tyrosine concentration/mg protein/min at 37 °C. Pro-
tein concentration was determined by Bradford [32] and 
expressed in mg/mL. The specific activity was deter-
mined with the following equation:

where, Δ tyrosine concentration, is the difference in 
absorbances obtained between the test sample and 
the control;  Venzyme, volume of the enzyme solution 
(0.1 mL); t, reaction time (20 min);  Vreaction, volume used 
in the reaction (3 mL);  Cenzyme, enzymatic concentration 
obtained by the Bradford method.

Protein hydrolysates from chicken (CH) and fish 
by‑products (FH)
The lyophilized chicken and fish by-products were re-
suspended (1:20, w:v) in 0.2 M sodium phosphate buffer 
pH 6.5, homogenized for 2  min and subjected to heat 
treatment at 100  °C for 15  min. Subsequently, the pro-
tein substrates were individually hydrolyzed with the 

AU(37 ◦C) =

(

�tyrosine concentration
(

t* Venzyme ∗ Cenzyme

)

)

(

Vreaction

Venzyme

)
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enzymes extracted from B. pinguin (BP), B. karatas (BK) 
and the bromelain (BRO) was used as a control enzyme, 
adding 1  mL of enzyme solution (100  µg of lyophilized 
enzyme/mL re-suspended in 0.1 M phosphate buffer, pH 
6.5 containing, 5  mM  l-Cysteine) at the conditions of 
40 °C for 30 min at pH 6.5, 25 °C for 4 h and pH 6.5 and 
37 °C for 4 h and pH 7.0, respectively. After this time, the 
samples were immediately heated at 100 °C for 15 min to 
stop the hydrolysis process. The hydrolysates were cen-
trifuged at 14,000×g at 4 °C for 10 min and then filtered 
with 0.45 μm membranes (Millipore, MF-Membrane Fil-
tres HAWP).

Soluble protein content
The protein content was determined by the Bradford 
method [32], from a CH/FH solution of 30 mg/mL (w/v). 
0.1 mL of hydrolysate solution was placed with 1 mL of 
Bradford reagent, allowed to stand for 10 min in darkness 
and the absorbance was measured on a UV–VIS spectro-
photometer at 595 nm. Bovine serum albumin (BSA) was 
used as a standard. The results were expressed in mg/mL.

Yield
The hydrolysates were frozen at − 80 °C and then lyophi-
lized. The yield percentage of hydrolysates was calculated 
by the equation proposed by Chou et al. [2]:

Degree of hydrolysis
The degree of hydrolysis (DH) was evaluated based on 
the quantification of the primary free amino groups lib-
erated during hydrolysis by the method proposed by 
Adler-Nissen [33] modified by Tovar-Pérez et  al. [34]. 
Briefly, we mixed 120 µL of hydrolysates, 1 mL of 0.2 M 
phosphate buffer at pH 8.2 and 1  mL solution of 0.1% 
2,4,6-trinitrobenzene sulfonic acid (TNBS). The mix-
ture was allowed to incubate for 60  min at 50  °C. The 
reaction was finished by adding 2 mL of 0.1 N HCl. The 
absorbance of the solution was measured at a wavelength 
of 340  nm. Blank was prepared in the same way. The 
degree of hydrolysis (%) was estimated with the following 
equation:

where:  NH2t = concentration of free amino groups after 
hydrolysis with B. pinguin, B. karatas, and bromelain. 
 NH0 = concentration of free amino groups of chicken and 
fish by-products (without hydrolyzing).  NH2max = con-
centration of free amino groups after total hydrolysis, 

Yield (% ) =

(

lyophilized hydrolysates
(

g
)

lyophilized by− product
(

g
)

)

∗ 100

DH(%) =
(NH2t − NH0)

(NH2max − NH0)
× 100

which was estimated by hydrolysis with 6  N HCl at 
100 °C for 24 h. The concentration of free amino groups 
 (NH2) was expressed in mM eq l-Leucine/g protein with 
a previously elaboration of a standard curve of l-Leucine 
(0–2.5 mM).

Antioxidant capacity (AoxC)
Abts
The ability of the peptides to capture the  ABTS∙+ radical 
(2,2′-(azinobis(3-ethyl benzothiazoline-6-sulfonic acid) 
was evaluated by the method proposed by Re et al. [35]. 
A solution of 7 mM ABTS was prepared in sodium phos-
phate buffer (0.1  M, pH 7.4) with potassium persulfate 
(2.45 mM). The reagent was adjusted to an absorbance of 
0.8. Thereafter, 1800 µL of ABTS solution and 200 µL of 
hydrolysates (30  mg/mL) were placed and then allowed 
to stand for 7 min in the dark. Absorbances were read at 
730  nm in a spectrophotometer. The phosphate buffer 
was used as a blank and Trolox (0.6  µM) as a standard 
solution. The results were expressed in mM equivalent to 
Trolox (ET)/mL.

Dpph
The ability to eliminate the DPPH radical (2,2-diphenyl-
1-picrylhydrazyl) was analyzed according to the meth-
odology described by Park and Chin [36], with certain 
modifications according to Chou et  al. [2]. The solution 
was obtained by mixing 0.8  mL of hydrolyzate (10  mg/
mL) with 0.2 mL of 1 mM DPPH (D9132, Sigma Co.) dis-
solved in 95% ethanol (v/v), the mixture was kept in dark 
for 30 min at room temperature and then centrifuged at 
2000×g for 5 min at 4  °C. The absorbance of the super-
natant was measured in a SpectraMax M3 microplate 
reader at 517 nm. Distilled water was used as blank and 
Trolox (600 µM) as a standard solution. The results were 
expressed in µM ET/mL.

Frap
The ability of peptides to reduce ferric ion  (Fe3+) was 
evaluated by the method of Benzie & Strain [37]. The 
FRAP reagent was prepared from 100 mL of sodium ace-
tate buffer (300 mM, pH 3.6) with 10 mL of TPTZ solu-
tion ((2,4,6-tris(2-pyridyl)-s-triazine) in 40 mM HCl) and 
10  mL  FeCl3 (20  mM) and then incubated at 37  °C for 
30 min in the dark. Next, 100 µL of hydrolysates (30 mg/
mL) reacted with 1000 µL of FRAP reagent, which was 
incubated at 37  °C for 30  min in the dark. The absorb-
ance was read on a spectrophotometer at 595  nm. Dis-
tilled water was used as blank and Trolox as standard 
(260 µM). The results were expressed in µM ET/mL.
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Determination of the peptide profile in the protein 
hydrolysates
Reversed‑phase high‑pressure liquid chromatography 
(RP‑HPLC)
The peptide profile of the hydrolysates (CH and FH 
with BP, BK, and BRO) was measured by RP-HPLC fol-
lowing the methodology of Huang et al. [38], with some 
modifications. The analysis was performed with a reverse 
phase HPLC equipment (1100 series; Agilent Technolo-
gies Japan Ltd., Tokyo, Japan), the separation was carried 
out on a Discovery-C18 column (250 × 4.6  mm, 5  μm 
particle size, 180-Å pore size) of Supelco Inc. (Belle-
fonte, PA) with a solvent flow rate of 0.75 mL/min and an 
injection volume of 30 µL. Peptides were eluted from a 
non-isocratic gradient using solvent B (0.05% TFA in ace-
tonitrile) and solvent D (0.05% TFA in Milli-Q water) for 
40 min. 0–30 min (100% D), 30–35 min (60% B, 40% D), 
35–40 min (100% B), 40 min (100% D). The peptide pro-
file was monitored at 214 nm.

Size exclusion chromatography (SEC)
The molecular weight distribution (MW) of the CH and 
FH peptides was determined by Size exclusion chroma-
tography (SEC) using a Varian HPLC system equipped 
with a diode array detector (DAD) (Varian™ ProStar) and 
Galaxy™ software (Varian, version 1.9.302.952) following 
the methodology used by Román-Gavilanes et al. [39]. 20 
µL of the sample was injected at a concentration of 5 mg/
mL. The mobile (isocratic) phase consisted of 150  mM 
phosphate buffer at pH 7 and a flow rate of 0.4 mL/min. 
A molecular exclusion column (Agilent BioSEC-5™) 
of 4.6 mm internal diameter and 300 mm in length was 
used. The absorbance was monitored at 254  nm. The 
molecular size of the samples was determined based 
on their retention times using a peptide standard (BIO-
RAD, 151–1901), consisting of thyroglobulin (670 kDa), 
gamma globulin (158 kDa), ovalbumin (44 kDa), myoglo-
bin (17 kDa), and Vitamin B12 (1.35 kDa).

Statistical analysis
Statistical analysis of experimental data was performed 
using a one-way ANOVA. Differences between means 
were evaluated using the Tukey–Kramer multiple com-
parison test and were considered significant when 
P < 0.05. Statistical analysis was performed using the 
NCSS 2007 software (NCSS LLC, Kaysville, UT).

Results
Proteolytic activity
The specific enzymatic activity of the semi-purified 
extracts of B. karatas and B. pinguin was 6.24 ± 0.01  AU/
mg and 43.76 ± 1.60  AU/mg, respectively. These results 
confirmed that the extracted plant proteases are active.

Protein content, yield and degree of hydrolysis of CH 
and FH
In Table 1, we have shown the results of the protein con-
tent, yield and degree of hydrolysis of CH and FH with 
enzymes extracted from BP and BK, compared to BRO. 
The protein content of FH with BP and BK showed no 
significant differences (P > 0.05) with those achieved with 
BRO, presenting a higher content (P < 0.05) compared 
to those found with CH-BP and CH-BK. Regarding the 
yield (Table 1), the CH with BK and BRO presented sig-
nificant differences (P < 0.05) with a higher yield (65.4% 
and 65.1%, respectively) than the other hydrolysates.

The degree of hydrolysis (Table  1) of the CH-BP 
showed the highest value (P < 0.05) with 22.9%, which 
may be related to the high enzymatic activity of BP.

Antioxidant capacity (AoxC) of the protein hydrolysates
The AoxC of CH and FH by means of the ABTS, 
DPPH and FRAP tests are presented in Fig.  1, where 
it is observed that the AoxC was affected by the type 
of substrate (chicken and fish by-products) and the 
type of plant proteases (BP, BK and BRO). Concern-
ing the ABTS assay, the CH and FH with BK had the 

Table 1 Protein content, yield and degree of hydrolysis of by-products hydrolysates

Protein content, yield (%), degree of hydrolysis (%) of chicken by‑products hydrolysates (CH) and fish by‑products hydrolysates (FH) with enzymes of B. pinguin (BP) 
and B. karatas (BK). The means ± standard deviations (n = 3). The different letters mean significant differences (ANOVA, Tukey–Kramer, P < 0.05) between treatments

Hydrolysates Enzyme Protein content (mg/mL) Yield (%) Degree 
of hydrolysis 
(%)

CH BP 0.59 ± 0.04 a 46.8 ± 0.4 a 22.9 ± 1.0 a

FH 1.18 ± 0.37 c 54.3 ± 1.3 ab 2.2 ± 0.4 b

CH BK 0.79 ± 0.10 ab 65.4 ± 4.7 d 8.8 ± 0.6 c

FH 1.08 ± 0.15 bc 49.7 ± 2.6 ab 2.2 ± 0.3 b

CH BRO 1.32 ± 0.12 c 65.1 ± 5.2 d 5.1 ± 0.3 d

FH 1.34 ± 0.16 c 54.8 ± 1.4 bc 2.8 ± 0.6 b
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highest AoxC (P < 0.05) with 36.98 and 38.03  mM ET/
mL respectively. The use of BP and BRO generate CH 
and FH with similar AoxC: ABTS (P < 0.05). The high-
est DPPH radical scavenging activity was obtained 
for the FH with BP and BRO (483. 21 µM ET/mL and 
454.84 µM ET/mL). No significant differences (P < 0.05) 
were observed with respect to the AoxC: DPPH of 
the CH (BP, BK and BRO). On the other hand, BRO 
increased the chelation capacity of ferrous ions only 
in the FH, presenting the highest AoxC: FRAP values 
(P < 0.05) of 1198.5  µM ET/mL, followed by CH-BK 
with 817.4 µM ET/mL. The use of plant proteases (BP 
and BK) increased the AoxC: FRAP values (P < 0.05) in 
the CH, showing significant differences (P < 0.05) with 
BRO (Fig. 1).

Profile of peptides from hydrolysates
Reversed phase-HPLC (RP-HPLC) can be used to sepa-
rate peptides according to their hydrophobicity. HPLC 
profiles of the CH and FH peptides with BP, BK and BRO 
are shown in Figs. 2 and 3, respectively.

According to the chromatograms obtained, the use of 
plant proteases (BP, BK and BRO) generates of hydro-
philic peptides. Peptides of CH with BP, BK and BRO 
started to elute from the column after the first 5  min, 
which indicates a lower net hydrophobicity and, there-
fore, a weak binding to the column. Most of the CH pep-
tides eluted in the first 20  min when the mobile phase 
was formed 100% by Milli-Q water with 0.05% TFA 
(Fig.  2). Although, the peptides profile of CH predomi-
nates in hydrophilic peptides, it is also observed that 
CH-BP (Fig.  2a) generates a few hydrophobic peptides 
eluted in the 30–35 min.

Regarding the HPLC profiles of the FH with BP, BK 
and BRO, the peptides show mainly a hydrophilic char-
acter, this could be because most of the peptides eluted 
in the first 20 min (Fig. 3). FH-BK (Fig. 3b) and FH-BRO 
(Fig.  3c) present similar profiles, with higher peptide 
peaks compared to FH-BP (Fig.  3a) in the first 20 min. 
FH-BP and FH-BRO generates a few hydrophobic pep-
tides eluted in the 30–35 min (Fig. 3).

Distribution of molecular weights (MW) of peptides 
from hydrolysates
The SEC process is based on the fractionation of peptides 
according to the retention time of the molecules in the 
particles of the stationary phases, in which the molecules 
separate from each other according to their molecular 
size [39]. The distribution of the MW of the CH and FH 
obtained with the proteases of BP and BK, are shown in 
Figs. 4 and 5.

According to the chromatograms obtained, the MW 
distribution of the peptides of CH and FH, is dependent 
on the plant protease used (BP, BK and BRO). The use 
of BRO in CH, showed a higher proportion of low MW 
(< 1.35  kDa) eluted peptides compared to CH (Fig.  4c), 
compared to the chromatograms obtained with BP 
(Fig. 4a) and BK (Fig. 4b), which have a higher elution of 
peptides of 670–44 kDa. CH-BP and CH-BK have similar 
peptide profiles of 17–1.35 kDa and < 1.35 kDa. Regard-
ing FH, a similar MW distribution is observed with the 
use of BP (Fig. 5a), BK (Fig. 5b) and BRO (Fig. 5c), accord-
ing to the chromatograms there is a greater peptide elu-
tion low MW (17–1.35 kDa; < 1.35 kDa).

Respect to the percentage of the area of the chromato-
grams obtained in the CH, more than 50% of the peptides 
has MW below 17  kDa (Table  2). CH presents higher 
percentages of peptides 17–1.35  kDa compared to FH. 
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Fig. 1 Antioxidant capacity of chicken by‑products hydrolysates 
and fish by‑products Antioxidant capacity by DPPH, ABTS and FRAP 
of chicken by‑products hydrolysates (CH‑BP, CH‑BK, CH‑BRO) and 
fish by‑products (FH‑BP, FH‑BK, FH‑BRO). The different letters mean 
significant differences (ANOVA, Tukey–Kramer, P < 0.05) between 
treatments
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CH-BP (24.4%) and CH-BK (22.5%) have similar content 
of peptides < 1.35  kDa. Regarding the FH, the percent-
age of peptides < 1.35 kDa increases, compared with CH 
(Table 2). FH-BP presents the highest percentage of pep-
tides of < 1.35 kDa (51.3%), followed by FH-BRO (48.9%) 
and FH-BK (46.9%).

Discussion
The fruits of B. karatas and B. pinguin have been char-
acterized as promising sources of plant proteases 
[25, 28–30, 40]. One of the important points of this 
research is the incorporation of these plant enzymes 
in food technology processes and the obtaining of 
protein hydrolysates from food by-products and their 

comparison with a commercial plant enzyme (bro-
melain). The use of enzymes for the production of 
hydrolysates has been the subject of research for years 
[41]. The enzymes extracted from BP and BK show 
differences between their enzymatic activities, which 
coincide with what was previously reported by García-
Magaña et  al. [30] (5.08 ± 0.70 for BK proteases and 
43.58 ± 0.40 for BP proteases). BP proteases showed 
higher activity compared to BK proteases, this behavior 
is similar to the already reported by Aguilera-Aguirre 
et  al. [40] and Meza-Espinoza et  al. [25], and can be 
attributed to the presence of different types of cysteine 
proteases in both fruits [26, 30, 42]. In the same 
way, it has been reported that the different genetic 

Fig. 2 Peptide fraction profiles of chicken by‑products hydrolysates. Peptide fraction profiles corresponding to chicken by‑products hydrolysates 
(CH) by BP (a), BK (b) and BRO (c) using reversed‑phase HPLC at 214 nm
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characteristics of each fruit species synthesize endo-
peptidases with different structures and catalytic activi-
ties [25].

The application of BP and BK proteases in the hydrol-
ysis of chicken by-products and fish by-products gave 
us variable results to their protein content, yield and 
degree of hydrolysis. Among the different biochemical 
parameters, the degree of hydrolysis is one of the most 
important characteristics, since it directly influences the 
length of the peptide, its nutritional and functional prop-
erties, as well as it is directly related to their solubility 
and digestibility [41]. Meza-Espinoza et al. [31] reported 
that BP proteases generate a greater degree of hydroly-
sis in different protein sources (milk, soy protein, and egg 

ovalbumin) compared to BK. Few references regarding 
the use of plant proteases to obtain hydrolysates from 
animal by-products can be found. It has been reported 
that the use of papain to hydrolyze by-products of bovine 
origin showed 6% of DH [43]. Likewise, the use of papain 
(EC 3.4.22.2) and bromelain (EC 3.4.22.32) with DH of 
15% for obtaining hydrolysates of fish by-products with 
bioactive and functional properties [17].

The yield depends on the nature of the proteases used, 
the amount of proteins present in the substrate, the 
hydrolysis conditions, the concentration of the proteases 
and the hydrolysis time [4, 17]. According to the results 
obtained, we observed a greater affinity of the proteases 
of BP, BK and BRO to hydrolyze chicken by-product 

Fig. 3 Peptide fraction profiles of fish by‑products hydrolysates. Peptide fraction profiles corresponding to fish by‑products hydrolysates (FH) with 
BP (a), BK (b) and BRO (c) using by reversed‑phase HPLC at 214 nm
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Fig. 4 Chromatographic profiles of chicken by‑products hydrolysates. Chromatographic profiles of chicken by‑products hydrolysates (CH) with BP 
(a) and BK (b) proteases and BRO (c). The graph shows the signal from the UV monitor at 254 nm

Fig. 5 Chromatographic profiles of fish by‑products hydrolysates. Chromatographic profiles of fish by‑products hydrolysates (FH) with BP (a) and BK 
(b) proteases and BRO (c). The graph shows the signal from the UV monitor at 254 nm
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proteins compared to fish by-products presenting sig-
nificant differences (P < 0.05) and resulting in the CH 
obtained a higher yield and DH compared to the FH.

A degree of hydrolysis greater than 10% generates pep-
tides that have high solubility and superior bioavailability. 
On the other hand, a low degree of hydrolysis (1–10%) 
improves the functional properties of food products such 
as foaming power and emulsifier [41].

The biological effect of peptides isolated from by-prod-
ucts derived from the meat industry has been studied 
in vitro for their antihypertensive and antioxidant activ-
ity, which provides a basis for their use as bioactive pep-
tides [5], and their activity is mainly related to structure 
and nature of the AA that conformed. An example is its 
AoxC, which is mainly attributed to the presence of aro-
matic AA (tyrosine, tryptophan, and phenylalanine) in its 
terminal chains, since they have the ability to efficiently 
neutralize free radicals, acting as electron donors/hydro-
gen due to the presence of phenolic, indole and imida-
zole groups; in the same way, they can reduce  Fe3+ ions 
to  Fe2+ and chelate  Fe2+ as well as  Cu2+ ions [43, 44]. It 
has been reported that the ferric ion (FRAP) can be oxi-
dized by hydrophilic compounds, just like the ABTS radi-
cal [45]; although it has also been reported that ABTS 
may be neutralized by some compounds, poorly soluble 
or lipophilic [46]; while DPPH detects hydrophilic com-
pounds in greater presence [47]. Therefore, the results 
of AoxC are directly related to the characteristics of 
hydrolysates/peptides derived from chicken and fish 
by-products; as well as the biochemical and structural 
characteristics that each one of the hydrolysates present 
when using different types of plant proteases (BP, BK and 
BRO). According to the specificity of each protease, they 
can produce hydrolysates with different sizes of peptides, 
AA composition and their location in the side chains 
[40], which provides their characteristics about their 
polarity (polar or non-polar) and solubility (hydropho-
bic and hydrophilic) as well as its possible mechanisms of 
action. From the results, it is evident that the CH and FH 

obtained with the plant enzymes extracted from BP and 
BK are equal or more efficient than BRO for obtaining 
hydrolysates with AoxC.

In the peptide profile presented in this study (RP-
HPLC), a higher percentage of hydrophilic peptides with 
different polarity index is observed, which suggests the 
presence of hydrophilic AA (Asp, Glu, Pro, Lys, Asn, and 
Arg) and neutral nature (His, Gly, Gln, Ser and Thr) in 
the C-terminal position. Of this AA, His, Lys and Arg are 
categorized in the AA group with strong AoxC together 
with hydrophobic AAs such as Met, Trp, and Tyr accord-
ing to a study where they categorized 20 AA in relation 
to their AoxC [48]. Likewise, it has been suggested that 
a close relationship exists between polar peptides and 
the type of amino acid positioned in their side chains 
[49]. AA sequences of peptides derived from animal by-
products having polar character AA in their side chains 
derived from poultry by-products with antioxidant 
capacity (Ser-Asn-Leu-Cys-Arg-Pro-Cys-Gly) [1], anti-
hypertensive character (Cys-Gly-Lys-Pro, Ser-Gly-Arg, 
Cys-Thr-Ser-His, Val-Lys-Lys-Tyr) [50] and (Ala-Arg-Ile-
Tyr -His, Leu-Arg-Lys-Gly-Asn-Leu-Glu) [51] as well as 
by-products of marine origin with antioxidant capacity 
(Trp-Glu-Gly-ProLys; Gly-Pro-Pro; Gly-Val- Pro-Leu-
Thr) have been determined [52].

Peptides with MW < 10  kDa are considered bioactive 
which can generate multiple biological activities, thus the 
interest of incorporating these compounds in the food 
area, as well as in the pharmaceutical industry. Chicken 
liver hydrolysates with pepsin showed MW between 4.6 
and 10  kDa [2], which have been shown to have multi-
functional effects on in vivo systems with murine mod-
els induced to liver damage favoring (1) the regulation 
of lipid homeostasis, (2) decrease in lipid peroxidation 
through the improvement of antioxidant enzyme activi-
ties (3) improvement of gene expression related to the 
pathologies evaluated and (4) decrease in hepatic inflam-
matory responses [15, 53]. Based on the results obtained, 
the application of BP and BK proteases in chicken and 

Table 2 Chromatographic profiles of peptides of by-products hydrolysates

Chromatographic profiles of peptides corresponding to chicken by‑products hydrolysates (CH) and fish by‑products hydrolysates (FH) obtained with BP protease, BK 
protease, and BRO

Molecular weight (kDa) CH (%) FH (%)

BP BK BRO BP BK BRO

> 670 8.3 8.2 4.6 3.3 3.5 1.0

670–148 7.5 6.2 5.8 1.7 1.6 1.4

148–44 8.3 7.3 5.9 2.5 2.3 3.0

44–17 7.0 5.6 4.7 2.3 1.5 2.5

17–1.35 44.6 50.2 51.1 38.8 44.3 43.2

< 1.35 24.4 22.5 27.9 51.3 46.9 48.9
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fish by-products are useful for obtaining low MW pep-
tides (17.5–1.35 kDa).
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