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Celastrol-mediated autophagy regulation 
in cancer
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Abstract 

In the last few decades, studies on autophagy regulation and its potential role in cancer therapeutics have expanded 
to include detailed mechanisms. Since apoptosis exhibits drug resistance in some cancers, efforts have focused on 
searching for compounds with autophagy modulating properties. Numerous natural compounds have been used in 
cancer treatment and are considered a significant research area due to their remarkable anti-cancer properties. Celas-
trol, a quinone methide triterpene, derived from Tripterygium wilfordii, has recently drawn much attention because of 
its anticancer potential. It enhances tumor suppression and induces autophagy in cancer cells by regulating signal-
ing pathways such as Beclin-1, Akt/mTOR, ROS, NF-κB, MAPK, HSP90, and the proteasome. In the current study, we 
address the anticancer potential of celastrol, its effect on various cellular pathways, and describe how it functions as 
an autophagy modulator in cancer therapeutics and helps diminish multidrug resistance in cancer cells.
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Introduction
Cancer is considered the second leading cause of global 
mortality, with 9.6 million deaths in 2018. This is a com-
binational disease wherein uncontrolled cell growth 
occurs and can metastasize to other parts of the body. 
The mechanisms involved in suppressing tumors in a 
normal body can differentiate between normal cells 
and abnormally developing cells. However, the problem 
arises when genes responsible for tumor suppression get 
altered by certain environmental factors (including radia-
tion, pollution, and infectious agents) or routine habits of 
humans (such as alcohol, poor diet, tobacco consumption 
etc.) [1–7]. Among the several cancer types, lung cancer 
and breast cancer account for approximately 11.6% of the 
total cases prevalent globally, followed by prostate cancer 
(7.1%) and colorectal cancer (6.1%). Lung cancer has the 
highest mortality (18.4%), followed by colorectal cancer 
(9.2%), stomach cancer (8.2%), and liver cancer (8.2%) [8].

Cell death is one of the most significant processes 
responsible for maintaining homeostasis, by controlling 
the cell turnover in the body. Based on their biochemi-
cal and morphological characteristic, the cellular mor-
tality processes, either due to an inbuilt programmed 
signaling mechanism or as a result of certain pathologi-
cal outcomes, are classified into three major categories: 
(i) autophagy, (ii) apoptosis, and (iii) necrosis [9, 10]. 
Autophagy is a complex process, and its dysregulation 
can contribute to the development and progression of 
cancer. Targeting autophagy can serve as an effective 
therapeutic strategy in cancer. In the autophagy process, 
molecular targets have been identified from autophagy 
induction to lysosomal degradation. The generation of 
resistance limits the efficiency of current therapeutics 
(radiotherapy, chemotherapy, immune checkpoint inhibi-
tors, and molecular targeted therapy) in various cancers 
in response to these therapies.

This poses a need to develop novel therapeutics that 
can overcome the resistance in a wide variety of cancers 
and be more effective and safe with low toxicity. For this 
purpose, natural compounds have drawn the attention of 
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researchers as promising prophylactic and therapeutic 
strategies for cancer [11, 12].

Celastrol (Cel; Fig.  1) is a quinone methide triterpene 
present in TWHF root extracts. It is widely recognized 
as a pharmacologically active compound used in various 
diseases such as autoimmune, inflammatory diseases, 
and cancer. The atomic orbital energy analysis reveals 
that because of the presence of carbon  C2 on the A-ring 
and  C6 on the B-ring of celastrol, it is highly susceptible 
to a nucleophilic attack (Fig. 2) [13]. The quinone meth-
ide structure in celastrol has the affinity to react with the 

thiol groups of the cysteine residues of Cdc37 to form 
covalent Michael adducts, resulting in the disruption of 
chaperons or co-chaperones (such as Cdc37-Hsp90 com-
plex) which play a significant role in the stabilization and 
folding of oncogenic kinases [14]. Some other chaperons/
cochaperones proposed to be the target for celastrol in 
in-vitro studies are p23 [15], IKKβ [16], and the protea-
some. This mechanism seems to be one of the major fac-
tors responsible for multiple targets of celastrol.

Recent studies have highlighted the potential of cel-
astrol in the treatment of numerous different cancers. 
Data derived from different animal models and cell 
lines, attribute the anticancer properties to (i) angiogen-
esis inhibition, (ii) cell death activation, (iii) anti-invasive 
effects, and (iv) sensitizing the cells to conventional ther-
apies. Celastrol has been reported to inhibit cancer cell 
progression and induction of cell death in various can-
cers such as breast, lung, glioblastoma, hepatoma, naso-
pharyngeal, prostate, myeloma, colon, pancreas, liver, 
leukaemia, melanoma, gastric cancer, and osteosarcoma.

Pharmacological activities of natural compounds isolated 
from Tripterygium wilfordii
Tripterygium wilfordii Hook F (TWHF) is widely known 
as Thunder of God Vine and has a long history in the 
treatment of rheumatoid arthritis (RA) [17–19]. The root 
bark of the plant has shown significant pharmacologi-
cal activities against autoimmune disorders [20], inflam-
mation [21, 22], kidney diseases [23], atherosclerosis, 
fibrosis, and neurodegeneration [24]. Several bioactive 
compounds have been isolated from the plant, including 

Fig. 1 Chemical structure of celastrol [adapted from Ref. [97])

Fig. 2 The electrophilic sites with positions C2 (Ring A) and C6 (Ring B) in the structure of quinone methide rings (I):-, these sites are susceptible to 
the nucleophilic attack of thiol groups of cysteine residues to form covalent protein adducts (II) [14]
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sesquiterpenes, glycosides, lignans, alkaloids, diterpe-
nes (triptonide, tripdiolide, and triptolide), and triterpe-
nes (pristimerin, wilforlide A and celastrol) [18, 25, 26]. 
Of these, celastrol is considered the promising and most 
active compound of the plant.

Anticancer activities of celastrol
The anticancer potential of celastrol has been widely 
investigated in  vivo in several disease models (Table  1). 
The development and growth of melanoma xenograft in 
the mouse models are effectively inhibited by celastrol in 
a dose-dependent manner [27]. The celastrol treatment 
has also been shown to suppress the in vitro and in vivo 
proliferation of bladder cancer cells and osteosarcoma, 
followed by the induction of autophagy [28, 29]. The via-
bility of HepG2 is inhibited by the disruption of certain 
signaling pathways when exposed to celastrol alone [30] 
and affects the expression of EGFR when administered in 
combination with lapatinib [31]. Treatment with celastrol 
inhibits the growth of MCF-7 breast cancer cells [32] and 
causes the induction of apoptosis in HT-29 colon adeno-
carcinoma cells [33]. The invasion and proliferation of 
colitis-related colon cancer and NSCLC are suppressed 
when exposed to celastrol in a dose-dependent manner 
[34, 35]. Invasion, proliferation, and migration of chon-
drosarcoma cells are also in  vivo [36]. Celastrol stimu-
lates an energy crisis by ATP depletion and induces lipid 
accumulation, leading to cell cycle arrest and cell death in 
cancer cells [37]. Celastrol also induces ER stress, leading 
to growth inhibition of head and neck cancer cells [38].

Signaling pathways associated with celastrol‑mediated 
autophagy regulation
The capability of celastrol to induce autophagy in a vari-
ety of cancer cells displays the potential of the com-
pound to modulate multiple signaling pathways (Fig. 3). 
In various preclinical mouse models, celastrol inhibits 
the proliferation of tumors by affecting the expression 
of pro-survival transcription factors and various cell-
cycle molecules. Autophagy related markers were identi-
fied in cancer cells treated with celastrol and by applying 
autophagy inhibitors to down-regulate specific markers 
[39–45]. In the current review, we focus on summarizing 
the role of celastrol in cancer therapeutics and giving an 
overview of the signaling pathways associated with celas-
trol-mediated autophagy regulation in cancer.

Celastrol induces autophagy via regulation of PI3K/AkT/
mTOR pathway
Numerous studies have confirmed the relationship of 
PI3K, AkT and mTOR pathways with cancer, and their 
inhibition via autophagy regulation has shown significant 
results in cancer treatment [46, 47]. These three pathways 

are linked with each other. AkT was originally identi-
fied as an important element in the intracellular signal-
ing of the insulin receptor and is now considered as the 
significant downstream effector of PI3K activation [48]. 
PI3K activation results in AkT phosphorylation subse-
quent to translocation to the inner membrane [49]. The 
modification of AkT is enough to activate mTOR, which 
then promotes cell survival and increases protein syn-
thesis by phosphorylating its effectors such as S6K1 and 
S6K2 [50]. Celastrol has shown a promising role in induc-
ing autophagy by disrupting PI3K/AkT/mTOR pathways 
(Fig.  4). The disruption of these pathways leads to the 
autophagy-mediated cell death of cancer cells [27, 51, 
52]. The pathways mentioned above are significant for 
cancer therapy and important for inducing autophagy in 
the intestine, which could serve as an effective target for 
treating Crohn’s disease (CD) [53].

Celastrol induces autophagy and promotes G2/M phase 
arrest via the ROS/JNK signaling pathway
As reported in several studies, ROS generation in excess 
interferes with various signaling pathways of the cells 
[54–57]. Additionally, JNK of the MAPK family plays 
a pivotal role in regulating autophagy [58–60]. Recent 
studies have highlighted the role of cancer cell survival 
via synergistic action of JNK with JAK/STAT, NF-κB 
and other molecules. The pro-survival effect of JNK can 
be attributed to the immune evasion phenomena medi-
ated by TLR, IFN-γ and TGF-β [61]. Celastrol results 
in phosphorylation of JNK and increases ROS genera-
tion, thereby further promoting autophagy in osteosar-
coma cells. Application of ROS inhibitors (such as NAC) 
reverses the celastrol-induced autophagy and blocks the 
G2/M phase arrest. However, significant attenuation can 
be observed when JNK inhibitors are used, but with no 
impact on G2/M arrest. The phosphorylation of JNK is 
eliminated by NAC (ROS inhibitor), however, the JNK 
inhibitor does not affect ROS generation, thereby sug-
gesting ROS as a proximal event for JNK [28].

G2/M is one of the other frontiers serving as a suitable 
target for anticancer therapy [62]. The cyclin B1 complex 
promotes the G2/M phase transitions, which remains in 
the inactivate form by phosphorylation, and the regula-
tion is accomplished by a group of proteins such as Cdc2, 
Cdc25C, and Chk1/2 [63–65]. The expression levels of 
Chk2, phospho-Chk2, phospho-Cdc2, phospho-Cdc25C, 
cyclin B1 and p21 are upregulated with celastrol treat-
ment, however, the level of Cdc2 and Cdc25C is down-
regulated. The level of cyclin B1 is observed to increase 
with suppression of the Cdc2 activity, which promotes 
the degradation of cyclin B1 via ubiquitin-dependent 
proteolysis [66]. The up-regulation of cyclin B1 results in 
the G2/M phase arrest in cancer cells, thus suppressing 
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cell proliferation [65, 67]. These findings are confirmed 
by a study that reported that exposure to celastrol inhib-
its human osteosarcoma’s development and proliferation 
through autophagy and G2/M arrest. It was also revealed 

that when the apoptosis was blocked in these cells with 
suitable inhibitors, the cells died via autophagy; con-
versely, suppression of autophagy inhibited PARP’s 

Fig. 3 Celastrol-mediated autophagy regulation. The schematic illustrates the main molecular targets of celastrol in the induction of autophagy. 
Celastrol has multiple targets such as mTOR, ROS, SERCA, miR-17-92a cluster, Atg5 and ERS, thus making celastrol a potential candidate in cancer 
treatment via autophagy regulation
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cleavage and caspase-3, thereby leading to apoptotic cell 
death [28].

Celastrol promotes ER stress/UPR mediated apoptosis 
and autophagy
In the endoplasmic reticulum (ER) lumen, inappropri-
ately folded proteins accumulate due to internal and 
external factors in the tumor microenvironment. This 
accumulation causes ER stress, which results in the 
activation of Unfolded Protein Response (UPR), an 
adaptive mechanism for restoring protein homeostasis 
in the ER. The IRE1α activation and splicing of XBP1 
initiate UPR, and these factors are responsible for the 
transcription of enzymes, particularly chaperons that 
return to the ER and restore homeostasis. Several stud-
ies have linked UPR signaling with different aspects of 
tumor progression and carcinogenesis [68]. Treatment 
of different cancer cells (including HCC) with celastrol 
causes ER stress, with subsequent activation of the UPR 
for maintaining homeostasis [69]. The proteasome can 

degrade the unrequired or damaged proteins, but cel-
astrol has an inhibitory effect on proteasome in various 
cancer cells such as prostate cancer and glioblastoma 
[70]. In non-functional or disrupted UPR, the homeo-
stasis of protein folding cannot be restored; the persis-
tent stress thereby causes a cascade of events that leads 
to apoptosis [71].

When the misfolded proteins are not restored or 
degraded by the proteasome, the UPR mechanism 
also regulates autophagy [72]. It means that by causing 
extracellular stress, celastrol not only leads to apop-
tosis and causes UPR mediated autophagy induction 
in cancer cells. In HCC, celastrol mediated autophagy 
was observed through transcription factor of ER stress, 
and UPR expression induced expression of autophagy-
related proteins [73]. However, the direct association 
between ER stress and celastrol mediated cell death 
in HCC is not clearly understood and needs further 
research for understanding the correlation, which will 
give new insight into the celastrol mediated anticancer 
effects in HCC [74].

Fig. 4 Celastrol regulates autophagy via disruption of the PI3K/Akt/mTOR pathway
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Celastrol induces autophagy by targeting AR, 
downregulating the miR‑17‑92a cluster and miR‑101
There are some genes and signaling pathways that result 
in the inhibition of autophagy. One of the important 
reported gene clusters is miR-17-92a, which exerts a neg-
ative role in regulating autophagy. The cluster is trans-
activated by the androgen receptor (AR) in cancer cells 
such as prostate cancer [75], and seed sequences have 
established it as a group of four families: miR-17, miR-18, 
miR-19, and miR-92 [76]. The dissection of miR-17-92a 
cluster determined the role of the miR-17 seed family 
(miR-17 and miR-20) as an autophagy inhibitor in pros-
tate cancer. Another miR-17 family member, known as 
miR-106, targets the ULK1 to suppress leucine depriva-
tion-induced autophagy in myoblast cells or mycobac-
teria invasion mediated autophagy [77, 78]. In another 
study, autophagy in the intestinal epithelial HCT116 cells 
was inhibited by binding miR-106 to the 30 UTR region 
of ATG16L [79]. In prostate cancer, several autophagy-
related genes serve as suitable targets for the miR-17 
seed family, and until now, only the expression of ATG7 
is shown to be disrupted when cells are transfected with 
miR-17 or miR-20a.

Another similar gene (known as miR-101) has also 
been identified. miR-101 is reported to be an autophagy 
inhibitor, having a dual role in suppressing both 
autophagy induction and maturation by targeting the 
STMN1, RAB5A, and ATG4D genes [80]. However, the 
AR binding site has been predicted at upstream of the 
miR-101 gene [81]. Celastrol is highly effective by target-
ing the AR, promoting the destabilization of AR through 
inhibition of HSP90, or suppressing calpain activation 
[82, 83]. Blocking the AR pathway induces autophagy in 
AR-positive prostate cancer cells [84–87]. Destabilization 
of the AR results in suppressing the miR-17-92a cluster 
and miR-101, subsequently leading to the induction of 
autophagy in cancer cells [75]. However, the mechanism 
by which AR regulates autophagy is not fully understood.

Celastrol inhibits SERCA leading to autophagy induction 
in MDR cancer cells
Some transporter proteins play a significant role in 
autophagy regulation. The most important and exten-
sively studied transporter is the calcium transporter 
known as sarcoplasmic/endoplasmic reticulum (SR/
ER)  Ca2+-ATPase (SERCA) located in the membranes 
of ER/SR [88]. Few studies have revealed that autophagy 
and apoptosis are effectively triggered by SERCA inhibi-
tion in cancer cells; hence, SERCA is considered a novel 
therapeutic target for anticancer drugs [89, 90]. SERCA 
has a prominent role in tumor survival [91], and its inhi-
bition causes a severe imbalance in calcium homeosta-
sis in tumor cells, leading to activation of the ER stress 

response. This results in permanent damage to mito-
chondria by  Ca2+ excess and affects the caspase and 
cytochrome-C release pathway [92].

Celastrol is reported to effectively mobilize the cyto-
solic calcium by directly suppressing ATP depletion and 
SERCA, thereby leading to autophagic and apoptotic cell 
death in MDR cancer cells. Autophagy is induced via the 
CaMKKβ-AMPK-mTOR signaling pathway. Addition-
ally, celastrol effectively inhibits the ABC-transporter 
P-gp, which increases the sensitivity of MDR cancer cells 
and promotes the sensitization of cancer cells to taxol 
exposure [93]. These findings are in agreement with the 
findings of another study conducted by Liu et al., which 
reported that PERK phosphorylation and SERCA2B sup-
pression are successfully modulated by celastrol, leading 
to autophagic cell death of cancer cells [94].

Celastrol induced EGFR degradation via autophagy 
regulation
Drug resistance is one of the alarming consequences of 
current anti-cancer therapies. In non-small cell lung can-
cer (NSCLC), the resistance is associated with a muta-
tion in the epidermal growth factor receptor (EGFR). 
Celastrol shows selective cytotoxic activity against the 
EGFR mutant NSCLCs. Moreover, via the mechanism 
of calcium-mediated autophagy, celastrol significantly 
degrades EGFR and Akt expression in both mutant and 
wild type NSCLCs. Application of the autophagic inhibi-
tor or calcium chelator blocks the degradation of EGFR 
and decreases cell death in H1975 gefitinib-resistant 
NSCLCs [95].

The relationship between autophagy, EGFR, and can-
cer has further been illustrated by So et  al. [96]. This 
was verified by exposing NSCLCs to CK2 inhibitor; 
autophagy was induced, which subsequently downregu-
lated the EGFR, leading to cell death. The autophagy trig-
gered by CK2 inhibitors might differ from the autophagic 
pathways activated by celastrol, but it provides evidence 
that celastrol is a potential agent for the induction of 
autophagic-mediated EGFR degradation and can be an 
effective anticancer therapy for such resistant cancer cells 
[95].
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