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Abstract 

Anthocyanin is a type of flavonoid that appears purple in plants. PAP1, PAP2, and MYB113 are the three major R2R3-
MYB transcription factors that regulate flavonoid biosynthesis in Arabidopsis thaliana. In this study, we found that the 
three MYB genes regulate anthocyanin accumulation in different leaf stages. Under limited nutrient conditions, PAP1 
and PAP2 genes were highly induced in juvenile leaves. Conversely, MYB113 was expressed mainly in adult leaves. In 
addition, we investigated the role of trans-acting siRNA4 (TAS4) in the post-transcriptional regulation of anthocya-
nin expression in Arabidopsis leaves. In plant growth, the inhibition of PAP1 and PAP2 gene expression by TAS4 was 
observed only in juvenile leaves, and MYB113 inhibition was observed in adult leaves. In conclusion, we found that 
transcription and transcript repression of the three MYB genes is differentially regulated by TAS4 in leaf developmen-
tal stages. Our results improve the understanding of the regulation of plant anthocyanin production under stress 
conditions.
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Introduction
Chlorophyll, carotenoids, and flavonoids are unique pig-
ments responsible for the various colors found in plants. 
Anthocyanins are a group of flavonoids that can appear 
red, blue or purple in flowers, fruits, and leaves. The 
major role of anthocyanins in plants is to protect cells 
from ultraviolet light [1, 2], scavenge reactive oxygen spe-
cies [3, 4], transport auxin [5, 6], and attract pollinators 
using petal colors [7]. The synthetic mechanisms, biosyn-
thetic enzymes, and regulatory factors of anthocyanins 
have been studied intensively in the last three decades 
because flavonoids are a good candidate for dietary anti-
oxidant and anti-inflammatory materials [6, 8, 9].

Anthocyanin synthesis is induced by abiotic stress, such 
as nitrogen or phosphate starvation, high sucrose levels, 
or cold [10–15]. Biosynthetic enzymes from flavonoid 
pigments have been isolated in various plants, including 
Arabidopsis, maize, petunias, and snapdragons [16–18]. 
Biosynthetic pathways are classified as early biosynthetic 
genes from chalcone synthase to flavonoid 3′-hydroxy-
lase and late biosynthetic genes from dihydroxy flavonoid 
reductase to anthocyanidin synthase (ANS) [19–26]. 
The expression of these flavonoid biosynthetic enzymes 
is regulated by the transcriptional complex, WD-repeat/
MYB/bHLH [27]. MYB transcription factors are suffi-
cient and are limiting factors for anthocyanin synthesis 
in Arabidopsis. The Arabidopsis pap1-D mutant displays 
purple colors [28] and the transgenic plants with R2R3-
MYB (PAP1, PAP2, MYB113, and MYB114) gene over-
expression display enhanced anthocyanin synthesis [26, 
28–30]. Anthocyanin accumulation in plants generally 
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correlates with R2R3-MYB transcription factor expres-
sion in Arabidopsis.

Trans-acting siRNA 4 (tasiRNA4, TAS4) and micro-
RNA828 (miR828) are involved in the suppression of 
PAP1, PAP2, and MYB113 transcripts [31, 32]. Under 
specific physiological conditions (e.g., sugar accumula-
tion or senescence), TAS4 and MYB genes are induced 
together, and TAS4 performs as an auto-regulatory fac-
tor to regulate anthocyanin production. MYB gene sup-
pression by tasiRNA or siRNAs has also been reported in 
potatoes, sweet potatoes, and grapes [33–35].

Although the leaf is a major anthocyanin biosynthetic 
organ, anthocyanin accumulation in leaves produced at 
different stages of shoot has not yet been studied. Here, 
we describe how three R2R3-MYB factors are transcribed 
in juvenile and adult Arabidopsis leaves and characterize 
the role of TAS4 in MYB gene regulation.

Results
Anthocyanin accumulation in different stage 
of Arabidopsis leaves
To characterize the pattern of stress-induced antho-
cyanin production in leaves, the expression patterns of 
three anthocyanin transcription factors (PAP1, PAP2, 
and MYB113) were compared in leaves from differ-
ent positions on the shoot. A nutrient-deficient condi-
tion is a strong inducer of anthocyanin synthesis [36], 
and a nitrogen deficient soil condition was prepared 
as described in the Methods section [37]. Arabidopsis 
Col-0 was grown at low nutrient soil to induce antho-
cyanin and leaves from different nodes were collected 
from 3-to 6-week-old plants. An image of 6-week-old 
plants (Fig. 1a) shows that leaves have more purple color 
on their abaxial than on their adaxial surface, and that 
leaves at higher nodes (from 5th to 12th leaves) have sig-
nificantly more purple-colored pigments than leaves at 
lower nodes. Quantification of anthocyanin levels, which 
used water soluble extracts of red or purple pigments, in 
plants of different ages demonstrates that anthocyanin 
is uniformly expressed in the leaves of 3 and 4-week-old 

plants, but then increases to higher levels in apical leaves 
as plants age (Fig. 1b, c).

Three MYB gene expression levels were measured 
under normal growth conditions in leaves 1/2 and 
9/10 of 4-week-old plants (Fig.  1d). Under these condi-
tions, PAP1 mRNA was more abundant than PAP2 and 
MYB113 mRNA, and PAP1 and PAP2 were more highly 
expressed in the 1/2 leaves than in leaves 9/10. Under 
nutrient-deficient conditions, these MYB genes were 
induced to different levels and in different temporal pat-
terns in leaves 1/2 and leaves 9/10 (Fig. 1e–g). In leaves 
1/2, PAP1 was induced sevenfold in 23-day-old plants, 
and declined gradually over the next 19  days, whereas 
in leaves 9/10 it was induced little, if at all, in 23-old-
plants, and increased gradually in these leaves over the 
next 19 days (Fig. 1e). PAP2 was induced to much a much 
higher level than PAP1 in leaves 1/2 of 23-day-old plants, 
and increased transiently with leaf age before declining 
(Fig.  1f ). It was expressed in a similar pattern, but at a 
much lower level, in leaves 9/10. MYB113 was expressed 
at much lower levels than PAP1 or PAP2 under both nor-
mal and nutrient-deficient conditions. Under nutrient-
deficient conditions, MYB113 was expressed more highly 
in leaves 1/2 than in leaves 9/10 in 23-day-old plants, 
but this order was reversed as its expression declined 
in leaves 1/2 and increased in leaves 9/10 over the next 
19 days. Consistent with this pattern TAS4, which nega-
tively regulates MYB113 [36], increased in abundance in 
leaves 1/2 from 23 to 42 days, although it was undetect-
able in leaves 9/10 (Fig. 1h).

TAS4 and miR828 reduce anthocyanin production 
under nutrient‑deficient conditions
Under normal growth conditions, we did not observe 
a major difference in the amount of anthocyanin in 
the TAS4 knock-out mutant (tas4ko) (SALK_066997) 
and the miR828 knock-out mutant (miR828ko) 
(SALK_021292) compared to wild-type plants. The 
only obvious difference was a slight increase in antho-
cyanin at the base of the petiole and in senescing 
leaves of tas4ko (Fig.  2a). Although the difference in 

(See figure on next page.)
Fig. 1  Anthocyanin accumulation in Col-0 plant cultured on nutrient-deficient soil and short-day conditions. a The Arabidopsis leaf color changed 
in nutrient-deficient soils on the adaxial and abaxial sides. Scale bar indicates 1 cm in length. b Col-0 plants were grown for the indicated number 
of weeks under short-day conditions. Anthocyanin was quantified in different leaves from three to 6-week old plants. c More details of anthocyanin 
accumulations in the 1st and 2nd and 9th and 10th leaves were measured and compared. The 9th and 10th leaves at day 14 were omitted since 
they were not developed. * indicates a significant difference between leaves 1/2 and 9/10 (n ≥ 4, p < 0.01). d Transcript level comparisons of three 
MYB genes in juvenile and adult leaves under normal plant growth conditions. Plants were grown for 4 weeks under normal long-day growth 
condition. * indicates a significant difference between leaves 1/2 and 9/10 (n ≥ 3, p < 0.01). e–h The expression patterns of three MYB genes and 
primary TAS4 transcription in the 1st and 2nd and 9th and 10th leaves under nutrient-deficient conditions. Each leaf was taken at day 14, 21, 29, 
and 42 after planting. * indicates significant difference in comparison with the other developmental stage of leaves 1/2 or 9/10 (n ≥ 3, p < 0.01). RQ 
represents relative quantity of target genes
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the overall level of anthocyanin in mutant and wild-
type plants is not clearly apparent (Fig. 2a), quantifica-
tion of anthocyanin levels revealed that both mutants 
have approximately three-fold more anthocyanin than 
that of wild-type Col-0 (Fig.  2b). Therefore, to exam-
ine the effect of these genes on anthocyanin produc-
tion in leaves, we grew the tas4ko and miR828ko in 
nutrient-deficient soil (Fig.  2c, d). We then compared 
the amount of anthocyanin in the tas4ko mutant and 
Col-0 in different leaves at 5 and 6  weeks after plant-
ing (Fig. 2d). In 5-week old plants, tas4ko had twice as 
much anthocyanin as Col-0 in leaves 1 to 4, but had 
the same amount of anthocyanin as Col-0 in leaves 5 
and above. In 6-week-old plants, anthocyanin was 
more abundant in every leaf of tas4ko relative to Col-0, 

although this difference was slightly greater in leaves 
1–4 than in later leaves.

TAS4 suppresses MYB genes primarily in juvenile leaves
To explore the basis of the leaf-dependent TAS4 effect 
on anthocyanin production, we examined the effect of 
the tas4ko on the abundance of MYB gene transcripts in 
5-week old Arabidopsis plants (Fig.  3). The PAP1 gene 
suppression by TAS4 was mainly observed in leaves 1/2 
(Fig. 3a). PAP2 gene suppression was mostly observed in 
juvenile stage leaves 1/4 (Fig.  3b). The PAP1 and PAP2 
gene abundance in the juvenile leaves of tas4ko is well 
explaining the anthocyanin abundance in leaves 1/4 of 
tas4ko of 5-week-old plants (Fig.  2d). MYB113 tran-
scription levels were greatly increased in leaves 9/12 of 
tas4ko (Fig.  3c). The abundance of MYB113 transcript 
does not cause great difference of anthocyanin level in 
adult leaves of tas4ko (Figs. 2d and 3c). The level of the 
primary TAS4 transcript was high in the juvenile and 
transitional leaf stages and low in adult leaves (Fig.  3d). 
The PriTAS4 transcript pattern indicates that MYB gene 
suppression by TAS4 is stronger in juvenile leaves than in 
adult leaves and it explains well the suppression of PAP1 
and PAP2 genes by TAS4 in juvenile leaves (Fig. 3a and 
b). The chlorophyll a/b-binding protein gene (CAB) and 
senescence-associated gene 12 (SAG12) represent leaf 
senescence status similar to photosynthetic activity in the 
Col-0 and tas4ko plant (Fig. 3e and f ). Slight differences 
were observed in the CAB and SAG12 gene expression 
level between Col-0 and tas4ko, but these physiological 
factors have no effect on MYB gene expression under 
experimental conditions.

Discussion
Regulation of PAP1, PAP2, and MYB113 transcription in 
vegetative tissues
PAP1, PAP2, and MYB113 genes were induced in nutri-
ent-deficient, short-day conditions, but their expression 
patterns differed. PAP1 and PAP2 were expressed highly 
in juvenile leaves, but MYB113 was expressed higher in 
adult leaves (Figs. 1d and 3c). PAP1 and MYB113 expres-
sion was changed by plant aging too (Fig. 1e and g) and 
leaf aging causes the complexity of MYB gene expression 
patterns in vegetative leaves. PAP2 gene was inducible 
and expressed transiently (Fig. 1f ). PAP2 gene expression 
was roughly 1000 times [i.e., relative quantities increased 
from 0.1 (Fig. 1f, D29 column) to 100 (Fig. 1d, PAP2 col-
umn)] under nutrient-deficient conditions when com-
pared with that in normal growth conditions. This result 
indicates that PAP2 may play an important role in the 
regulation of anthocyanin accumulation in nutrient-defi-
cient condition.

Fig. 2  Anthocyanin accumulation in the tas4ko and miR282ko 
mutants. a Color comparison of the base of leaves in Col-0 and 
tas4ko plants growing under the normal long-day growth condition. 
Scale bar indicates 1 cm in length. b Anthocyanin quantities in the 
whole plant of Col-0 and tas4ko and miR828ko mutants grown under 
normal conditions. At least three independent plants were tested 
for anthocyanin quantification. * indicates a significant difference 
in comparison with Col-0 (n ≥ 3, p < 0.01). c Leaf color changes 
in the tas4ko and miR828ko mutants. Every plant was cultured 
in nutrient-deficient soil for 6 weeks. Scale bar indicates 1 cm in 
length. d The anthocyanin accumulation patterns are compared 
for the different leaf stages in Col-0 and tas4ko mutant. * indicates a 
significant difference in comparison with Col-0 (n ≥ 4, p < 0.01)
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Suppression of PAP1, PAP2, and MYB113 transcript 
in vegetative tissues
PAP1, PAP2, and MYB113 displayed different gene 
expression patterns during plant growth. PAP1 and PAP2 
expressed relatively more in juvenile leaves than in adult 
leaves, but MYB113 expressed highly in adult leaves, 
which includes new developing leaves. The transcrip-
tional repression was enhanced in the leaves where MYB 
factors were highly induced. The auto-regulatory loop of 
transcriptional induction of primary TAS4 is expected to 
reduce MYB gene expression during MYB gene induc-
tion [32, 36].

The transcriptional induction pattern of PAP1 and 
PAP2 is similar, but PAP2 was more inducible than PAP1 
(Fig.  1d). The major transcriptional repression of PAP2 
was shown in leaves 5/6, rather than in leaves 1/4, whereas 
PAP1 suppression was mostly shown in leaves 1/2 (Fig. 3a 

and b). Since primary TAS4 expression was similar in 
leaves 1/2 and in leaves 5/6 (Fig. 3d), this site-specific sup-
pression may be related to the expression levels of PAP1 
and PAP2 and may also be the result of the different affin-
ity of TAS4 to the PAP1 and PAP2 mRNA sequences.

Methods
Plant materials and growth conditions
Arabidopsis thaliana ecotype Col-0 plants were used 
for analysis. Plants were grown under long days (16  h 
light/8  h dark) or short days (8  h light/16  h dark) with 
95  μmol  m−2 s−1 of light intensity using a 5:3 ratio of 
white (USHIO F32T8/741) and red-enriched (Interlec-
tric F32/T8/WS Gro-Lite) fluorescent lights at 22  °C in 
Conviron growth chambers. Half of each pot was filled 
with soil (Fafard #52 Mix of Sungro Horticultures, Aga-
wam, MA), then the nutrients were leached using water 

Fig. 3  The suppression of MYB gene transcription by TAS4 in the different leaves. a–d Three MYB genes and Pri-TAS4 levels were measured by 
qPCR. e, f The CAB2 and SAG12 transcription levels represented leaf senescence. * indicates a significant difference in comparison with Col-0 (n ≥ 3, 
p < 0.01). RQ represents relative quantity of target genes
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10 times the volume of the soil. Arabidopsis was subse-
quently cultured without fertilizers. tas4 (salk_066997) 
and mir828 (salk_097788) were provided from the Arabi-
dopsis stock center (ABRC, Columbus, OH).

Anthocyanin measurements
Anthocyanin measurements followed the aforemen-
tioned method [11]. Briefly, 100 mg of leaves were ground 
in liquid nitrogen and were extracted by adding Trizol 
reagent (Invitrogen, CA). Chlorophyll was eliminated 
successfully by extracting with chloroform. After sepa-
rating the water phase, the organic phase was extracted 
once more with water to increase the recovery rate. The 
combined water extracts were measured with a spectro-
photometer at A530 and A657 to quantify anthocyanin 
with the following equation: A530 − 0.25 × A657.

Real‑time qPCR
RNA was extracted and reverse transcribed using Super-
Script™ II (Invitrogen, CA) and an 18-mer oligo(dT) 
primer. Quantified real-time assays were performed 
using Power SYBR Green PCR Master Mix (Applied Bio-
systems) and a StepOnePlusTM Real-Time PCR System 
(Applied Biosystems). A two-step protocol was followed: 
20 s at the optimum melting temperature for each primer 
set and then 20 s at 72  °C for extension. Data were col-
lected and analyzed using StepOne™ Software v2.0.1 
(Applied Biosystems). Expression values relative to the 
internal control EIF4A1 (At3G13920) gene were calcu-
lated from the mean threshold curve (Ct) value of three 
replicates. Melting curves and gel electrophoresis were 
used to verify the correct target amplifications. All prim-
ers used for reactions are provided in Table 1.
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