
Li et al. Appl Biol Chem           (2021) 64:72  
https://doi.org/10.1186/s13765-021-00625-2

NOTE

Identification and characterization 
of proteins, lipids, and metabolites in two 
organic fertilizer products derived from different 
nutrient sources
Jianyu Li1, Xin Zhao1* , Laura S. Bailey2, Manasi N. Kamat2 and Kari B. Basso2 

Abstract 

The biochemical composition of organic fertilizers largely determines their nutrient supply characteristics follow-
ing soil application as well as their potential impact on soil microbial communities. Yet, limited information is avail-
able regarding the biochemical composition of organic fertilizers derived from different nutrient sources. Here, we 
qualitatively analyzed the presence and abundance of proteins, lipids, and metabolites in a liquid fish fertilizer (LFF) 
product and a type of granular organic fertilizer (GOF) commonly used in organic vegetable production, using liquid 
chromatography–tandem mass spectrometry (LC–MS/MS). Our results suggest that the presence and abundance 
of proteins, lipids, and metabolites differ greatly between GOF and LFF. The qualitative analysis shows LFF as a rich 
source of metabolites, while complex proteins and long-chain saturated fatty acids are dominant in GOF. The degree 
of biochemical composition complexity may help explain the varying impacts of different types of organic fertilizers 
on nutrient availability, soil health, and environmental quality.
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Introduction
Organic fertilizers derived from various animal and 
plant-based byproducts have been widely used as nutri-
ent sources for organic vegetable crop production. Com-
pared to synthetic chemical fertilizers, organic fertilizers 
tend to have lower nutrient content along with variability 
in composition that depends on ingredients. However, 
organic fertilizers often contain beneficial microorgan-
isms and are generally rich in organic carbon (C) [1]. 
Applications of organic fertilizers have been shown to 
increase soil organic matter content, enhance overall soil 
enzyme activity [2], and influence microbial community 

composition through addition of C and nitrogen (N)-rich 
organic compounds [3–6]. At the same time, the nutrient 
release process of organic fertilizers relies substantially 
on the complex biochemical transformation activities 
mediated by soil microbes [7] in addition to environmen-
tal conditions.

Early studies indicated that the general C/N ratio and 
nutrient analysis of organic fertilizers might not  offer 
sufficient information for predicting nutrient release 
patterns, while the biochemical composition of organic 
fertilizers could be highly associated with mineralization 
kinetics [8, 9]. Numerous methods have been developed 
to estimate N availability in soils after organic fertilizer 
application, such as incubation-based N mineraliza-
tion studies [10, 11]. Most recently, the extractable soil 
protein pool was suggested to be a soil health indicator 
of potentially available organic N [12]. Plant metabolite 
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compounds also influence soil nutrient cycling, such as 
C and N mineralization, through their impact on soil 
organisms [13]. The input of lipids, especially the long-
chain compounds, play an important role in soil health 
enhancement including the accumulation of soil organic 
matter content [14]. Liquid chromatography–tandem 
mass spectrometry (LC–MS/MS) with high-throughput 
capacities has been demonstrated to be a sensitive and 
powerful analytical tool for detecting proteins, lipids, and 
other metabolites from biological materials of various 
sources including soil [15] and plant tissue samples [16–
18]. However, limited information is available regarding 
specific biochemical compounds contained in organic 
fertilizers that may affect soil microbial communities and 
nutrient availability as well as environmental quality. LC–
MS/MS has rarely been used to compare biochemical 
compositions of organic fertilizers with different nutri-
ent sources. Here, we chose to examine two commer-
cially available organic fertilizer products, a liquid fish 
fertilizer  (LFF) derived from enzymatically digested fish 
proteins and a granular organic fertilizer (GOF) contain-
ing feather meal and other animal waste materials, which 
represent commonly used nutrient sources for organic 
crop production [19].

Therefore, the objective of this pilot study was to 
employ LC–MS/MS to identify and characterize pro-
teins, lipids, and metabolites in two commonly used 
commercial organic fertilizer products for qualitative 
comparisons of their biochemical characteristics.

Materials and methods
The LFF  analyzed in this study can be used in organic 
fertigation systems through drip irrigation, while the 
GOF  may be used for preplant application and/or sid-
edressing during the crop production season. Both 
organic fertilizer products have higher levels of N than 
phosphorus (P) and potassium (K) (Figure 1A; Additional 
file 1: Table S1). Equal amounts of LFF (100 µL) and GOF 
(100 mg) were individually extracted for proteins, lipids, 
and metabolites. The equivalent mass of 100 µL LFF was 
determined as 97.5 ± 1.0 mg. Lipids were extracted via a 
modified Folch method [20], metabolites were extracted 
by ice-cold methanol, and proteins by acetone/metha-
nol precipitation. The protein pellet was reconstituted in 
0.2% surfactant enhancer and concentrations were meas-
ured via a Qubit Fluorometer (Thermo Fisher Scientific 
Inc., Waltham, MA, USA). In-gel protein digestion was 
performed using trypsin as the enzyme (Promega Corpo-
ration, Madison, WI, USA). LC analysis for all was per-
formed on a Dionex UltiMate 3000 RSLCnano system 
(Thermo Fisher Scientific Inc.). Lipid and metabolites 
were separately injected (5 µL) on an Acclaim PepMap 
RSLC C18 column (Thermo Fisher Scientific Inc.) using 

acidified mobile phases of water and acetonitrile for 
metabolites and water, acetonitrile, and isopropanol for 
lipids. Proteins (10 µg) were separated on a PepMAP col-
umn using acidified water and acetonitrile.

Both the lipid and metabolite compounds were ana-
lyzed on a Bruker Impact II QqTOF mass spectrometer 
(Bruker Daltonics, Billerica, MA, USA) using electro-
spray ionization operated in positive mode. Proteins were 
analyzed on a Thermo Scientific Q Exactive HF Orbitrap 
mass spectrometer  equipped with an EASY Nanospray 
source operated in positive mode. All employed data 
dependent collisionally-activated dissociation. Proteom-
ics data were analyzed in Proteome Discoverer (version 
2.4) using the SEQUEST HT searching algorithm. Lipids 
and metabolites were analyzed in MetaboScape (version 
4.0). Full experimental details are provided in Additional 
file 1.

Results and discussion
Proteomics
Figure 1B is a graphical summary of total spectral counts 
for each protein detected in   GOF and   LFF products. 
Hemoglobin (632 spectral counts), keratin (83 spectral 
counts), and actin (47 spectral counts) were the major 
proteins detected in GOF (862 spectral counts in total). 
In contrast, parvalbumin (28 spectral counts), tropomy-
osin (23 spectral counts), and actin (11 spectral counts) 
were abundant in LFF (96 spectral counts in total). Deg-
radation of proteins in the soil can be affected by their 
intrinsic structures including amyloid fibril formation 
and glycosylation, accessibility to soil microbes or extra-
cellular enzymes, and complex structure formation with 
other soil organic compounds such as tannins, lignin, 
and humic substances [21]. For instance, hemoglobin 
can bind tannins to form protein–polyphenol complex 
(PPC) that limits N mineralization due to its resistance to 
decomposition [22]. As a fibrous structural protein, kera-
tin could be highly recalcitrant in response to microbial 
degradation because of its molecular architecture that 
involves formation of disulfide bonds, phosphorylation, 
and glycosylation [23]. The predominance of hemoglobin 
and keratin found in GOF might imply lower N minerali-
zation rates of GOF relative to LFF.

Lipidomics
Phosphatidylcholine (PC) (e.g., C42, C44, C46) and 
diglyceride (DAG) (e.g., C31, C35, C37, C39, C41, C43, 
C47) lipids accounted for 39.4% and 26.0% of the lipids 
in GOF, respectively, whereas DAGs (e.g., C33, C35, C37, 
C39, C41, C43, C47) showed a higher classification pro-
portion (53.9%) in LFF (Figure 2). Our data also revealed 
that the majority of DAGs in both LFF and GOF con-
tained highly polyunsaturated fatty acids (e.g., 30:4, 32:3, 
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34:5, 40:9, 44:12), which could be more susceptible to 
microbial degradation in the soil than saturated fatty acid 
molecules [24]. Conversely, PC lipids containing N and P 

identified in GOF may degrade and release essential ele-
ments rather slowly due to its long-chain structure and 
the relatively high degree of fatty acid saturation. Overall, 

Figure 1 A Visual appearance of the two types of organic fertilizer products analyzed. Left: liquid fish fertilizer (LFF); Right: granular organic 
fertilizer (GOF). B Total spectral counts for each protein identified in GOF and LFF. G3PD: glyceraldehyde-3-phosphate dehydrogenase, IgH: 
immunoglobulin heavy chain, MZMP: mitochondrial zinc maintenance protein, PGM: phosphoglucosamine mutase, tRNA_PS: tRNA pseudouridine 
synthase. Y-axis scale is made disproportionally to the spectral count in order to capture the wide range of spectral counts of all proteins identified 
and indicate the actual values of spectral counts for each protein.
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the diverse array of lipids identified in organic fertiliz-
ers in our study might indicate the potential impact of 
organic fertilizer application on improving soil health. 
For instance, lipids may serve as C and energy sources 
for various lipid-degrading soil microorganisms, such 
as Bacillus, Arthrobacter, and Pseudomonas [25]. Long-
chain lipids (> C20), in particular, are important in C 
stabilization and humification processes during the accu-
mulation of soil organic matter [26].

Metabolomics
The identified metabolites (Additional file  1: Table  S2) 
were categorized as amines, amides, polyols, organic 
acids, steroids, vitamins, isoprenoids, and plasticizers 
(Figure  3). Comparisons between LFF and GOF sug-
gested that LFF is a richer source of metabolites (Fig-
ure 3) and the two organic fertilizers might have different 
impacts on soil nutrient cycling and soil microbial com-
munities. For example, stearamide (m/z 284.2949; reten-
tion time (RT) 36.74  min) was detected in LFF but not 
in GOF. It is interesting that capsaicin (m/z 308.2218; RT 
15.05 min) was found in GOF but absent in LFF (Addi-
tional file 1: Table S2). Although the source of capsaicin 
is unclear, the GOF that contains capsaicin might poten-
tially demonstrate a deterrent or repellent effect on cer-
tain fungi, insects, and mammals due to the irritant 

property of capsaicin [27]. Four fatty acid amides includ-
ing pipericine (m/z 336.3260; RT 40.04 min), macamide 
(m/z 346.3100; RT 37.08  min), docosanamide (m/z 
340.3572; RT 42.44 min), and erucamide (m/z 338.3416; 
RT 41.87 min) appeared more abundant in LFF than GOF 
(Table S2), but statistical analyses with replications were 
not performed in this exploratory study. These amides 
may participate in stimulatory activities associated with 
soil microbial metabolism [28]. Two phenols, including 
p-coumaric acid ethyl ester (m/z 193.0861; RT 35.01 min) 
and gingerol (m/z 277.1798; RT 19.20  min), were also 
abundant in LFF (Table  S2). As a product of acidic 
hydrolysis of p-coumaric acid ethyl ester, p-coumaric acid 
can increase soil dehydrogenase activity and abundance 
of soil bacterial and fungal communities [29, 30]. How-
ever, gingerol, another compound abundant in LFF, may 
display antimicrobial activity [31]. Additionally, given the 
relatively high acidity (pH = 3.5) and abundant level of 
organic acids of LFF (Additional file 1: Tables S1, S2), its 
application could potentially result in a reduction in soil 
pH and suppression of certain soilborne pathogens in the 
longer term [32]. The low pH of LFF may be attributed 
to the abundance of bile acids, such as 3β-hydroxy-5-
cholenoic acid (m/z 357.2787; RT 22.11  min), 3-oxo-
cholic acid (m/z 424.3060; RT 17.59  min), cholic acid 
(m/z 426.3214; RT 18.98 min), and nutriacholic acid (m/z 

Category

Sterol lipids Sphingolipids

Glycerolipids Glycerophospholipids

66.3%

Class

Neutral glycoshingolipids
Phosphatidylcholine
Phosphatidylserine
Phosphosphingolipids
Sterols
Phosphatidylethanolamine
Oxidized glycerophospholipids
Ceramides
Diglyceride
Triglyceride
Glycerophosphocholine
Acidic glycosphingolipids

0.8% 

1.5% 

4.9% 

1.8% 

Figure 2 Different categories and classes of lipids identified in granular organic fertilizer (GOF) and liquid fish fertilizer (LFF). 
The interior donut represents LFF, and the exterior donut represents GOF. The area of each color represents the relative abundance (%) 
indicated. Based on the Lipid Metabolites and Pathways Strategy (LIPID MAPS) classification system, lipids are divided into four categories: 
sterol lipids, sphingolipids, glycerolipids, and glycerophospholipids. Each category is further divided into classes. Glycerolipids: diglyceride 
and triglyceride; Glycerophospholipids: phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, glycerophosphocholine, and 
oxidized glycerophospholipids; Sterol lipids: sterols; Sphingolipids: phosphosphingolipids, neutral glycosphingolipids, ceramides, and acidic 
glycosphingolipids.
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391.2844; RT 20.55 min) (Table S2). Moreover, bacterial 
degradation products (e.g., androstadienediones) of bile 
acids could also pose   a potential risk, such as reduced 
reproduction rates, to invertebrates in agricultural soils 
[33]. Similarly, as a steroid hormone, progesterone (m/z 
315.2319; RT 28.67  min), which was discovered in both 
LFF and GOF (Additional file 1: Table S2),  might accu-
mulate in soil and cause adverse impacts on the 
environment [34].

Conclusions
Our qualitative analysis is the first study attempting to elu-
cidate the biochemical composition of organic fertilizers, 
explore its linkage to nutrient availability of organic ferti-
lizers, and envision its impact on soil quality and health. 
The dominance of complex proteins and long-chain satu-
rated fatty acids contained in GOF suggests that GOF 
might decompose and release nutrients at a slower rate in 
the soil  relative to LFF. A diverse variety and abundance 
of metabolites were identified in GOF and LFF, indicating 
potentially different impacts of these organic fertilizers on 
soil microbial communities and nutrient availability. Future 
research can examine more organic fertilizer products 

derived from various nutrient sources and include quanti-
tative analysis for in-depth comparisons. Overall, our study 
demonstrates the complexity in biochemical composi-
tion of organic fertilizers and suggests the need to further 
understand how organic fertilizers with different biochemi-
cal profiles influence nutrient cycling, soil health, and envi-
ronmental quality.
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