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Abstract 

Hydroxycinnamic acids (HCs) are natural compounds that form conjugates with diverse compounds in nature. Ethyl 
caffeate (EC) is a conjugate of caffeic acid (an HC) and ethanol. It has been found in several plants, including Prunus 
yedoensis, Polygonum amplexicaule, and Ligularia fischeri. Although it exhibits anticancer, anti‑inflammatory, and 
antifibrotic activities, its biosynthetic pathway in plants still remains unknown. This study aimed to design an EC syn‑
thesis pathway and clone genes relevant to the same. Genes involved in the caffeic acid synthesis pathway (tyrosine 
ammonia‑lyase (TAL) and p‑coumaric acid hydroxylase (HpaBC)) were introduced into Escherichia coli along with 
4‑coumaroyl CoA ligase (4CL) and acyltransferases (AtCAT) cloned from Arabidopsis thaliana. In presence of ethanol, 
E. coli harboring the above genes successfully synthesized EC. Providing more tyrosine through the overexpression of 
shikimate‑pathway gene‑module construct and using E. coli mutant enhanced EC yield; approximately 116.7 mg/L EC 
could be synthesized in the process. Synthesis of four more alkyl caffeates was confirmed in this study; these might 
potentially possess novel biological properties, which would require further investigation.
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Introduction
Hydroxycinnamic acids (HCs) are abundant in nature. 
They are synthesized via phenylpropanoid pathway in 
plants and serve as the building blocks for other phe-
nolic compounds, such as flavonoids, coumarin, lignin, 
proanthocyanidins, cutin, and suberin [1]. HCs form 
conjugates with other molecules as well. The conjugate of 
caffeic acid (an HC) and quinic acid is called chlorogenic 
acid [2]. Avenanthramides are amides formed from HCs 
and anthranilate derivatives [3]. Besides these, conju-
gates of HCs with other compounds (spermine, puterine, 
tyramine, dopamine, tryptamine, and glycine) have also 
been reported [4, 5].

Ethyl caffeate (EC) is a conjugate of caffeic acid and 
ethanol, and is found in some plants, namely Prunus 

yedoensis [6], Polygonum amplexicaule [7], and Ligularia 
fischeri [8]. In particular, Ligularia fischeri is grown in 
eastern Asia and is used in herbal medicine. The biologi-
cal effects of L. fischeri are derived from EC. EC is known 
to exhibit anticancer [8], anti-inflammatory [9], and anti-
fibrotic activities [10]. In addition, it has the potential to 
regulate blood pressure by inhibiting aldosterone syn-
thase [11].

The synthetic pathway for EC in plants has not been 
fully elucidated yet. Caffeic acid is synthesized from 
tyrosine by deamination and hydroxylation, and needs 
to be activated by the attachment of coenzyme A (CoA). 
Although high-molecular-weight alcohols, such as C18, 
C20, and C22 alkan-1-ols, have been reported to be syn-
thesized from long-chain fatty acids in plants [12], how 
the ethyl group is provided during the synthesis of EC still 
remains a mystery. Ethanol is presumably synthesized 
in hypoxic condition [13], which is also suitable for the 
synthesis of EC; however, other ethyl group donors may 
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also be present. The mechanism underlying the conjuga-
tion of caffeoyl-CoA with ethyl group donor still remains 
unknown. Previous study on the biosynthesis of suberin 
might provide a clue to the process of generating an EC 
conjugate. Suberin is an ester of long-chain primary alco-
hols and HCs [14]. The conjugate reaction is mediated 
by aliphatic suberin feruloyl transferase in Arabidopsis 
thaliana [15]. Therefore, an enzyme of this family might 
catalyze the conjugation reaction to form EC, although 
the origin of ethyl group in plants still remains unknown.

Microbial systems (mainly Escherichia coli and Sac-
charomyces cerevisiae) have been used to synthesize phy-
tochemicals [16]. Among the variety of phytochemicals, 
phenolic compounds are mostly synthesized in microbial 
systems, since the biological synthetic genes have been 
characterized in many plants and hosts are engineered 
to provide more substrates [17]. Introduction of caffeic 
acid synthesis pathway genes into E. coli and engineer-
ing of the latter to provide more tyrosine resulted in the 
successful synthesis of caffeic acid. Tyrosine-overexpress-
ing E. coli strain, due to overexpression of tyrAfbr, ppsA, 
tktA, and aroGfbr and deletion of pheA, tyrA, and/or tyrR 
genes, was employed for the reaction, and TAL (Tyrosine 
ammonia-lyase) from either Rhodotorula glutinis or Sac-
charothrix espanaensis and p-coumaric acid hydroxylase 
genes (HpaBC from E. coli or Sam5 from S. espanaensis) 
were introduced into it. The final titers of caffeic acid, 
reported in various publications, are quite different; one 
report used tyrosine-overproducing E. coli by introduc-
ing tyrAfbr, ppsA, tktA, and aroGfbr while deleting pheLA 
and tyrA genes, and overexpressing TAL. Tyrosine from 
R. glutinis, together with HpaBC, enabled 766.7  mg/L 
titer of caffeic acid production [18]. Another report intro-
duced TAL from S. espanaensis and Sam5 into tyrosine-
overproducing E. coli strain, in which tyrR was disrupted 
and tyrAfbr and aroGfbr were overexpressed. The strain 
synthesized 150  mg/L caffeic acid [19]. In this article, 
we reported the successful synthesis of EC in E. coli. We 
selected a gene encoding a protein that would synthe-
size EC from caffeoyl-CoA and ethanol (Fig.  1). Subse-
quently, we manipulated the shikimate pathway in E. coli 
to increase the synthesis of caffeic acid. By introducing 
genes for the conjugation of caffeic acid and ethanol into 

an engineered E. coli strain, and providing ethanol, we 
could successfully synthesize EC.

Materials and methods
Constructs
Caffeoyl-CoA transferases from A. thaliana (AtCAT1 
[AT5G63560.1] and AtCAT2 [At5g41040]) were cloned 
using reverse transcription-polymerase chain reaction 
(RT-PCR). The primers were as follows: aaacatATG GCC 
GAC TCA TTC G and aaggtaccTCA TAT ATC CAT AAT 
CCC TTGGA for AtCAT1, and aaacatATG GTT GCT 
GAG AAC AATAA and aaggtaccTTA TAT CTG TAA AAA 
CTG TTC TTG A for AtCAT2. The restriction enzyme 
recognition sites  (NdeI and KpnI) are underlined in the 
primer sequences. The PCR product was sequenced to 
verify the nucleotide sequence. The previously cloned 
Os4CL [20] was subcloned into EcoRI and HindIII sites 
of pCDF-duet1 (Novagen) and the resulting construct 
was named pC-OS4CL. AtCAT1 and AtCAT2 were 
subcloned into NdeI/KpnI site of pC-OS4CL, respec-
tively, and became pC-OS4CL-AtCAT1 and pC-OS4CL-
AtCAT2, accordingly. The previously cloned SeTAL and 
HpaBC [21, 22] were subcloned into EcoRI and Hin-
dIII sites and NdeI and XhoI sites of pET-duet1 (Nova-
gen), respectively, resulting in the construct named 
pE-SeTAL-HpaBC.

Synthesis of EC
Escherichia coli BL21 (DE3) transformant, containing 
pC-OS4CL-AtCAT1 (B-EC1 in Table  1), was grown in 
Luria–Bertani (LB) broth with 50 μg/mL spectinomycin 
overnight at 37 °C. The culture was inoculated into fresh 
LB medium and grown at 37 °C until the  OD600 reached 
1.0. Thereafter, isopropyl β-D-1-thiogalactopyranoside 
(IPTG) was added to the medium to a final concentra-
tion of 1  mM and the cells were incubated at 18  °C for 
16  h. The amount of cells, corresponding to  OD600 of 3 
in 1 mL, was harvested and resuspended in 1 mL of M9 
medium containing 1% yeast extract, 2% glucose, 50 μg/
mL spectinomycin, and 1  mM IPTG. Caffeic acid and 
ethanol were also added to the medium resulting in a 
final concentration of 100µM and 1%, respectively. The 
culture was incubated at 30  °C for 24  h. The reaction 
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Fig. 1 Scheme for the synthesis of ethyl caffeate from caffeic acid
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product was extracted by ethyl acetate and dried in speed 
vacuum. The sample was eventually dissolved in dimethyl 
sulfoxide (DMSO) and analyzed by high-performance 
liquid chromatography (HPLC).

Analysis of EC
The reaction product was purified using thin layer chro-
matography (TLC; TLC silica gel 60 F254; Millipore, 
Burlington, MA, USA). The mobile phase was a mix-
ture of dichloromethane, ethyl acetate, and formic acid 
(9:1:0.25). The structure was determined using NMR 
[23]; 1H NMR of ethyl caffeate (400 MHz, Methanol-d4): 
δ 1.31 (3H, t, J = 7.1  Hz), 4.21 (2H, q, J = 7.1  Hz), 6.25 
(1H, d, J = 15.9 Hz), 6.78 (1H, d, J = 8.3 Hz), 6.94 (1H, dd, 

J = 8.3, 1.9 Hz), 7.03 (1H, dd, J = 1.9 Hz), and 7.53 (1H, d, 
J = 15.9 Hz).

HPLC analysis of the product was performed as earlier 
[24].

Results and discussion
Screening of genes for EC synthesis
EC is an ester of caffeic acid and ethanol. Plants contain 
genes that encode an enzyme capable of forming alkyl 
hydroxycinnamate ester [25, 26]. These enzymes have 
been involved in suberin and cutin biosynthesis, and 
are known to use long-chain alcohol (i.e. dodecan-1-ol) 
as an alkyl group donor. We assumed these enzymes to 
possibly use low-molecular-weight alcohol. Two genes 
(AtCAT1 and AtCAT2), which encoded fatty alcohol 

Table 1 Plasmids and Escherichia coli strains used in this study

Plasmids and E. coli strains Relevant properties or genetic markers Source

Plasmids

pCDFDuet CDF ori,  Smr Novagen

pETDuet F1 ori,  Ampr Novagen

pACYCDuet P15A ori,  Cmr Novagen

pC‑OS4CL pCDFDuet carrying 4CL from Oryza sativa This study

pC‑OS4CL‑AtCAT1 pCDFDuet carrying 4CL from Oryza sativa and CAT  from Arabidopsis thaliana This study

pC‑OS4CL‑AtCAT2 pCDFDuet carrying 4CL from Oryza sativa and CAT  from Arabidopsis thaliana This study

pE‑SeTAL‑HpaBC pETDuet carrying TAL from Saccharothrix espanaensis and HpaBC from Escherichia coli This study

pA‑aroG‑tyrA pACYCDuet carrying aroG and tyrA from E. coli [21]

pA‑aroGf‑tyrAf pACYCDuet carrying aroGf and tyrAf from E. coli [21]

pA‑aroGf‑ppsA‑tktA‑tyrAf pACYCDuet carrying aroGf, ppsA, tktA, and tyrAf from E. coli [21]

pA‑aroL‑aroGf‑ppsA‑tktA‑tyrAf pACYCDuet carrying aroL, aroGf, ppsA, tktA, and tyrAf from E. coli [30]

pA‑aroL‑aroE‑aroD‑aroB‑
aroGf‑ppsA‑tktA‑tyrAf

pACYCDuet carrying aroL, aroE, aroD, aroB, aroGf, ppsA, tktA, and tyrAf from E. coli [28]

pA‑aroC‑aroA‑aroL‑aroE‑aroD‑
aroB‑aroGf‑ppsA‑tktA‑tyrAf

pACYCDuet carrying aroC, aroA, aroL, aroE, aroD, aroB, aroGf, ppsA, tktA, and tyrAf from E. coli [31]

Strains

BL21 (DE3) F‑ ompT hsdSB(rB- mB-) gal dcm lon (DE3) Novagen

BT BL21(DE3) FRT-ΔtyrR::FRT-kanR -FRT [21]

BTP BL21(DE3) ΔtyrR::FRT- ΔPheA::FRT-kanR

-FRT
[21]

B‑EC1 BL21 harboring pC‑OS4CL‑AtCAT1 This study

B‑EC2 BL21 harboring pC‑OS4CL‑AtCAT2 This study

B‑EC3 BL21 harboring pC‑OS4CL‑AtCAT1 and pE‑SeTAL‑HpaBC This study

B‑EC4 BL21 harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑tyrA‑aroG This study

B‑EC5 BL21 harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑tyrAf‑aroGf This study

B‑EC6 BL21 harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑aroGf‑ppsA‑tktA‑tyrAf This study

B‑EC7 BL21 harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑aroL‑aroGf‑ppsA‑tktA‑tyrAf This study

B‑EC8 BL21 harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑aroL‑aroE‑aroD‑aroB‑aroGf‑ppsA‑tktA‑tyrAf This study

B‑EC9 BL21 harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑tyrAf‑aroC‑aroA‑aroL‑aroE‑aroD‑aroB‑aroGf‑
ppsA‑tktA

This study

BT‑EC7 BT harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑aroL‑aroGf‑ppsA‑tktA‑tyrAf This study

BTP‑EC7 BTP harboring pC‑OS4CL‑AtCAT1, pE‑SeTAL‑HpaBC, and pA‑aroL‑aroGf‑ppsA‑tktA‑tyrAf This study
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caffeoyl-coenzyme A acyltransferase [15, 26], were cloned 
and tested for the production of EC. Either of AtCAT1 
and AtCAT2 was subcloned, along with Os4CL encoding 
4-coumarate CoA ligase, since caffeic acid needed to be 
activated. E. coli harboring either pC-OS4CL-AtCAT1 
(B-EC1) or pC-OS4CL-AtCAT2 (B-EC2) were fed caf-
feic acid and ethanol. The formation of EC in the culture 
filtrate was examined using HPLC. Formation of a new 
product was observed in both culture filtrates. While the 
E. coli strain B-EC1 converted all the caffeic acid into the 
reaction product, the other strain (B-EC2) still had unre-
acted caffeic acid. This suggested that AtCAT1 had better 
catalytic efficiency than AtCAT2. The reaction product 
from the strain B-EC1 was purified, and was identified 
as EC by NMR. The results indicated that AtCAT1 could 
conjugate caffeoyl-CoA with ethanol to make EC (Fig. 2).

We further tested other low-molecular-weight alcohols 
as substrates. E. coli strain B-EC1 was fed caffeic acid and 
various low-molecular-weight alcohols, including metha-
nol, ethanol, propanol, butanol, and pentanol. Analysis 
of the supernatant showed that all the alcohols tested 
were substrates for the synthesis of corresponding alkyl 
caffeates (data not shown). Propanol turned out to be the 
best substrate among all alcohols tested, based on the 
unreacted caffeic acid remaining. The different perme-
ability of each alcohol into the E. coli, and other factors, 
such as volatility, were found to have an influence on the 
titer of each alkyl caffeate. Together, the results indicated 
that different alkyl caffeates could be synthesized by pro-
viding different alcohols. We did not explore the alcohols 

with more than six carbon atoms, since the solubility of 
such alcohols would be significantly low (in case of hex-
anol, the water solubility was 5.9 g/L).

We investigated the maximum amount of EC synthe-
sized when E. coli was fed 1% ethanol. E. coli harboring 
pC-OS4CL-AtCAT1 (B-EC1) was fed different concen-
trations of caffeic acid (0.5, 0.7, 1.0, 1.2, 1.5, and 1.8 mM) 
and 1% ethanol. Caffeic acid was completely converted 
into EC up to the concentration of 1.2 mM. However, at 
1.5 mM caffeic acid, approximately 0.3 mM was not con-
verted into EC, which suggested that AtCAT1 could con-
vert more than 1.2 mM (216.2 mg/L) caffeic acid and 1% 
ethanol (about 0.36 M) was not the limiting factor.

Synthesis of EC without feeding caffeic acid
We attempted to synthesize EC without feeding caffeic 
acid to E. coli. Caffeic acid was synthesized from tyros-
ine using SeTAL and HpaBC [27]. SeTAL converts tyros-
ine into p-coumaric acid, which is converted to caffeic 
acid by HpaBC. The two genes were introduced into E. 
coli harboring pC-OS4CL-AtCAT1. The resulting E. coli 
strain B-EC3 was fed ethanol thereafter. The culture fil-
trate from the strain B-EC3 showed a peak that had the 
same retention time as EC. Furthermore, no detect-
able caffeic acid was observed, indicating that all the 
synthesized caffeic acid had been converted to EC, and 
synthesis of more caffeic acid could increase the final 
titer of EC in E. coli. Therefore, we engineered E. coli to 
synthesize more tyrosine, which is a precursor of caf-
feic acid, by introducing genes, which are known to be 
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involved in the synthesis of tyrosine in E. coli. We tested 
six constructs (pA-aroG-tyrA, pA-aroGf-tyrAf, pA-
aroGf-ppsA-tktA-tyrAf, pA-aroL-aroGf-ppsA-tktA-tyrAf, 
pA-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-tyrAf, and 
pA-aroC-aroA-aroL-aroE-aroD-aroB-aroGf-ppsA-tktA-
tyrAf) with various combination of genes relevant to the 
shikimate pathway of E. coli, including tyrA, aroG, tyrAf, 
aroGf, aroC, aroA, aroL, aroE, aroD, aroB, ppsA, and 
tktA [24, 28]. Each construct was transformed into E. coli 
strain B-EC3 and the resulting strains (B-EC4 – B-EC9) 
were tested for the synthesis of EC. The E. coli strains 
overexpressing any of these constructs showed better 
titer than B-EC3, which did not overexpress the shiki-
mate pathway gene-module construct. The E. coli strain 
B-EC7, containing five genes, namely aroL, aroGfbr, 
ppsA, tktA, and tyrAfbr, produced the highest titer of 
EC (78.8  mg/L), followed by B-EC8 (68.6  mg/L), B-EC6 
(68.5  mg/L), B-EC5 (65.2  mg/L), B-EC9 (59.1  mg/L), 
B-EC4 (44.8 mg/L), and B-EC3 (38.6 mg/L) (Fig. 3). This 
result agreed with the previous studies in which the over-
expression of shikimate gene module increased the final 
titer of the synthesized compound; however, the best 
gene-module construct was different depending on the 
compound synthesized [24, 28, 29].

Our feeding study had shown that approximately 
216.2  mg/L (1.2  mL) caffeic acid was converted to EC. 
The current EC titer was approximately 78.8  mg/L 
(0.38  mM), which indicated that the final titer could be 
increased further. In order to increase the final titer of 
EC, we used E. coli mutants with deletion of genes from 
the shikimate pathway, for further production of tyrosine. 
The BT strain, in which tyrR was deleted, and the BTP 

strain, in which tyrR and tyrA were deleted, were used to 
increase the production of tyrosine [21]. We introduced 
pC-OS4CL-AtCAT1 and pA-aroL-aroGfbr-ppsA-tktA-
tyrAfbr into BT and BTP (BT-EC7, BTP-EC7) to examine 
the titer of EC. Both the mutant strains showed better 
titer than the wild type. The E. coli strain BT-EC7 synthe-
sized approximately 116.7 mg/L EC, which was 1.48-fold 
higher than in the wild-type strain (Fig. 4).

EC is a natural compound found in some plants, and 
its biosynthetic pathway is not yet known. Here, we 
designed the biosynthetic pathway, assembled genes for 
the synthesis of EC, and successfully synthesized the 
compound. Rational design of the biosynthetic pathway 
and selection of genes from diverse sources can make the 
synthesis of diverse compounds feasible. Furthermore, 
this could lead to the synthesis of unnatural compounds, 
derived from natural compounds. For example, we could 
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synthesize at least four other alkyl caffeates, depending 
on the alcohol, which have not been found in nature yet, 
and the compounds could potentially have different bio-
logical activities.
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