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Abstract 

The phytochemical investigation on the methanol extract of the rhizomes of Atractylodes macrocephala resulted in 
the discovery of one new compound 9α-hydroxyatractylenolide (1) and 21 known compounds including atracty‑
lone (2), 3β-acetoxyatractylon (3), atractylenolide I (4), atractylenolide II (5), 8-epiasterolid (6), atractylenolide III (7), 
atractylenolide VII (8), 8-epiatractylenolide III (9), eudesm-4(15)-ene-7α,11-diol (10), linoleic acid (11), myristic acid 
(12), 3-O-caffeoyl-1-methyquinic acid (13), (2E,8E,10E)-tetradecatriene-4,6-diyne-1,14-diol (14), 14-aceroxy-12-sene‑
cioyloxytetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (15), isoscopoletin (16), caffeic acid (17), protocatechic acid (18), 
3-O-caffeoylquinic acid (19), 4-O-caffeoylquinic acid (20), 1,5-di-O-caffeoylquinic acid (21), and nicotinic acid (22). 
Their structures were identified using nuclear magnetic resonance (NMR) and mass spectroscopy, and by comparison 
with previously published data. Compounds 4, 5, 6, 8, and 10–22 significantly inhibited lipopolysaccharide (LPS)-
induced nitric oxide (NO) production in RAW264.7 macrophages, and compounds 4, 5, 6, 16, and 17 showed those 
responses in BV2 microglial cells. Especially, compound 6 showed the second-best effect, and inhibited the LPS-
induced production of prostaglandin E2 (PGE2), the protein expression of inducible nitric oxide synthase (iNOS) and 
cyclooxygenase (COX)-2, and the production of cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor 
(TNF)-α in both cells. These inhibitory effects were mediated by the inactivation of nuclear factor kappa B (NF-κB) 
signaling pathway.
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Introduction
Inflammation is associated with the activation of mac-
rophages or monocytes that are responsible for the innate 
and adaptive immune responses of the human body. 

Following various stimuli, these immune cells release a 
series of pro-inflammatory mediators including nitric 
oxide (NO), prostaglandin E2 (PGE2), cytokines such 
as interleukin (IL)-1β, IL-6, and tumor necrosis factor 
(TNF)-α, chemokines, and signaling-associated proteins 
[1] to protect the infected tissues site and to maintain the 
homeostasis of the body [2]. However, a dysregulation 
of the inflammatory responses via continuous stimula-
tion results in the overproduction of pro-inflammatory 
mediators, leading to the development of various inflam-
matory diseases including atherosclerosis, cardiovascular 
disorders, diabetes, tumor, asthma, septic complications, 
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and neurodegenerative diseases [3–5]. Macrophages are 
the most dominant and widely distributed immune cell 
types throughout the body, and microglia are consid-
ered resident macrophages in the central nervous system 
(CNS) [6]. Macrophages and microglia are important 
sources of pro-inflammatory mediators through the 
activation of transcription factors such as nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
and mitogen-activated protein kinase (MAPK) due to 
lipopolysaccharide (LPS) stimulation [7, 8]. LPS is the 
most abundant lipidic component of the gram-negative 
bacterial cell wall [9]. Since macrophages and microglia 
stimulated by LPS produce excessive pro-inflammatory 
mediators, they are being utilized in in  vitro models to 
evaluate the effectiveness of potentially anti-inflamma-
tory candidate substances [10, 11].

Atractylodes macrocephala, which belongs to the Com-
positae family, is a perennial herb, widely distributed in 
East Asia [12]. Traditionally, this plant has been used for 
the treatment of an abnormal function of the digestive 
system including malfunction of the spleen, anorexia, 
abdominal distension, diarrhea, dizziness, and palpita-
tion due to the retention of phlegm and fluid, edema, 
spontaneous sweating, threatened abortion, oedema, 
excessive perspiration, and an abnormal fetal movement 
[13, 14]. In several recent studies, various components of 
A. macrocephala were isolated including essential oils, 
sesquiterpenoids, polysaccharides, amino acids, vitamins, 
and resins [15], and their physiological activity including 
anti-inflammatory [16], neuroprotective [17], anti-cancer 
[18], anti-oxidant [19], and immunological enhance-
ment effects [20] were evaluated. In this investigation, 
we described the isolation and structural identification 
of 22 compounds from the rhizomes of A. macrocephala 
together with the evaluation of their anti-inflammatory 
effects using RAW264.7 macrophage and BV2 microglial 
cell lines.

Materials and methods
Plant materials
The rhizomes of A. macrocephala were harvested in 
Andong (Gyeongbuk) in December 2018. The plant 
material was identified by Prof. Youn-Chul Kim, Col-
lege of Pharmacy, Wonkwang University, Iksan, Korea. A 
specimen of A. macrocephala (No. WSY-2019-003) has 
been deposited at the College of Pharmacy, Wonkwang 
University, Korea.

Extraction and isolation
The dried rhizomes of A. macrocephala (2.0 kg) were cut 
and extracted using MeOH three times for 3 h at 80 °C. 
The resultant MeOH extract (100.9 g) was suspended in 
water (1.0 L × 3) and then sequentially partitioned using 

equal volumes of n-hexane, dichloromethane, ethyl 
acetate, and n-butanol. Each fraction was evaporated in 
vacuo to yield the residues of n-hexane (8.9  g), CH2Cl2 
(3.7 g), EtOAc (1.5 g), n-BuOH (3.9 g), and water (72.3 g) 
extracts, respectively.

The n-hexane soluble fraction (8.5 g) was subjected to 
column chromatography (CC) using a silica gel column 
and eluted with an n-hexane/EtOAc (100:0 → 1:1) gradi-
ent system. The fractions were combined based on their 
thin layer chromatography (TLC) pattern to yield sub-
fractions, which were designated H1–H7. Fraction H1 
(3.8  g) was purified by Sephadex LH-20 CC (n-hexane, 
100:0) to yield six subfractions (H11–H16). Subfrac-
tion H11 was purified by silica gel CC (n-hexane/EtOAc, 
100:1 → 10:1), and by ODS CC (MeOH/H2O, 1.5:1 → 2:1) 
to yield 1 (1.5  mg). In addition, subfraction H13 was 
purified by silica gel CC (n-hexane/EtOAc, 30:1 → 10:1), 
and by ODS CC (MeOH/H2O, 1:1 → 3:1) to yield 9 
(12.0  mg) and 5 (90.2  mg). Subfraction H15 was puri-
fied by silica gel CC (n-hexane/EtOAc, 20:1 → 5:1), and 
by ODS CC (MeOH/H2O, 1:1 → 2:1) to yield 6 (2.6 mg). 
Fraction H2 (1.1  g) was subjected to silica gel CC elut-
ing with an n-hexane/EtOAc (50:1 → 10:1) gradient sys-
tem to yield three subfractions (H21–H23). Subfraction 
H21 was then purified by repeated ODS CC (MeOH/
H2O, 2.5:1 → 3.5:1) to yield 3 (13.2 mg), and 8 (50.6 mg). 
Fraction H3 (1.2 g) was subjected to silica gel CC eluting 
with a n-hexane/EtOAc (15:1 → 5:1) gradient system to 
yield six subfractions (H31–H36). Subfraction H31 was 
purified by silica gel CC (n-hexane/EtOAc, 25:1 → 15:1), 
and by ODS CC (MeOH/H2O, 1.5:1 → 3.5:1) to yield 4 
(55.6  mg) and 7 (165.6  mg). Moreover, subfraction H34 
was then purified by ODS CC (MeOH/H2O, 4.5:1 → 6:1) 
to yield 11 (73.2  mg), and 12 (23.0  mg). Fraction H4 
(435.2 mg) was subjected to silica gel CC eluting with a 
n-hexane/EtOAc (8:1 → 4:1) gradient system to achieve 
five subfractions (H41–H45). Subfraction H42 was puri-
fied by ODS CC (MeOH/H2O, 1.5:1 → 3:1) to yield 10 
(13.2 mg).

The CH2Cl2 soluble fraction (3.5  g) was subjected to 
CC using a Sephadex LH 20 column and eluted with 
CH2Cl2/MeOH (1:1 and 100% MeOH) system. The frac-
tions were combined based on their TLC pattern to 
yield subfractions, which were designated D1–D4. Frac-
tion D2 (596.8  mg) was subjected to silica gel CC elut-
ing with n-hexane/EtOAc (5:1 → 1:1) gradient system to 
yield eight subfractions (D21–D28). Subfraction D25 was 
purified by ODS CC (MeOH/H2O, 1:1 → 2:1), followed 
by preparative high-performance liquid chromatogra-
phy (HPLC) eluted with MeOH/H2O (60:40) to give 14 
(12.4  mg). Fraction D3 (464.6  g), containing 15, and 16 
was purified by silica gel CC n-hexane/EtOAc (4:1 → 1:1), 
followed by medium pressure liquid chromatography 
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(MPLC) (MeOH/H2O, 3:1 → 1:1), and finally by ODS 
CC (MeOH/H2O, 2:1 → 1:1) to give 15 (33.2 mg) and 16 
(11.2 mg).

The EtOAc soluble fraction (1.1  g) was subjected to 
CC using a silica gel column and eluted with CHCl3/
MeOH/H2O (20:1:0.1 → 1:1:0.1) gradient system. The 
fractions were combined based on their TLC pattern to 
yield subfractions, which were designated E1–E10. Frac-
tion E3 (135.7  mg) was subjected to ODS CC eluting 
with MeOH/H2O (3:1 → 1.5:1) gradient system to give 
six subfractions (E31–E36). Subfraction E33 was purified 
by silica gel CC (CHCl3/MeOH, 9:1) to give 12 (32.2 mg). 
Fraction E5 (359.2  mg) was subjected to silica gel CC 
eluting with a CHCl3/MeOH/H2O (4:1:0.1 → 1:1:0.1) 
gradient system to give six subfractions (E51–E56). 
Subfraction E53 was purified by MPLC (MeOH/H2O, 
1:4 → 1:3), and by ODS CC (MeOH/H2O, 1:3.5) to give 
17 (8.3 mg) and 18 (6.0 mg). Fraction E8 (204.5 mg) was 
subjected to silica gel CC eluting with CHCl3/MeOH/
H2O (3:1:0.1 → 1:1:0.1) gradient system to give eight 
subfractions (E81-E88). Subfraction E85 was purified by 
ODS CC (MeOH/H2O, 1:2 → 1:1), followed by prepara-
tive HPLC eluting with MeOH/H2O (20:80 → 60:40) gra-
dient system, to give 19 (10.6  mg), 20 (2.6  mg), and 21 
(9.8  mg). Besides, subfraction E87 was purified by ODS 
CC (MeOH/H2O, 1:1.5) to give 22 (14.5 mg).

Chemicals and reagents
Tissue culture reagents RPMI1640, Dulbecco’s modified 
Eagle’s medium (DMEM) and fetal bovine serum (FBS) 
were obtained from Gibco BRL Co. (Grand Island, NY, 
USA). LPS was purchased from Sigma-Aldrich (St. Louis, 
MO, USA). 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphe-
nyltetrazolium bromide sodium (MTT) was obtained 
from Glentham Life Sciences (Corsham, UK). The anti-
inducible nitric oxide synthase (iNOS) primary antibod-
ies were purchased from Cayman (Ann Arbor, MI, USA), 
anti-cyclooxygenase (COX)-2, anti-inhibitor kappa B 
(IκB)-a, anti-p-IκB-a, anti-p-p65, anti-p65, anti-p-extra-
cellular signal-regulated kinase (ERK), anti-ERK, anti-p-
c-Jun N-terminal kinase (JNK), anti-JNK, anti-p-p38, and 
anti-p38 from Cell Signaling (Danvers, MA), and anti-β-
actin from Santa Cruz Biotechnology (Dallas, TX, USA), 
respectively. Anti-mouse, anti-goat, and anti-rabbit sec-
ondary antibodies were purchased from Merck Millipore 
(Darmstadt, Germany).

Cell culture
The immortalized murine RAW264.7 macrophages and 
BV2 microglial cells were maintained at 5 × 105 cells/mL 
in 100  mm dishes in RPMI1640 medium supplemented 
with 10% (v/v) heat-inactivated FBS, penicillin G (100 
units/mL), streptomycin (100  mg/mL), and L-glutamine 

(2  mM), and cultured at 37  °C in a humidified atmos-
phere containing 5% CO2.

Cell viability assay
An MTT assay was conducted to determine cell viabil-
ity. RAW264.7 and BV2 cells were cultured in a 96-well 
plate at a density 1 × 105 cell/mL, and the cultured cells 
were treated with the test compounds for 24  h. Subse-
quently, 50 μL of an MTT solution were added to each 
well at a final concentration of 0.5 mg/mL, and the cells 
were incubated for 3 h in a humidified incubator at 37 °C. 
After removing the supernatant, the formazan formed 
was dissolved in 150  μL of dimethyl sulfoxide (DMSO), 
and mixed for 15 min. The optical density of the DMSO 
solution was measured at 540  nm wavelength using a 
microplate reader (Bio-Rad, Hercules, CA, USA). The 
optical density of the formazan formed in the control 
(untreated group) cells was considered to represent 100% 
viability, and the viability of cells in other groups was 
expressed as a percentage of obtained viable cells relative 
to the control. This assay was independently conducted 
three times.

Determination of nitrite
Nitrite is an indicator of NO production; its concentra-
tion in the culture medium was measured using the 
Griess reaction. RAW264.7 and BV2 cells were cultured 
in a 24-well plate at a density of 2 × 105 cell/mL for 12 h. 
Cells were treated with test compounds for 3 h, and then 
stimulated with LPS (1  μg/mL) for 24  h. Each culture 
medium (100  μL) was mixed with the same volume of 
Griess reagent (Sigma-Aldrich, St. Louis, MO, USA) for 
15 min at room temperature. The absorbance was meas-
ured spectrophotometrically at 540 nm wavelength using 
an enzyme-linked immunosorbent assay (ELISA) plate 
reader. The nitrite concentration in the culture medium 
was determined from a standard curve of sodium nitrite.

PGE2 assay
The culture media were collected to determine the PGE2 
level present in each sample using the appropriate ELISA 
kit from ENZO Life Sciences (Farmingdale, NY, USA). 
Three independent assays were performed according to 
the manufacturer’s instructions.

IL‑1β, IL‑6, and TNF‑α assays
The levels of IL-1β, IL-6, and TNF-α present in each sam-
ple were determined using a commercially appropriate 
kit from R&D Systems (Minneapolis, MN). Three inde-
pendent assays were performed according to the manu-
facturer’s instructions.
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Western blot analysis
RAW264.7 and BV2 cells were cultured in a 6-well plate 
at a density of 2 × 105 cell/mL for 12 h. Then cells were 
treated with the test compounds for 3  h, followed by 
stimulation with LPS (1 μg/mL) for 24 h. Radioimmu-
noprecipitation assay (RIPA) buffer (Thermo Scientific, 
MA, USA) was used to prepare lysate. The concentra-
tion of protein was measured using Bradford protein 
assay (Bio-Rad Laboratories, CA, USA) and normal-
ized to ensure that equal amounts were loaded. Sub-
sequently, 30  μg of protein from each sample were 
resolved using 6%, 8%, and 12% sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis (SDS–PAGE). 
The proteins were electrophoretically transferred onto 
Hybond enhanced chemiluminescence (ECL) nitro-
cellulose membranes (Bio-Rad, Hercules, CA, USA). 
The membranes were blocked with 5% skim milk and 
sequentially incubated with particular primary anti-
bodies and horseradish peroxidase (HRP)-conjugated 
secondary antibodies, followed by ECL detection 
(Amersham Pharmacia Biotech, Piscataway, NJ, USA).

Statistical analysis
The data are expressed as mean ± standard deviation 
(SD) of at least three independent experiments. To com-
pare three or more groups, a one-way analysis of variance 
(ANOVA) was used, followed by Tukey’s multiple com-
parison tests. Statistical analysis was performed using 
GraphPad Prism software, version 3.03 (GraphPad Soft-
ware Inc., San Diego, CA, USA).

Results
Compounds isolated from A. macrocephala
Twenty-two compounds were isolated from the rhizomes 
of A. macrocephala using various combined chroma-
tographic methods. The nuclear magnetic resonance 
(NMR) and mass spectroscopy (MS) data of the isolated 
compounds were analyzed and compared with those 
reported in the literature to elucidate the structures of 
the isolated compounds. Compound 1 was obtained as a 
white solid. [α]D

23 + 232.4 (c 0.07, MeOH). Its molecular 
formula of C15H20O3 was determined based on the analy-
sis of HR-ESI-MS data showing m/z peak at 249.1496 
[M + H]+ (calculated for C15H21O3: 249.1412) (Fig.  1), 

Fig. 1  HR-ESI–MS spectrum of compound 1 
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and the analysis of 1H NMR and 13C NMR data (Table 1, 
Fig.  2, Additional file  1: Fig. S1). The 1H-NMR spec-
trum of 1 (in CDCl3) showed the following signals: two 
tertiary methyl groups at δ 0.89 (3H, s) and 1.83 (3H, t, 
J = 1.6 Hz), which were typical of CH3-14 and CH3-13 of 
eudesmanolides; together with one terminal double bond 
at δ 4.60 (1H, d, J = 1.6 Hz) and 4.88 (1H, d, J = 1.6 Hz) for 
H-15. The 1H-NMR patterns of 1 were similar to those 
of the known compound 5 (atractylenolide II) [21], as 
stated in the Supplementary data. However, the 1H-NMR 
spectrum of 1 was distinct from that of 5 because there 
was one more proton signal at δ 3.88 (1H, d, J = 3.6 Hz). 
Moreover, in 13C-NMR spectrum, there was an addi-
tional carbon signal at δ 75.4. Taking the molecular for-
mula into account, it was suggested that hydroxylation 

had taken place on one of the secondary carbons. Com-
pared with 5, H-8 signals of 1 notably shifted to lower 
fields, from δ 4.80 (1H, t, J = 6.4  Hz) to δ 4.98 (1H, d, 
J = 2.0 Hz). Therefore, it was supposed that a hydroxyla-
tion took place at C-9, resulting in increased chemical 
shift values of H-8 for an inductive effect. In the hetero-
nuclear multiple bond correlation (HMBC) spectrum, 
the long-range correlations from the carbon signal at δ 
75.4 (C-9), to H-8 signals confirmed the hydroxyl group 
located at C-9 (Table 1, Additional file 1: Fig. S3, S5). The 
coupling constants and the cross peak between H-9 and 
the signal at δ 4.98 (1H, d, J = 2.0 Hz) and δ 0.89 (3H, s), 
assigned to H-8 and CH3-14, respectively, also CH3-14 
correlated with H-2β, in NOESY spectrum confirmed 
that the H-9 was axial and β-oriented (Additional file 1: 
Fig. S4, S6). Finally, the chemical structure of 1 is formed 
by adding an extra oxygen in comparison with 5, and 1 
was established as 9α-hydroxyatractylenolide, namely 
9α-hydroxyeudesma-4(15),7(11)-dien-8α,12-olide. When 
compound 1 was separated and purified by ODS CC, it 
was found that its Rf value was very close to that of com-
pound 7 by TLC analysis. It was worth noting that 1 has 
no fluorescence under 254  nm ultraviolet light, while 7 
shows dark brown fluorescence. After heating and color 
development spraying with 10% sulfuric acid, 1 showed 
blue-purple and blue fluorescence, however, 7 showed 
dark brown and yellow-green fluorescence at 254 and 
365  nm, respectively. There was a significant difference 
between the two compounds. This difference is related to 
the position of OH. The lone pair electron on the 8-posi-
tion OH of 7 formed a p-π conjugation effect with a dou-
ble bond and carbonyl, enhancing the fluorescence, while 
the OH in 1 did not have the above effect at the 9-posi-
tion. As far as we know, its spectroscopic data had not 
been reported before. In addition, the other compounds 
were identified by comparing with previously published 
data as presented in Fig. 3.   

Table 1  NMR data for compound 1 in CDCl3

No δCa δH (J, Hz)b HMBC

1 34.6 1.33 (1H, m)
2.06 (1H, dd, J = 13.6, 4.4 Hz)

C2, C10, C14

2 22.3 1.60 (2H, m)

3 36.3 1.96 (1H, m)
2.35 (1H, m)

C2, C4, C15
C4

4 148.9

5 42.2 2.38 (1H, m) C10

6 25.6 2.31 (1H, m)
2.67 (1H, dq, J = 12.8, 2.8 Hz)

C7, C10
C7, C8, C10

7 159.1

8 79.9 4.98 (1H, d, J = 2.0 Hz)

9 75.4 3.88 (1H, d, J = 3.6 Hz) C5, C7, C8

10 41.0

11 121.9

12 175.1

13 8.4 1.83 (3H, t, J = 1.6 Hz) C7, C11, C12

14 15.7 0.89 (3H, s) C1, C5, C9, C10

15 107.3 4.88 (1H, d, J = 1.6 Hz)
4.60 (1H, d, J = 1.6 Hz)

C3, C5

Fig. 2  The key HMBC (A) and NOESY (B) correlations (arrow) of compound 1 
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Comparing with previously published data, 
the other compounds were identified as atracty-
lone (2) [22], 3β-acetoxyatractylon (3) [22], atrac-
tylenolide I (4) [23], atractylenolide II (5) [21], 
8-epiasterolid (6) [24], atractylenolide III (7) [14], 
atractylenolide VII (8) [25], 8-epiatractylenolide 
III (9) [14], eudesm-4(15)-ene-7α,11-diol (10) 
[26], linoleic acid (11) [27], myristic acid (12) [27], 
3-O-caffeoyl-1-methyquinic acid (13) [28], (2E,8E,10E)-
tetradecatriene-4,6-diyne-1,14-diol (14) [29], 

14-aceroxy-12-senecioyloxytetradeca-2E,8Z,10E-trien-
4,6-diyn-1-ol (15) [30], isoscopoletin (16) [31], caf-
feic acid (17) [32], protocatechic acid (18) [33], 
3-O-caffeoylquinic acid (19) [28], 4-O-caffeoylquinic 
acid (20) [34], 1,5-di-O-caffeoylquinic acid (21) [35], 
and nicotinic acid (22) [36] (Fig. 3).

Although we tried to evaluate the bioactivity of the 
isolated compounds, the amounts of compounds 1, 3 
and 20 were too small to determine their bioactivities. 
In addition, compound 2 was obtained in a sufficient 
amount, but further NMR analysis indicated changes 
in the compound. Thus, the remaining 18 compounds 
were used to examine their bioactivity.

Fig. 3  The chemical structures of compounds 1–22 isolated from Atractylodes macrocephala 
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Inhibitory effect of compounds isolated from A. 
macrocephala on LPS‑induced NO production in RAW264.7 
and BV2 cells
First, we evaluated whether the compounds exerted 
a cytotoxic effect on RAW264.7 and BV2 cells. Cells 
were treated with 5, 10, 20, 40, and 80 μM of selected 
compounds for 24  h, and cell viability was measured 

by MTT assay. The compounds showed no cytotoxicity 
for any of the tested concentrations (data not shown). 
Therefore, the three highest concentrations (20, 40, 
and 80  μM) were used in the NO assay. Cells were 
pre-treated with 20, 40, and 80  μM of compounds for 
3 h, and then stimulated with LPS (1 μg/mL) for 24 h. 
Regarding RAW264.7 cells, most compounds inhib-
ited the LPS-induced NO production, except for com-
pounds 7 and 9, with IC50 values in the 26.8–78.1 μM 
range. In BV2 cells, all the tested compounds sup-
pressed NO production in a concentration-depend-
ent manner. Compounds 4, 5, 6, 16, and 17, showed 
an inhibitory effect higher than 50% within the used 
concentration range, with IC50 values of 26.0 ± 0.23, 
46.8 ± 1.12, 37.4 ± 4.03, 58.5 ± 2.23, and 72.3 ± 3.35 μM, 
respectively (Table 2).

Inhibitory effect of 8‑epiasterolid on LPS‑induced PGE2 
production in RAW264.7 and BV2 cells
According to the above result, atractylenolide I (4) 
showed the lowest IC50 value in both RAW264.7 and 
BV2 cells. However, the anti-inflammatory and anti-
neuroinflammatory effects of this compound was 
already reported [16, 17]. Therefore, we selected 8-epi-
asterolid (6), which was the second most effective, 
and examined its further anti-inflammatory activity. 
RAW264.7 and BV2 cells were pre-treated with 8-epi-
asterolid for 3  h, followed by stimulation with LPS 
(1 μg/mL) for 24 h to examine whether it affected PGE2 
production. It was found that pre-treatment with 8-epi-
asterolid significantly inhibited the LPS-induced PGE2 
production in both RAW264.7 and BV2 cells (Fig. 4).

Table 2  Inhibitory effects of the test compounds on LPS-
induced NO production in RAW264.7 and BV2 cells

Compounds IC50 (μM)

RAW264.7 BV2

Butein 5.40 ± 0.50 4.41 ± 0.45

4 26.8 ± 3.86 26.0 ± 0.23

5 60.5 ± 16.8 46.8 ± 1.12

6 39.1 ± 3.22 37.4 ± 4.03

7 1.7% at 80 μM 20.3% at 80 μM

8 50.8 ± 7.38 35.9% at 80 μM

9 9.2% at 80 μM 27.3% at 80 μM

10 64.3 ± 12.1 24.2% at 80 μM

11 41.2 ± 4.97 47.7% at 80 μM

12 36.7 ± 4.11 35.9% at 80 μM

13 59.2 ± 14.9 25.0% at 80 μM

14 28.4 ± 6.55 29.7% at 80 μM

15 51.3 ± 7.28 38.9% at 80 μM

16 29.8 ± 2.52 58.5 ± 2.23

17 34.8 ± 2.54 72.3 ± 3.35

18 44.5 ± 4.34 41.7% at 80 μM

19 28.8 ± 3.09 45.8% at 80 μM

21 78.1 ± 23.5 36.7% at 80 μM

22 28.0 ± 2.94 47.2% at 80 μM

Fig. 4  The effect of 8-epiasterolid on the LPS-induced production of PGE2 in RAW264.7 (A) and BV2 cells (B). Cells were pre-treated with or without 
the indicated concentrations of 8-epiasterolid for 3 h, and then stimulated with LPS (1 μg/mL) for 24 h. The level of PGE2 was quantified by ELISA. 
Values shown are means ± SD of three independent experiments. Experimental data are considered statistically significant at values. **p < 0.01 and 
***p < 0.001 in comparison with the LPS group
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Inhibitory effect of 8‑epiasterolid on LPS‑induced 
production of pro‑inflammatory cytokines in RAW264.7 
and BV2 cells
Based on the above results, we examined whether 
8-epiasterolid suppressed the production of pro-
inflammatory cytokines in LPS-induced RAW264.7 and 
BV2 cells. Both cells were pre-treated with 8-epiaster-
olid for 3  h, and then stimulated with LPS (1  μg/mL) 
for 24  h. At a concentration of 80  μM, 8-epiasterolid 
significantly suppressed the LPS-induced production 
of IL-1β, IL-6, and TNF-α in both RAW264.7 and BV2 
cells (Fig. 5).

Inhibitory effect of 8‑epiasterolid on LPS‑induced iNOS 
and COX‑2 expression in RAW264.7 and BV2 cells
We further investigated the effect of 8-epiasterolid on 
the expression of iNOS and COX-2 proteins induced 
by LPS in both cell lines. Cells were pre-treated with 
8-epiasterolid for 3  h, and then stimulated with LPS 
(1  μg/mL) for 24  h. The degree of expression of iNOS 
and COX-2 proteins in the lysates was determined 
using Western blot analysis. The pre-treatment with 
8-epiasterolid at concentrations of 40 and 80  μM sup-
pressed the LPS-induced iNOS and COX-2 expression 
in both RAW264.7 and BV2 cells (Fig. 6).

Effect of 8‑epiasterolid on the LPS‑induced activation 
of NF‑κB and MAPK signaling pathways
We examined whether 8-epiasterolid suppressed the acti-
vation of NF-κB pathway in LPS-induced RAW264.7 and 
BV2 cells. Both cell lines were pre-treated with 8-epias-
terolid for 3 h, and then stimulated with LPS (1 μg/mL) 
for 1  h. The pre-treatment with 8-epiasterolid inhib-
ited the LPS-induced phosphorylation and degradation 
of IκB-α as well as the phosphorylation of p65 in both 
RAW264.7 and BV2 cells (Fig. 7).

Additionally, we investigated whether 8-epiasterolid 
affects the LPS-induced activation of the MAPK path-
ways in RAW264.7 and BV2 cells. Both cell lines were 
pre-treated with 8-epiasterolid for 3  h, and then stimu-
lated with LPS (1 μg/mL) for 30 min. The phosphoryla-
tion levels of p38, ERK, and JNK remarkably increased 
by LPS-stimulation. However, the pre-treatment with 
8-epiasterolid did not inhibit the activation of all three 
MAPKs (Fig. 8).

Discussion
In this investigation, we isolated 22 compounds from 
the rhizomes of A. macrocephala using various com-
bined chromatographic methods, and evaluated their 
anti-inflammatory effects measuring the degree of 
the production of NO in LPS-induced RAW264.7 and 

Fig. 5  The effect of 8-epiasterolid on the LPS-induced production of pro-inflammatory cytokines in RAW264.7 (A–C) and BV2 cells (D–F). Cells were 
pre-treated with or without the indicated concentrations of 8-epiasterolid for 3 h, and then stimulated with LPS (1 μg/mL) for 24 h. The levels of 
pro-inflammatory cytokines were quantified by ELISA. Values are shown as mean ± SD of three independent experiments. Experimental data are 
considered statistically significant at values. **p < 0.01 and ***p < 0.001 in comparison with the LPS group
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BV2 cells. Among them, we found that 8-epiasterolid 
is the second most effect compound, and it inhibited 
the LPS-induced production of PGE2 and pro-inflam-
matory cytokines, and the expression of iNOS and 
COX-2 proteins. In addition, we confirmed that these 
inhibitory effects were regulated by the inactivation of 
NF-κB signaling pathway by 8-epiasterolid, not MAPK 
pathways.

The production of NO is catalyzed by the enzymatic 
activity of nitric oxide synthase (NOS), which converts 
L-arginine to NO and L-citrulline via the intermediate 
N-hydroxy-L-arginine [37, 38]. NO is known to play a 
key role in regulating the vascular, immune, and nervous 
systems [39]. In inflammatory conditions, the expres-
sion of NOS increases in various immune cells includ-
ing macrophages, monocytes, microglia, dendritic cells, 

Fig. 6  The effect of 8-epiasterolid on the LPS-induced expression of iNOS and COX-2 protein in RAW264.7 (A) and BV2 cells (B). Lysates were 
prepared from cells pre-treated with or without the indicated concentrations of 8-epiasterolid for 3 h and then with LPS (1 μg/mL) for 24 h. The level 
of expression of iNOS and COX-2 proteins was determined by Western blot analysis. Representative blots from three independent experiments are 
shown

Fig. 7  The effect of 8-epiasterolid on the LPS-induced activation of NF-κB pathway in RAW264.7 (A, C) and BV2 cells (B, D). Lysates were prepared 
from cells pre-treated with or without the indicated concentrations of 8-epiasterolid for 3 h and then with LPS (1 μg/mL) for 1 h. The level of 
expression of proteins was determined by Western blot analysis. Representative blots from three independent experiments are shown
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eosinophils, and neutrophils, resulting in the release of 
large amounts of NO [38]. Subsequently, the overpro-
duction of NO leads to development of inflammatory 
disorders in the joints, gut, and lungs [38], neurodegen-
erative diseases including Alzheimer’s disease, Parkin-
son’s disease, multiple sclerosis [39], and cancer [40]. As 
inhibiting NO production could have a therapeutic effect 
on inflammatory diseases, we investigated whether the 
compounds isolated from A. macrocephala might inhibit 
the LPS-induced NO production in RAW264.7 mac-
rophages and BV2 microglial cells. Our result showed 
that atractylenolide I (compound 4) has the lowest IC50 
value among the tested compounds, indicating that it 
has the highest inhibitory effect. Previous studies have 
reported that atractylenolide I has anti-inflammatory 
effects in RAW264.7 macrophages by inhibiting the acti-
vation of NF-κB and MAPK signaling pathways mediated 
through the cluster of differentiation 14 (CD14)/toll-like 
receptor 4 (TLR4) pathways [16]. This compound also 
showed neuroprotective effects through the suppres-
sion of NF-κB pathway and induction of heme oxygenase 
(HO)-1 protein in BV2 microglia cells and in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 
C57BL6/J models, suggesting that atractylenolide I might 
be effective in treating Parkinson’s disease [17]. 8-Epias-
terolid was the second most effective compound for NO 
production in both RAW264.7 and BV2 cells; additional 
experiments were conducted and showed that this com-
pound possesses anti-inflammatory properties (Table 2).

As mentioned in “Introduction” section, macrophages 
are the most dominant immune cell types throughout 
the body, and microglia play as the first and main form 
of active immune defense in CNS as the resident mac-
rophage cells in nerve system. Both cells exhibit the 
characteristics of macrophages, but microglial cells are 
specialized ones that are only found in the nerve system 
(brain and spinal cord) [41]. In addition, Luigina Guasti 
et al. investigated the in vitro effects of Apixaban (com-
mercial product named Eliquis®) on cell proliferation, 
mortality, cell migration, gene expression and matrix 
metalloproteinase (MMP) in 5 different cancer cell lines 
including OVCAR3 (ovarian cancer), MDA MB 231 
(breast cancer), CaCO-2 (colon cancer), LNCaP (prostate 
cancer), and U937 (histiocytic lymphoma). They reported 
that Apixaban increased the expression of tumor sup-
pression gene p16 in all cell lines, but reduced prolif-
eration in only 3 cancer cell lines (OVCAR3, CaCO-2, 
and LNCaP) [42]. These results suggest that the same 
compound might exhibit different effects in different 
cell lines. Therefore, the effects of tested compound iso-
lated from A. macrocephala applied to different cells 
(RAW264.7 macrophages and BV2 microglial cells) could 
be different.

Similar to NO, prostaglandins play an important role 
in the inflammatory process. Arachidonic acid (AA) in 
the body is converted into prostaglandin H2 (PGH2) by 
the action of cyclooxygenase (COX)-1 and 2 enzymes 
[43]. Then, PGH2 acts as a substrate of specific isomerase 

Fig. 8  The effect of 8-epiasterolid on the LPS-induced activation of MAPK cascades in RAW264.7 (A–C) and BV2 cells (D–F). Lysates were prepared 
from cells pre-treated with or without the indicated concentrations of compound 6 for 3 h and then with LPS (1 μg/mL) for 30 min. The expression 
level of proteins was determined by Western blot analysis. Representative blots from three independent experiments are shown
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and synthase enzymes to produce various prostanoids 
including PGE2, PGI2, PGD2, PGF2α, and thromboxane 
A2 (TXA2) [44]. PGE2 reacts with four types of recep-
tors (EP1–EP4), each with its distinct signal-transduction 
properties, and exerts diverse physiological functions 
[45]. Our results showed that the pre-treatment with 
8-epiasterolid significantly inhibited the LPS-induced 
production of PGE2 in both RAW264.7 and BV2 cells 
(Fig. 4).

Cytokines are small secreted proteins produced by 
every cell and regulate the immune responses [46]. They 
consist of six major families including ILs, chemokines, 
interferons, TNF, growth factors of hematopoiesis and 
transforming growth factor-β (TGF-β) members [47]. 
In particular, the pro-inflammatory cytokines including 
IL-1β, IL-6 and TNF-α are produced from activated mac-
rophages or microglia, and are associated with the up-
regulation of inflammatory responses [46]. Compound 
4 (atractylenolide I), which is one of the isolated com-
pounds, has been reported that this compound inhibited 
the production of TNF-α and IL-6 in LPS-stimulated 
RAW264.7 cell model [16]. Another investigation dem-
onstrated that compound 4 inhibited the production of 
TNF-α, IL-6, and IL-1β in LPS-induced BV2 microglial 
cell model, and that of TNF-α in MPTP-induced mice 
model [17]. Accordingly, we investigated the inhibitory 
effect of 8-epiasterolid on the LPS-induced production of 
pro-inflammatory cytokines in RAW264.7 and BV2 cells. 
Our results showed that the pre-treatment with 8-epi-
atsterolid markedly suppressed the production of IL-1β, 
IL-6, and TNF-α in both cells (Fig. 5).

NO is synthesized from the L-arginine via the enzy-
matic activity of NOS. There are three different isoforms 
of NOS including neuronal nNOS (NOS1), inducible 
iNOS (NOS2), and endothelial eNOS (NOS3) [48]. Each 
enzyme has its own physiological characteristics. nNOS 
is expressed in neurons, and has been reported to medi-
ate the long-term regulation of synaptic transmission 
[49]. eNOS is released mainly by endothelial cells; as it 
promotes blood vessel expansion and controls blood 
pressure, the functional anomalies in eNOS lead to the 
development of cardiovascular diseases [49]. eNOS is 
also known to control cancer-related phenomena such 
as angiogenesis, apoptosis, invasion, and metastasis 
[50]. nNOS and eNOS are constitutive forms that con-
tinuously secrete low concentrations of NO, and thus 
maintain several physiological functions. However, since 
iNOS is inducible, its production is increased by bacte-
rial LPS, cytokines, chemokines, and other stimuli such 
as stress [49, 51].

As mentioned above, COX is involved in the generation 
of PGE2. There are two COX isoforms: COX-1 and COX-
2. The former is a constitutive type that is expressed in 

most tissues and is associated with conducting normal 
physiological functions [52, 53]. On the other hand, 
COX-2 is an inducible form and is up-regulated through 
various inflammatory stimuli of cytokines, growth fac-
tors, tumor promotors, and bacterial LPS, which then 
increase the amount of PGE2 produced [54]. Although 
both COX-1 and COX-2 are related to the production 
of PGE2, the continuous suppression of COX-1 activity 
could lead to side effects such as gastrointestinal toxicity 
or mild bleeding diathesis [55]. Therefore, the selective 
inhibition of COX-2 is necessary to block inflamma-
tory responses. In previous results, 8-epiasterolid inhib-
ited the production of NO and PGE2 induced by LPS. 
Accordingly, the pre-treatment with 8-epiasterolid also 
repressed the LPS-induced expression of iNOS and 
COX-2, which are enzymatic proteins associated with 
the production of NO and PGE2, respectively, in both 
RAW264.7 and BV2 cells (Fig. 6).

NF-κB is one of the main transcription factors that 
regulates gene expression and that is involved in the 
production of pro-inflammatory mediators [56], devel-
opment of immune cells, cell cycle, proliferation, and 
cell death [57]. This family consists of five structurally 
related members, including RelA (p65), p50, p52, RelB, 
and c-Rel, and these subunits form at least 12 different 
homo- or heterodimers [58]. There are two different sign-
aling pathways: canonical and non-canonical pathways. 
The canonical pathway mainly regulates RelA (p65), p50, 
and c-Rel, and the non-canonical pathway predominantly 
activates p52 and RelB. Both pathways are important 
for regulating immune and inflammatory responses [56, 
59]. Under basal conditions, NF-κB dimers are present 
in the cytoplasm with their inhibitory protein IκB. How-
ever, pro-inflammatory cytokines or LPS can induce the 
phosphorylation and degradation of IκB, releasing NF-κB 
dimers and inducing phosphorylation [60]. Then, NF-κB 
dimers translocate into the nucleus, bind to the κB bind-
ing site, and regulate the expression of inflammatory 
genes including inflammatory enzymes (iNOS, COX-2), 
cytokines, and adhesion molecules [61]. Previous studies 
demonstrated that compound 4 (atractylenolide I) inhib-
ited the LPS-induced activation of NF-κB in RAW264.7 
and BV2 cells [16, 17]. Our investigation revealed that 
the pre-treatment with 8-epiasterolid inhibited the phos-
phorylation and degradation of IκB-α, and the phospho-
rylation of p65 protein in both RAW264.7 and BV2 cells 
(Fig. 7).

MAPK cascades are groups of serine/threonine pro-
tein kinases and have an important role in the transduc-
tion of extracellular signals to various cellular responses 
including proliferation, stress responses, apoptosis, and 
immune defense [62]. In mammalian cells, MAPK cas-
cades consist of three major types, including p38, ERK, 
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and JNK MAPKs, and each kinase can be activated by 
many different upstream MAPK kinases (MAP2K), and 
MAPK kinase kinases (MAP3Ks) [63]. The phospho-
rylation of MAPKs has been shown to be related to the 
enhancement of inflammatory responses through the 
induction of the release of pro-inflammatory mediators 
[62, 64]. In a previous study, compound 4 (atractylenolide 
I) inhibited the LPS-induced phosphorylation of p38 and 
ERK MAPKs, and showed anti-inflammatory activity in 
RAW264.7 cells [16]. Interestingly, the pre-treatment 
with 8-epiasterolid did not affect to the phosphorylation 
of p38, ERK, and JNK MAPKs. These data suggested that 
8-epiasterolid regulated the inflammatory responses by 
inhibiting of the NF-κB signaling pathway, not MAPK 
pathways.
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