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Abstract 

In this study, we investigated the effects of dicaffeoylquinic acid derivatives, including 1,4-di-O-caffeoylquinic acid 
(1,4-DCQA), 3,4-di-O-caffeoylquinic acid (3,4-DCQA), 3,5-di-O-caffeoylquinic acid (3,5-DCQA), 4,5-di-O-caffeoylquinic 
acid (4,5-DCQA), and 1,5-di-O-caffeoylquinic acid (1,5-DCQA) on glucose-stimulated insulin secretion (GSIS) activity 
and α-glucosidase activity were compared in rat INS-1 pancreatic β-cells. The α-glucosidase inhibitory activities of 
dicaffeoylquinic acid derivatives were as follows: 1,4-DCQA > 1,5-DCQA > 3,4-DCQA > 4,5-DCQA > 3,5-DCQA. In INS-1 
cells, dicaffeoylquinic acid derivatives showed no cytotoxic effect at any concentration (2.5–10 μM). In addition, the 
GSIS activities of dicaffeoylquinic acid derivatives were as follows: 4,5-DCQA > 3,4-DCQA > 1,4-DCQA > 3,5-DCQA > 1,5-
DCQA. Treatment of INS-1 cells with 4,5-DCQA resulted in a marked increase in protein expression of extracellular 
signal-regulated protein kinases (ERK), insulin receptor substrate-2 (P-IRS-2), Akt, phosphoinositide 3-kinase (P-PI3K), 
and pancreatic and duodenal homeobox-1 (PDX-1), which might be related to its GSIS activity in INS-1 cells. These 
findings indicate that the location of the dicaffeoyl functional group influences the anti-diabetic activity of quinic acid.
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Introduction
Diabetes mellitus (DM) is metabolic endocrine disorder 
in the world associated with abnormal compromised 
lipid and carbohydrate metabolism. One approach for the 
treatment of type 2 DM is using α-glucosidase inhibitors 
as an oral anti-hyperglycemic drug [1]. α-Glucosidase 
inhibitors has its own mechanism of action that dimin-
ish the levels of postprandial blood glucose. It can help in 
retarding the absorption of carbohydrates by decreasing 
α-glucosidase activity in the epithelium of small intes-
tine [2]. Acarbose, miglitol, and voglibose are clinically 

approved as α-glucosidase inhibitors [3]. These three 
α-glucosidase inhibitors are sugars or its derivatives, 
which can induce gastrointestinal side effects [3]. A range 
of chemical compounds isolated from natural prod-
ucts have been reported to be effective in inhibiting the 
α-glucosidase activity. Most of the chemical compounds 
reported as α-glucosidase inhibitors in previous studies 
are secondary metabolites including flavonoids, alka-
loids, anthocyanins, terpenoids, and phenolic acids [4].

Caffeoylquinic acid derivatives have been claimed to 
have various biological effects including neuroprotective 
activity [5, 6], anti-oxidant effect [7, 8], anti-inflammatory 
activity [9, 10], anti-viral effect [11, 12], anti-cancer activ-
ity [13], and anti-hepatotoxic activity [14]. Furthermore, 
their inhibitory effects on α-glucosidase activity have 
been scientifically evaluated in the previous many reports 
[15–17]. However, little is known concerning their effect 
on glucose-stimulated insulin secretion (GSIS). Another 
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approach for the treatment of type 2 DM is an increase 
in GSIS. GSIS had been considered the exclusive mecha-
nism of insulin regulation [18]. Defective insulin secre-
tion is a characteristic of pancreatic β cell dysfunction, 
which develops early and gets worse further in T2D [19]. 
Sulfonylureas known as oral insulinotropic agents to 
treat T2DM promote insulin secretion by closing K+ATP 
channels at the plasma membrane, while medicines in 
this group are known to often lead to hypoglycemia. This 
is because it continuously stimulates insulin secretion, 
regardless of plasma glucose levels [20]. Thus, identifica-
tion of potential compounds that stimulate GSIS is highly 
desirable. Therefore, in this study, the inhibitory effects of 
dicaffeoylquinic acid derivatives (Fig. 1) on α-glucosidase 
inhibitory were compared, and it was also confirmed 
whether the dicaffeoylquinic acid derivatives enhance 
insulin secretion in pancreatic β cells using only stimula-
tory glucose. In addition, the corresponding mechanisms 
were investigated.

Materials and methods
Plant materials and chemiclas
The dried aerial parts of Saussurea grandifolia 
were extracted with methanol under reflux. 1,4-Di-
O-caffeoylquinic acid (1,4-DCQA) and 1,5-di-
O-caffeoylquinic acid (1,5-DCQA) was isolated from 
S. grandifolia. Dicaffeoylquinic acid derivatives such 
as 3,4-di-O-caffeoylquinic acid (3,4-DCQA), 4,5-di-
O-caffeoylquinic acid (4,5-DCQA), and 3,5-di-O-
caffeoylquinic acid (3,5-DCQA) were isolated from 
Acanthopanax henryi and obtained Natural Product 
Institute of Science and Technology (www.​nist.​re.​kr, 
Anseong, Korea).

NMR data of dicaffeoylquinic acid derivatives
1,4-DCQA (purity: 99.7%): 1H-NMR (DMSO-d6, 
500 MHz) δ: 7.51 (2H, d, J = 15.5 Hz, H-7ʹ, 7ʹʹ), 7.02 (2H, 
br s, H-2ʹ, 2ʹʹ), 6.98 (2H, d, H-6ʹ, 6ʹʹ), 6.76 (2H, dd, H-5ʹ, 
H-5ʹʹ), 6.24 (2H, d, J = 15.5 Hz, H-8ʹ, 8ʹʹ), 5.05 (1H, br s, 
H-3), 4.75 (1H, br s, H-4), 4.16 (1H, br s, H-5), 2.20 (3H, 
m, H-6a, 6b, 2a), 1.80 (1H, br s, H-2b).

1,5-DCQA (purity: 99.7%): 1H-NMR (DMSO-d6, 
500 MHz) δ: 7.40 (2H, t, J = 16.5 Hz, H-7ʹ,7ʹʹ), 7.00 (2H, 
br s, H-2ʹ, 2ʹʹ), 6.88 (2H, dd, J = 8.0 Hz, H-6ʹ, 6ʹʹ), 6.66 (2H, 
d, J = 8.5 Hz, H-5ʹ, H-5ʹʹ), 6.21 (1H, d, J = 16.0 Hz, H-8ʹʹ), 
6.06 (1H, d, J = 16.0  Hz, H-8ʹ), 5.28 (1H, dd, J = 7.5  Hz, 
H-5), 3.99 (1H, br s, H-3), 3.49 (1H, br s, H-4), 1.71–2.51 
(4H, m, H2-2, H2-6).

3,4-DCQA (purity: 98.4%): 1H-NMR (DMSO-
d6, 500  MHz) δ: 7.45 (2H, m, H-7’, 7’’), 7.03 (2H, dd, 
J = 10.0 Hz H-2ʹ, 2ʹʹ), 6.95 (2H, m, H-6ʹ, 6ʹʹ), 6.73 (2H, d, 
J = 8.5 Hz, H-5ʹ, H-5ʹʹ), 6.20 (1H, m, H-8ʹ, H-8ʹʹ), 5.42 (1H, 

br s, H-3), 4.94 (1H, br s, H-4), 4.05 (1H, br s, H-5), 1.91–
2.11 (4H, m, H2-2, H2-6).

3,5-DCQA (purity: 98.7%): 1H-NMR (DMSO-d6, 
500  MHz) δ: 7.47 (2H, t, J = 16.5  Hz, H-7ʹ, H-7ʹʹ), 7.05 
(2H, dd, J = 8.5  Hz, H-2ʹ, H-2ʹʹ), 6.99 (2H, m, H-6ʹ, 
6ʹʹ), 6.77 (2H, dd, J = 8.0  Hz, H-5ʹ, H-5ʹʹ), 6.25 (1H, d, 
J = 16.0  Hz, H-8ʹʹ), 6.16 (1H, d, J = 15.5  Hz, H- 8ʹ), 5.20 
(1H, m, H-3), 5.11 (1H, br s, H-5), 3.84 (1H, br s, H-4), 
1.91–2.17 (4H, m, H2-2, H2-6).

4,5-DCQA (purity: 99.9%): 1H-NMR (DMSO-d6, 
500 MHz) δ: 7.49 (1H, d, J = 16.0 Hz, H-7ʹʹ), 7.42 (1H, d, 
J = 16.0 Hz, H-7ʹ), 7.02 (2H, dd, J = 4.5 Hz, H-2ʹ, 2ʹʹ), 6.97 
(2H, m, H-6ʹ, 6ʹʹ), 6.74 (2H, dd, J = 8.0  Hz, H-5ʹ, H-5ʹʹ), 
6.24 (1H, d, J = 16.0 Hz, H-8ʹʹ), 6.14 (1H, d, J = 16.0 Hz, 
H-8ʹ), 5.35 (1H, br s, H-5), 4.96 (1H, dd, J = 7.5 Hz, H-4), 
4.17 (1H, br s, H-3), 1.87–2.18 (4H, m, H2-2, H2-6).

α‑Glucosidase‑inhibitory activity assay
Dicaffeoylquinic acid derivatives were assessed for 
α-glucosidase-inhibitory activity as described previ-
ously, with slight modifications [21, 22]. In brief, acar-
bose and dicaffeoylquinic acid derivatives (80  μL) at 
varying concentrations (12.5 to 100  μM) in 120  μL of 
0.1  M phosphate buffer (pH 6.8) were incubated with 
100 μL of 0.5 U/mL α-glucosidase at 37 °C. Enzyme activ-
ity was calculated as: α-glucosidase-inhibitory activity 
(%) = [(Ablank-Asample)/Ablank] × 100.

Cell culture and determination of cell viability
Rat pancreatic INS-1 line (Biohermes, Shanghai, China) 
was maintained routinely in the Roswell  Park  Memo-
rial  Institute  (RPMI) 1640 medium (Cellgro, Manassas, 
VA, USA) supplemented with 1  mM sodium pyruvate, 
0.05  mM 2-mercaptoethanol, 10  mM HEPES, 11  mM 
D-glucose, 2  mM L-glutamine, and 10% fetal bovine 
serum (FBS), 1% penicillin/streptomycin (Invitrogen 
Co., Grand Island, NY, USA) under 5% CO2 and 95% 
humidity at 37  °C. To determine the non-toxic dose 
ranges of dicaffeoylquinic acid derivatives, INS-1 cells 
were seeded at 104 cell per well in 96-well plates. After 
24 h of incubation, cells were treated with gliclazide and 
dicaffeoylquinic acid derivatives (100 μL) at varying con-
centrations (2.5 to 10 μM) for 24 h. The cells were then 
incubated for 2 h with 10 μL of Ez-Cytox reagent (Daeil 
Lab Service Co., Seoul, Korea) as described in published 
methods [23].

GSIS assay
INS-1 cells plated on 12-well plates for 24 h were used 
to measure the effects of dicaffeoylquinic acid deriva-
tives on GSIS. To this end, INS-1 cells were kept in 
Krebs–Ringer bicarbonate HEPES buffer (KRBB) sup-
plemented with 2.8  mM glucose for 2  h. Thereafter 

http://www.nist.re.kr
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the INS-1 cells were incubated for 1  h in the fresh 
KRBB with the denoted glucose concentrations (2.8 
or 16.7  mM glucose) and test agents (gliclazide and 
dicaffeoylquinic acid derivatives). Glucose stimulated 
index (GSI) was calculated by dividing the insulin con-
centration that had accumulated during exposure to 
16.7  mM glucose by the insulin accumulated during 
exposure to 2.8  mM glucose. After incubation a cell 
culture supernatant was analyzed using a rat insulin 
ELISA kit (Gentaur, Shibayagi Co. Ltd., Shibukawa, 
Gunma, Japan) as recommended by the producer to 
measure the GSIS.

Western blot analysis
In the Western blot analysis, INS-1 cells plated on 
12-well plates for 24 h were used to measure the effect 
of 4,5-DCQA on protein expression changes of PI3K, 
Akt, P-IRS-2 (Ser731), IRS-2, P-ERK, ERK, P-PI3K, 
P-Akt (Ser473), and PDX-1. To this end, the cells were 
treated with 4,5-DCQA for 24  h. The cells were lysed 
on ice for 20  min in radioimmunoprecipitation assay 
buffer (Cell Signaling, Danvers, MA, USA) with pro-
tease inhibitor. The concentration of protein in the 
lysates was determined using the Pierce BCA protein 
assay kit (Thermo Scientific, Rockford, IL, USA). Sam-
ples containing 20  μg concentration of protein were 
subsequently transferred onto polyvinylidene difluoride 
membranes. The membranes were incubated treated 
with first and second antibodies against PI3K, Akt, 

P-IRS-2 (Ser731), IRS-2, P-ERK, ERK, P-PI3K, P-Akt 
(Ser473), PDX-1, and glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH).

Statistical analysis
All analyses were conducted using SPSS Statistics ver. 
19.0 (SPSS Inc., Chicago, IL, USA). Nonparametric com-
parisons of samples were conducted with the Kruskal–
Wallis test to analyze the results. Statistical significance 
was set at p < 0.05.

Results
Identification of dicaffeoylquinic acid derivatives
The dried aerial parts of Saussurea grandifolia were 
extracted with methanol under reflux. The filterate was 
concentrated to dryness, suspended in water, and then 
partitioned and ethyl acetate fraction was further chro-
matographed on a silica gel to afford 1,5-DCQA with 
spectra analysis as reported previously [24]. 3,5-DCQA, 
4,5-DCQA, 1,4-DCQA, and 3,4-DCQA were identified 
by spectral analysis [25] (Fig. 1).

α‑Glucosidase inhibitory activities of dicaffeoylquinic acid 
derivatives
Dicaffeoylquinic acid derivatives were assessed for their 
α-glucosidase inhibitory activity. It was observed that 
3,5-DCQA exhibited 60.65 ± 1.97% inhibitory activity at 
50 μΜ (Fig. 2A). The 4,5-DCQA, 1,4-DCQA, 3,4-DCQA, 
and 1,5-DCQA exhibited 58.83 ± 2.71, 23.66 ± 2.81, 
52.18 ± 2.67, 50.92 ± 2.37% activity at 100  μM 

Fig. 1  Chemical structures of dicaffeoylquinic acid derivatives
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respectively (Fig.  2B–E). Among the dicaffeoylquinic 
acid derivatives, 1,4-DCQA exhibited maximum inhibi-
tory activity with IC50 51.75 ± 0.32  μM better than the 
activity shown by positive control (acarbose) with IC50 
60.91 ± 3.85 μM (Fig. 2F).

Effects of dicaffeoylquinic acid derivatives on GSIS
Dicaffeoylquinic acid derivatives were evaluated for their 
GSIS activity. Since none of dicaffeoylquinic acid deriva-
tives were toxic at all concentrations (2.5 to 10 μM), those 
concentrations were used in the GSIS assay (Fig. 3A–F). 
Dicaffeoylquinic acid derivatives led to an increase in GSI 
in a concentration-dependent manner. The GSI level was 

3.59 ± 0.02 for 3,5-DCQA at 10  μM (Fig.  4A). The GSI 
levels were 4.39 ± 0.08 and 5.42 ± 0.07 for 4,5-DCQA at 
5  μM and 10  μM, respectively (Fig.  4B). The GSI levels 
were 3.84 ± 0.11, 4.28 ± 0.13, and 3.51 ± 0.06 for 1,4-
DCQA, 3,4-DCQA, and 1,5-DCQA at 10  μM, respec-
tively (Fig.  4C–E). The GSI levels were 3.71 ± 0.19 and 
6.41 ± 0.22 for gliclazide (positive control) at 5  μM and 
10 μM, respectively (Fig. 4F). Although the GSIS activity 
of 4,5-DCQA was not superior to that of the same con-
centration of gliclazide, it is important that the GSI was 
increased approximately 5 times compared with control 
(0 μM).

Fig. 2  Inhibitory effects of the dicaffeoylquinic acid derivatives on α-glucosidase inhibitory activities. Effect of A 3, 5-DCQA, B 4, 5-DCQA, C 1, 
4-DCQA, D 3, 4-DCQA, E 1, 5-DCQA, and F acarbose (positive control) on the α-glucosidase inhibitory activities, compared with that of the control 
(0 μM), as determined by the α-glucosidase assay (n = 3 independent experiments). The data are presented as the mean ± SEM. *P < 0.05 compare 
with not-treated group
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Effect of 4,5‑Dicaffeoylquinic acid on the protein 
expression of P‑IRS‑2, IRS‑2, P‑PI3K, P‑ERK, ERK, PI3K, P‑Akt 
(Ser473), and Akt, PDX‑1
Treatment with 4,5-DCQA at 5 μM and 10 μM increased 
the protein expressions of extracellular signal-regulated 
protein kinases (ERK), insulin receptor substrate-2 
(P-IRS-2), Akt, phosphoinositide 3-kinase (P-PI3K), and 
pancreatic and duodenal homeobox-1 (PDX-1) compared 
to untreated controls in INS-1 cells (Fig. 5).

Discussion
Inhibitory effect of dicaffeoylquinic acid deriva-
tives on α-glucosidase activity have been scientifi-
cally evaluated in the previous many studies [26–28]. 

In previous studies, 3,4-DCQA (IC50 = 128  μM), 4,5-
DCQA (IC50 = 130  μM), and 3,5-DCQA 
(IC50 = 1166  μM) inhibit the α-glucosidase activ-
ity by 50% at a relatively high concentration [26, 
28]. Our study showed similar results to previously 
reported data. In the present study, the effects of 
dicaffeoylquinic acid derivatives including 3,5-DCQA, 
4,5-DCQA, 1,4-DCQA, 3,4-DCQA, and 1,5-DCQA on 
α-glucosidase activity were compared, and all exhibit 
inhibitory activity. α-Glucosidase inhibitory activities 
of dicaffeoylquinic acid derivatives are as follows 1,4-
DCQA > 1,5-DCQA > 3,4-DCQA > 4,5-DCQA > 3,5-
DCQA. 1,4-DCQA exhibited maximum inhibitory 
activity with IC50 of 51.75 ± 0.32  μM better than the 
activity shown by acarbose (positive control) with IC50 

Fig. 3  Effect of the dicaffeoylquinic acid derivatives on the viability of pancreatic INS-1 cells. Effect of A 3, 5-DCQA, B 4, 5-DCQA, C 1, 4-DCQA, D 3, 
4-DCQA, E 1, 5-DCQA, and F gliclazide (positive control) on the viability of INS-1 cells following 24 h of treatment, compared with the control (0 μM). 
The data are presented as the mean ± SEM
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of 60.91 ± 3.85  μM. Among the dicaffeoylquinic acid 
derivatives, less has been reported for effect of 1,4-
DCQA on α-glucosidase activity [29]. It has been 
reported that 1,4-DCQA inhibits production of tumor 
necrosis factor‑α (TNF-α) and nitric oxide consid-
ered as major inflammation marker in lipopolysaccha-
ride‑activated murine macrophage RAW 264.7 cells, 
whereas 1,5-DCQA and 3,5-DCQA have no inhibitory 
effect on TNF-α production [29]. The DCQA deriva-
tives used in our study differ only in the arrangement of 
dicaffeoylquinic acid in the same quinic acid structure. 
When considering these results, the position of caffeoyl 
group at the quinic acid moiety might attribute their 
biological activity.

Little is known about effects of dicaffeoylquinic acid 
derivatives on insulin secretion compared to their 
α-glucosidase activities in the in  vivo and in  vitro 
models of type 2 DM. Although it has been suggested 
that Gynura divaricata rich in 4,5-DCQA restore 
pancreatic function in type 2 DM mice [30], the 
effect on 4,5-DCQA itself has not been investigated 
yet. In the present study, we compared the effects of 
dicaffeoylquinic acid derivatives including 3,5-DCQA, 
4,5-DCQA, 1,4-DCQA, 3,4-DCQA, and 1,5-DCQA on 
GSIS activity, and all exhibit inhibitory activity without 
toxicity in INS-1 cells. GSIS activities of dicaffeoylquinic 
acid derivatives are as follows 4,5-DCQA > 3,4-
D C QA  >  1 , 4 - D C QA  >  3 , 5 - D C QA  >  1 , 5 - D C QA . 

Fig. 4  Effect of the dicaffeoylquinic acid derivatives on the GSIS in INS-1 cells. Effect of A 3, 5-DCQA, B 4, 5-DCQA, C 1, 4-DCQA, D 3, 4-DCQA, E 1, 
5-DCQA, and F gliclazide (positive control) on the GSIS in INS-1 cells following 1 h of treatment, compared with the control (0 μM). The data are 
presented as the mean ± SEM (n = 3). *P < 0.05 compare with not-treated group
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4,5-DCQA exhibited maximum activity. These findings 
indicate that the location of the dicaffeoyl functional 
group influences the anti-diabetic activity of quinic 
acid. However, we could not speculate the importance 
of the number of caffeoyl groups at the quinic acid moi-
ety responsible for biological activity of DCQAs, and 
need for further studies in our future studies.

In addition, treatment with 4,5-DCQA increased 
protein expressions of ERK, IRS-2, PDX-1, Akt, and 
PI3K compared to untreated controls in INS-1 cells. 
These results indicated that GSIS activity of 4,5-DCQA 
might be partly related to PDX-1 expression via IRS-2/
Akt/PI3K signaling pathway and ERK expression. 
ERK belongs to the mitogen-activated protein kinases 
(MAPK) family and plays an essential role in regulating 
not only cellular apoptosis and proliferation, but also 
differentiation. Earlier study indicates that the MAPK 
inhibitor PD98059 inhibit ERK phosphorylation and 
GSIS in β-TC6 mouse pancreatic cells [31].

Similar results are observed with U0126, a specific 
MAPK/ERK kinase inhibitor, reduces GSIS in mice pan-
creatic islets. ERK appears to regulate pancreatic β-cell 
survival and expression of insulin gene [32]. Many stud-
ies have shown that phosphorylated IRS-2 triggers PI3K/
Akt pathway activation, and the participation of IRS-2/
PI3K/Akt signaling in the regulation of maintenance of 
β-cell mass and normal pancreatic β‑cell function is dem-
onstrated [33]. In addition, IRS-2/PI3K/Akt signaling is 
known as the upstream of PDX-1. It has been reported 
that administration of Gynura divaricata rich in 4,5-
DCQA enhances the PDX-1 expression in the pancre-
atic tissue of diabetic mice, thus retaining mature β-cell 
function [30]. PDX-1 is a vital transcription factor in 
the development of pancreas and transactivates insulin 
gene. Moreover, impaired GSIS is observed in PDX-1-de-
ficient mice [34, 35]. Our current study suggested that 
treatment with 4,5-DCQA increased the PDX-1 expres-
sion via IRS-2/Akt/PI3K signaling pathway and ERK1/2 

Fig. 5  Effect of 4,5-Dicaffeoylquinic acid (4,5-DCQA) on the expression levels of phospho-Akt (P-Akt) (Ser473), Akt, phospho-extracellular 
signal-regulated protein kinases (ERK), ERK, phospho-insulin receptor substrate-2 (P-IRS-2), (Ser731), IRS-2, phospho-phosphoinositide 3-kinase 
(P-PI3K), PI3K, and pancreatic and duodenal homeobox-1 (PDX-1) proteins in INS-1 cells. A The expression levels of P-ERK, ERK, P-IRS-2 (Ser731), IRS-2, 
P-PI3K, PI3K, P-Akt (Ser473), Akt, PDX-1, and GAPDH proteins in INS-1 cells treated or untreated with 4,5-DCQA at concentrations of 2.5, 5 and 10 μM 
for 24 h. B Densitometric quantification graphs of the Western blotting bands (n = 3 independent experiments). The data are presented as the 
mean ± SEM. *P < 0.05 compare with not-treated group
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expression. These results supported the possibility of 
application of 4,5-DCQA as an antidiabetic agent that 
can ameliorate GSIS.

Based on the results, we reported the potent 
α-glucosidase inhibitory potential of dicaffeoylquinic acid 
derivatives and their GSIS effect. All dicaffeoylquinic acid 
derivatives exerted promising α-glucosidase inhibitory 
effects. 1,4-DCQA among dicaffeoylquinic acid deriva-
tives exhibited maximum inhibitory effcets. Further, 
GSIS assay supported potentiation effect on GSIS shown 
by the dicaffeoylquinic acid derivatives. In addition, GSIS 
effect of 4,5-DCQA was supported by increased protein 
expressions of ERK, IRS-2, Akt, PI3K, and PDX-1. Our 
study provided partial evidence for the applicability of 
dicaffeoylquinic acid derivatives as candidates in the 
treatment of diabetes. However, further study including 
effect in animal models of T2D and in human islets are 
necessary.
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