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Abstract 

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are persistent organic pollutants (POPs) 
that are prohibited from being produced and used. However, they remain in the agricultural environment and 
are transferred to crops. In addition, PFOA is classified as possibly carcinogenic to humans. To fully understand the 
exposure and risk of PFOA and PFOS for human in crops, a residue survey and estimation of dietary exposure assess‑
ment are needed. Therefore, we investigated the residues of PFOA and PFOS in upland soil and cultivated root 
crops. The average residues of PFOA and PFOS in the soil were < 0.054–0.541 μg kg–1 and 0.024–0.111 μg kg–1, and 
0.067–0.193 μg kg–1 and < 0.02 μg kg–1 in the crops, respectively. The average PFOA residues were higher than PFOS 
in the soil and crops. The estimated daily intakes of PFOA and PFOS in the crops were 0.284 ng kgbw

–1 day–1 and 
0.023 ng kgbw

–1 day–1, and the estimated hazard quotients were 0.355 and 0.013, respectively. In addition, the excess 
cancer risk of PFOA was calculated to be 1.99 × 10–8. Thus, the non–carcinogenic and carcinogenic risks of PFOA and 
PFOS were not notable from the surveyed residues in the crops. However, the risks may be higher when the residues 
in other food crops are considered.

Keywords:  Dietary exposure, Hazard quotient, Perfluorooctanesulfonic acid, Perfluorooctanoic acid, Estimated daily 
intake
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Introduction
Perfluoroalkyl acids (PFAAs) are a group of synthetic 
perfluorinated compounds that have been extensively 
used in the fabric, paper, electronics, and many other 
industries since the end of the twentieth century [1–3]. 
However, they are listed as persistent organic pollutants 

(POPs) by the Stockholm Convention owing to their high 
stability, bioaccumulation factor, and the potential toxic-
ity of perfluorooctanoic acid (PFOA) and perfluorooc-
tanesulfonic acid (PFOS) in humans and wildlife [4–11]. 
PFOA and PFOS released from different products into 
the environment contaminate the air, soil, and water, 
and can remain in the environment for over a decade [6, 
12–15]. In South Korea, PFOA and PFOS residues in the 
environment, including the agricultural environment, 
are surveyed and monitored under the POPs Control 
Act; the levels of these residues are reportedly below a 
part-per-billion [16–19]. Further, as environmental resi-
dues can be transferred and accumulated into crops, they 
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should be controlled to keep them from entering the 
human food web [19–23].

Recently, the bioconcentration factors (BCFs) of PFOA 
and PFOS have been reported for various crops and ani-
mals. The factors were low (below 10) for crops; however, 
PFOA and PFOS were frequently detected in various 
crops [17, 19, 22–25]. The dietary exposure to PFOA and 
PFOS has not yet been fully estimated because of the lack 
of information on their residues in food crops [2, 21, 26].

The first reference doses (RfDs) of PFOA and PFOS 
were announced to be 1500 and 150 ng kg–1 day–1 in 2008 
by the European Food Safety Authority (EFSA), and then 
revised to 0.8 and 1.8 ng kg–1 day–1 in 2018 [21]. In addi-
tion, PFOA is classified into Group 2B as a possible car-
cinogen for humans [27, 28]. Based on the revised RfDs 
of PFOA and PFOS, dietary exposure risk assessments 
have been performed on some food crops. However, the 
exposure risks have not been considered for root crops, 
which typically have higher residue levels than leafy and 
fruit vegetables because of their high BCFs [18, 29, 30]. 
Therefore, this study aimed to investigate the residues of 
PFOA and PFOS in upland soil and cultivated root crops, 
and perform a dietary risk assessment based on a residue 
survey focusing on upland soil during 2018–2019.

Materials and methods
Standards and reagents
PFOA and PFOS analytical standard solutions of native 
and isotope-labeled (13C4− and 13C8−) were purchased 
from Wellington Laboratories, Inc. (ON, Canada). All 
solvents (acetonitrile, methanol, tetrahydrofuran, and 
water) and reagents (acetic acid and ammonium acetate) 
were used a high–performance liquid chromatography 
(HPLC) grade from Merck (Germany). Hydrophilic–
lipophilic balance (HLB) cartridges (0.5  g, 6  mL, Oasis, 
Waters Co., Ireland), powdered ENVI-Carb™ (Supelco, 
PA, USA), and membrane filter and syringe filter (nylon, 
Silicycle, Quebec, Canada) were purchased.

Sampling site and sampling
Soil and root crops (carrot, garlic, onion, potato, rad-
ish, and sweet potato) were collected from 176 different 
agricultural sites (6 provinces, 38 cities) in South Korea 
between April 2018 and November 2019. The soil sam-
ples were collected about 3 kg, to a depth of 0.15 m using 
an auger and placed in polypropylene (PP) bags. The soil 
samples were collected in triplicates in each farmland, 
and a composite representative for each site was obtained 
by mixing equal weights. The soil samples were dried at 
room temperature for 5 days in a fume hood, after passed 
through a 2 mm sieve, and stored at − 20 °C until analy-
sis. In this study, the selected root crops were carrot, gar-
lic, onion, potato, radish, and sweet potato. The Korean 

diet consists mainly of crops, and the intake of root crops 
selected in this study is high among the daily intake 
crops. Each crop sample was collected 3 kg on the farm 
with three replications. The sampled crops were ground 
with dry ice and stored at – 20 ℃ until analysis.

Analytical sample preparation for residual PFAAs in soil
The analytical method of residual PFAAs in soil was 
reported by Choi et  al. [18] with slight modification. 
One gram of soil was extracted with 1.0% aqueous ace-
tic acid (10 mL) with sonication for 20 min and mechani-
cal shaking for an hour. The extracts were centrifuged at 
4000  rpm for 10  min, and supernatants were collected 
in a new PP tube. The original soil was re–extracted 
with a mixture solvent with methanol and 1.0% aque-
ous acetic acid (9/1, v/v) (10 mL), and the extraction was 
repeated three times. The soil extract was concentrated 
to 15 mL under N2 gas on Hurricane–Eagle (Chungmin-
Tech Co. Ltd., Seoul, Korea) and diluted with deionized 
water (DW) to 50  mL. HLB SPE cartridge was precon-
ditioned with 10 mL of methanol, followed by 10 mL of 
DW, and the diluted sample was loaded at a rate of 1.3–
1.6  mL  min–1. The cartridge was washed with 5  mL of 
30% methanol and was eluent with 10  mL of methanol. 
The eluent was concentrated and re–dissolved with 1 mL 
of methanol. The extract was cleaned up with 20 mg of 
powdered ENVI-Carb™ and then vortexed and filtered 
using a syringe filter then isotope-labeled internal stand-
ards were added to the filtrate.

Analytical sample preparation for residual PFAAs in crops
The analytical method of residual PFAAs in crops was 
reported by Choi et  al. [18] with slight modification. 
Briefly, the crops were washed under running water to 
remove soil, and the samples were ground with dry ice. 
Ten gram of sample was extracted with 75% methanol 
with sonication for 20  min and mechanical shaking for 
an hour. The extract was centrifuged at 4000  rpm for 
10 min, and the supernatant was collected. The extracted 
crop was re–extracted using 75% of aqueous tetrahydro-
furan (10  mL), and the extraction was repeated three 
times. All extracts were combined and concentrated to 
10 mL under a nitrogen stream. As described above, the 
extract was diluted with DW to 50 mL and then extracted 
with HLB SPE. The eluent was concentrated and re–dis-
solved with 1 mL methanol. The extract was cleaned up 
with 20 mg of powdered ENVI–Carb™. The mixture was 
vortexed and filtered using a syringe filter then isotope–
labeled internal standards were added to the filtrate.

Instrumental analysis
The LC-QTOF-MS system consisted of a Dionex Ulti-
Mate 3000 Quaternary Analytical LC high-pressure 
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liquid chromatography (HPLC) system and a Bruker 
Impact II TM Ultra-High Resolution Qq-Time-Of-Flight 
(UHR-QqTOF, Bruker, Billerica, MA, USA). The separa-
tions of PFOA and PFOS in soil and crops matrix were 
used in an ACQUITY UPLC BEH C18 column (1.7 µm, 
100 mm × 2.1 mm, Waters, Milford, MA, USA), while a 

Luna C18 column (3 µm, 50 mm × 2.0 mm, Phenomenex. 
Inc., Torrance, CA, USA) as a pre-column was placed 
after pump exit to delay solvent impurity. The elute and 
detailed instrumental conditions were described in Addi-
tional file 1: Table S1.

Calculation on estimated daily intake (EDI) of agricultural 
products for PFAAs
EDIs of PFOA and PFOS were calculated based on the 
residual concentration of PFOA and PFOS in each crop, 
an estimate of the daily intake of crops, and average body 
weight (Eq.  1) [31, 32]. Food intake and average body 
weight by age were obtained from the 2019 Nation Food 
& Nutrition Statistics provided by the Korean Health 
Industry Development Institute (Additional file 1: Tables 
S2, S3) [33].

Table 1  Analytical method validation of PFOA and PFOS in soil 
and crop

Matrix LOQ (μg 
kg−1)

Recovery (%) CV (%) Linearity (R2)

PFOA Soil 0.020 81.6 8.7  > 0.998

Crop 0.002 73.1 9.2  > 0.999

PFOS Soil 0.020 80.4 9.6  > 0.999

Crop 0.002 70.4 8.9  > 0.996

Fig. 1  Detection ratios of PFOA and PFOS in the upland soil and the cultivated crops in South Korea

Table 2  The residue concentrations (μg kg−1) of PFOA and PFOS in upland soil and crops

Crop Average residue (detection ranges, μg kg−1)

Soil Crop

PFOA PFOS PFOA PFOS

Radish 0.541 (< 0.020–5.579) 0.111 (< 0.020–0.698) 0.067 (< 0.020–0.356)  < 0.020

Onion 0.173 (0.032–0.586) 0.067 (< 0.020–0.342) 0.193 (< 0.020–0.698)  < 0.020

Carrot 0.124 (< 0.020–0.308) 0.061 (< 0.020–0.565) 0.088 (< 0.020–0.768)  < 0.020 (< 0.020–0.025)

Potato 0.156 (0.073–0.342) 0.065 (< 0.020–0.303) 0.150 (0.035–0.375)  < 0.020 (< 0.020–0.021)

Garlic 0.098 (< 0.020–0.342) 0.088 (< 0.020–0.359) 0.161 (0.070–0.471)  < 0.020 (< 0.020–0.247)

Sweet potato 0.054 (< 0.020–0.141) 0.024 (< 0.020–0.103) 0.111 (< 0.020–0.300)  < 0.020 (< 0.020–0.027)
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Fig. 2  Distribution of PFOA (a) and PFOS (b) in the upland soil and the cultivated crops in South Korea
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Non–Carcinogen risk assessment of agricultural products 
for PFAAs
The hazard quotient (HQ) was calculated to evaluate the 
potential for non–cancer health hazards to occur from 
exposure to PFOA and PFOS with available non–cancer 
health guidelines as reference dose (RfD) (Eq. 2) [34]. RfD 
of PFOA and PFOS were obtained from EFSA [35].

Carcinogen risk assessment of agricultural products 
for PFOA
The International Agency for Research on Cancer (IARC) 
classified the PFOA as possibly carcinogenic to humans 
(Group 2B) [29, 36]. The excess carcinogen risk (ECR) 
was calculated using the EDI and cancer slope factor 
(Eq. 3). For PFOA, US. Environmental Protection Agency 
(US EPA) estimated a cancer slope factor of 0.07 (mg 
kg−1

bw day–1)–1 [36].

Results and discussion
Quality assurance
Linearities of PFOA and PFOS were measured in the 
range of 0.020 and 2.00  µg  L–1 and the R2 were > 0.996 
(Table  1). The limit of quantitations (LOQs) for PFOA 
and PFOS were determined to 0.020 µg kg–1 for soil and 
0.002  µg  kg–1 for crops. The analytical method valida-
tion was performed by determining the recoveries asso-
ciated with the relative standard deviation of PFOA and 

(2)HQ =
EDI

(

ng kg−1
bw day−1

)

Reference dose
(

ng kg−1
bw day−1

)

(3)

ECR =
(

ng kg−1
bw day−1

)

× Cancer slope factor
[

(

ng kg−1
bw day−1

)

−1
]

PFOS. Recovery was measured at 0.050  µg  kg–1 with 
13C8-PFAAs in spiked soils and the crops. The recoveries 
of PFOA and PFOS ranged from 70.4 to 81.6% in the soil 
and root crops. The precision of PFOA and PFOS ranged 
from 8.7 to 9.2% for soil and 8.9 to 9.6% for crops.

PFOA and PFOS residues in soil and crops
Residual PFOA and PFOS in the soil environment can be 
transferred and accumulated in cultivated crops. Thus, a 
survey of residues in the soil environment is the first step 
towards understanding crop residues and performing die-
tary exposure risk assessments for humans or animals. In 
this study, the residue survey focused on upland soil dur-
ing 2018–2019. PFOA and PFOS were widely distributed 
in the agricultural environment and the detection ratios 
in the soil were ranged on 60–100% (average, 86.6%) 
and 47–93% (average, 83.8%), respectively (Fig.  1); and 
the average residues were 0.054–0.541 μg kg–1 for PFOA 
and 0.024–0.111  μg  kg–1 for PFOS in the soil (Table  2). 
The total residue distributions of PFOA and PFOS in the 
soil was recorded to exceed 90% in < 0.05 μg kg–1 (Fig. 2) 
and each of the PFOA and PFOS residues was drasti-
cally decreased in comparison with the residues (< 0.05–
1.57 μg kg–1 for PFOA and < 0.05–2.16 μg kg–1 for PFOS) 
in the national survey in 2013 [16]. In addition, the aver-
age residue of total PFOA and PFOS was 0.260  μg  kg–1 
which was four times lower than the downstream area of 
Nakdong-river in 2013–2017 [18]. This decrease in the 
soil could be explained by the prohibition of production 
and use of PFOA and PFOS by the enforcement of the 
POPs Control Act in Korea; the Act prohibited the pro-
duction and use of PFOA and PFOS from 2013 [18].

In the crops, the detection ratios were 47–100% (aver-
age 79.5%) for PFOA and 0–20% (average 6.5%) for 
PFOS (Fig. 1). For PFOA, the residue distribution ratios 
in the soil were 29.4% for 0.02–0.1  μg  kg–1 and 38.9% 
for 0.1–0.2 μg  kg–1. Similar residue distribution leves of 
PFOA were observed in the crops (Fig.  2); potato and 
garlic demonstrated detection ratios of 100%, whereas 
onion and sweet potato showed detection ratios of > 80% 
(Table  2). The average residues of PFOA in each root 
crop were 0.067–0.193 μg kg–1. However, PFOS was not 
detected in most of the crops (93.3%) despite the residue 
distribution in the soil being widely identified. For PFOS, 
carrot, onion, potato, and radish recorded detection 
ratios < 5% (Table  2), and the detected residue distribu-
tion exhibited differently with PFOA (Fig. 2). The average 
residues of PFOS in each root crop were < 0.020 μg kg–1. 
The highest detected residue for PFOA was 0.768 μg kg–1 
in carrot, whereas this was 0.247  μg  kg–1 for PFOS in 
garlic. These lower detection ratios and average residue 
levels were expected for PFOS compared with PFOA 

Table 3  EDIs and HQs of PFOA and PFOS from the sampled 
crops

Crop EDI (ng kgbw
–1 day–1) HQ

PFOA PFOS PFOA PFOS

Radish 0.044 0.004 0.055 0.002

Onion 0.124 0.005 0.155 0.003

Carrot 0.026 0.001 0.033 0.001

Potato 0.052 0.004 0.065 0.002

Garlic 0.011 0.004 0.014 0.002

Sweet potato 0.027 0.005 0.034 0.003

Total 0.284 0.023 0.355 0.013
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Fig. 3  Dietary intake amounts of the crops (A) and HQs (B) of PFOA and PFOS  (C) by age group
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in crops because of the low BCF in root crops and the 
immobilization effect of soil minerals in the soil environ-
ment [18, 22, 37–39]. In the soil environment, PFOA and 
PFOS are adsorbed to the soil as electrostatic interac-
tion, hydrophobic interaction, ligand, and ion exchange, 
and hydrogen bonding [37–39]. Millinovic et al. reported 
that PFOS showed both the highest sorption and the low-
est sorption reversibility in the soil. In contrast, PFOA 
showed lower sorption and high reversibility compared 
with PFOS [37]. This difference would be due to the phys-
icochemical properties such as hydrophobicity and func-
tional group. In addition, Wei et al. reported that PFOS 
adsorption on soil was a positive correlation with soil 
physicochemical properties such as Al2O3, soil organic 
carbon, and Fe2O3 [38]. The sulfonate group in PFOS 
would be fixed as a metal combined complex with Al or 
Fe in soil mineral and then it would be immobilized in 
the soil environment [37–39].

Dietary exposure risk assessment of PFOA and PFOS
As dietary exposure route is considered a significant 
contributing route to PFOA and PFOS for humans, esti-
mating the exposure amount is the first step in the risk 
assessment of the residues in root crops. The total EDIs 
of PFOA and PFOS for the root crops were 0.284 and 
0.023  ng kgbw

–1  day–1, respectively. The EDIs of PFOA 
and PFOS for each crop ranged from 0.011 to 0.124  ng 
kgbw

–1  day–1 and 0.001 to 0.005 ng kgbw
–1  day–1, respec-

tively (Table 3). Onion showed the highest EDI (0.124 ng 
kgbw

–1 day–1), which it was two-fold higher than the pre-
viously reported EDI for onion (0.057  ng kgbw

–1  day–1) 
in the downstream of Nakdong River [18]. Based on the 
reported RfDs, the total calculated HQs were 0.355 for 
PFOA and 0.013 for PFOS. The total HQ for PFOA was 
27-fold higher than for PFOS.

When the HQ was analyzed by age group, the infant 
group (1–2 year olds) showed the highest HQs (0.711 for 
PFOA and 0.065 for PFOS), while the young adult group 
(19–29  year olds) had the lowest HQs (0.271 for PFOA 
and 0.021 for PFOS) (Fig.  3). The dietary intake of the 
food crops per bodyweight was higher in the younger 

age groups, although the intake amount per person was 
lower for the younger age groups than the adult groups 
(Fig.  3a). Further, the exposure risk of PFOA and PFOS 
for the infant group was three times higher than for the 
adult group.

As PFOA was classified as a possible carcinogen to 
humans in Group 2B by the IARC [29], the ECR of PFOA 
in the root crops was estimated based on the calculated 
EDI. The calculated ECR for each crop ranged from 
7.89 × 10–10 to 8.86 × 10–9 (Table  4), and the total ECR 
was below the guideline value (1.00 × 10–6). As there is a 
continuous decrease of the residue of PFOA and PFOS in 
the agricultural soil environment from the prohibition of 
use and production of the PFAAs, the residues and the 
EDIs in the crops were expected to decline slowly with 
time.

The dietary exposure risk for PFOA and PFOS was 
assessed from a residue survey of agricultural soil and 
cultivated root crops. The risk of non-carcinogenic and 
carcinogenic exposures of PFOA and PFOS in the sur-
veyed crops did not exceed the safety guideline for Kore-
ans. However, we determined that the exposure risk of 
PFOA in infants was higher than in the other age groups. 
Furthermore, the estimated total EDIs of PFOA and 
PFOS in dietary food for the Korean population would 
be higher than this because this didn’t include the expo-
sure amount from other major dietary sources of PFOA 
and PFOS such as meat, fish, and dairy. Thus, the risk 
reduction of PFOA (HQ = 0.711 for infants) would ini-
tially need to consider decreasing the residue in crop soil 
because these crops are an essential source of food and 
feed in the food chain.
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