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Abstract 

The present study was planned to investigate the possible therapeutic effects of silver/hydroxyapatite nanocomposite 
(nAg/HAp) on neurotoxicity induced by cadmium chloride (CdCl2) in albino rats. The nanocomposite has been formu‑
lated by a chemical route and characterized by scanning electron microscope (SEM), Transmission Electron Micros‑
copy (TEM), and energy-dispersive X-ray Analysis spectroscopy (EDAX). A population of rats was randomly assorted 
into three groups; the animals were subjected to intraperitoneal CdCl2 administration every 2 days at a dose level of 
1.0 mg/kg b.wt. for 3 months while the treatment with nAg/HAp was performed via intravenous injection at a dose 
level of 50 mg/kg b,wt. once a week for 4 weeks. Quantitative DNA fragmentation and biochemical analysis includ‑
ing the content of γ-aminobutyric acid (GABA), noradrenaline (NA), dopamine (DA), caspase-3, calmodulin (CaM), 
calcium adenosine 5′-triphosphatase (Ca++ATPase), tau protein, glutathione (GSH) and malondialdehyde (MDA) were 
measured in brain tissue. The results revealed the potent efficacy of nAg/HAp in attenuating DNA fragmentation 
and partially recovering most of the investigated parameters manifested by a significant elevation in GABA, NA, DA, 
Ca++ATPase, and GSH levels and a decrease in tau protein, caspase-3, CaM and MDA tissue content in comparison 
with Cd—intoxicated groups. Accordingly, the synthesized nAg/HAp at the selected dose can be used as a biosafe 
intravenous injection in neurodegenerative diseases.
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Introduction
Nano-silver (nAg) is one of the most important nanopar-
ticles in biomedical applications because it has distinctive 
physicochemical properties [/]. Nevertheless, the clinical 
use of nAg is limited due to the cytotoxic effect as dem-
onstrated previously in in-vitro studies [2]. Most in-vitro 
investigations are based on cellular short-term animal 
experiments that are drastically different from in  vivo 
conditions and the concentration of nAg used is not 
relevant for real-life situations and does not exceed the 
toxic level [3]. In biological media, the surface of nAg is 
oxidized and releases Ag+ ions which have a strong affin-
ity to interact with sulfur-containing macromolecules 
and induce apoptosis mediated ROS and mitochondrial 

pathway [4]. To avoid this disadvantage, the nAg formu-
lation must be supported on the surface of substrates [5]. 
Thus, research efforts focused on the preparation of nAg 
by various methods to obtain nanocomposite with new 
physical and chemical strategies appropriate for practi-
cal use [6–9]. However, nanocomposite of Ag and HAp 
(nAg/HAp) have potential medical applications because 
nHAp is an inorganic component of hard tissue and has 
better bioactivity and nAg has antimicrobial properties 
[10, 11].

The brain is the most important and complex organ 
in the human body that  controls, regulates and coordi-
nates actions and reactions. The brain sends and receives 
and also interprets the chemical and electrical signals 
throughout the body that control different processes. The 
injury of the brain may lead to disrupt a particular step 
of the vital activity. Brain contains the highest quantity 
and diversity of plasma membrane Ca2+ATPase isoforms, 
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which involves in many neuronal functions of Ca2+ and 
preserve its homeostasis to avoid cell damage [12]. Cal-
cium (Ca2+) is a vital element in the process of neuro-
transmitter release that helps to transmit depolarization 
status and synaptic activity to the biochemical machinery 
of a neuron. The process of Ca2+ synaptic activity impli-
cates key protein effectors such as calmodulin. Calmo-
dulin is a Ca2+-binding protein and has a presynaptic 
modulator of synaptic transmission function [13]. Under 
conditions, Synaptic vesicle and synaptic membrane 
interactions were mediated by Ca2+ and calmodulin that 
simultaneously stimulated neurotransmitter release [14].

Cadmium (Cd) is one of the most health-hazardous 
elements among the toxic heavy metals and has been 
classified as a human carcinogen [15]. There are several 
sources of human exposure to Cd, including employment 
in the primary metal industries, production of certain 
batteries, some electroplating processes, and consump-
tion of tobacco products [16]. The biological half-life of 
Cd reaches to 30 years [17]. After Cd absorption, about 
30% deposits in the liver (half time ranged between 4 
and 19  years) and 30% in the kidneys (half time ranged 
between 6 and 38  years), while the rest distributes 
throughout the body [18]. However, one of the most 
dangerous properties of Cd is its ability to penetrate the 
blood–brain barrier (BBB) and interfere with the con-
formation of the functional and structural neural cells 
resulting in degeneration of neurons, impairment of the 
synaptic transmission, and behavioral changes. The toxic 
effect of Cd is ascribed the induction of lipid peroxida-
tion consequent by the generation of various types of 
free radicals and disability of cellular antioxidant defense 
mechanism in the brain [15].

To address the safety issues of nAg/HAp in vivo appli-
cations based nano-medicine, the present work aimed 
to formulate a bio-safe Ag/HAp nanocomposite by the 
simple method to inspect the efficacy of its intravenous 
injection against cadmium exposure induced neurotox-
icity in albino rats. To achieve this aim, DNA damage 
(Comet assay) and biochemical analyses related to brain 
function and oxidant/antioxidant status were performed 
in the brain tissues.

Materials and methods
Chemicals
The preparation of Ag/HAp nanocomposite was per-
formed using the following pure chemicals and reagents: 
silver nitrate (AgNO3, Mwt 169.88 g/mole, Johnson Mat-
they), ammonium hydroxide (NH4OH, Mwt. 35.5  g/
mole, May & Baker, England), polyvinyl alcohol (PVAL) 
(Mwt≈160,000 g/mole), anhydrous diammonium hydro-
gen orthophosphate (NH4)2HPO4, 132.06  g/mole, S.D. 
Fine Chem. Ltd. Mumbai), calcium nitrate tetrahydrate 

(Ca(NO3)2·4H2O, Mwt. 236.15 g/mole, Merk, Germany), 
polyvinylpyrrolidone (PVP), and sodium hydroxide 
(NaOH). Deionized water was used in preparing the solu-
tions. Lead nitrate was used as a solution in 0.9% saline. 
All chemicals as mentioned from its source purchased 
from Alpha Aromatic Company as a chemical supplier in 
Cairo Egypt.

Preparation of nAg/HAp
Nano-silver is synthesized in nHAp structure to inhibit 
its toxicity by controlling the release of Ag ions. Nano Ag 
was prepared chelated by nHAp in the polymeric matrix 
route. HAp stands out because it is similar in structure 
and chemical composition to the mineral of hard tissue 
in the body. Other factors such as ionic strength, pH, 
and the presence/absence of other salts were utilized to 
produce an advanced structure of nAg supported on the 
surface of nAg/Hap with developed characteristics. Poly-
vinyl alcohol was dissolved in 500 ml of warm deionized 
water at 70  °C a free complete evolved. Calcium nitrate 
was added to 0.005 gm of silver nitrate (1/5 LD50), then 
ammonium hydrogen ortho phosphate was added with 
molar ratio 1.67 to calcium nitrate under PH control. 
After the addition of ammonium orthophosphate, the 
crystal structure of HAp was formed and trapped Ag 
ions. The formed gel was filtered and dried at 80  °C for 
24 h.

Characterization of nAg/HAp
Sample of the nAg/HAp product characterized by using 
Energy-dispersive X-ray analysis spectroscopy (EDAX) 
using EDAX (Ametek), High-resolution transmission 
electron microscope (TEM) JEOL2100 and Scanning 
Electron Microscopy (SEM) on Philips XL30 instrument 
made in Holland.

Pharmacological study of acute toxicity
Determination of acute toxicity for intravenous treat-
ment with nAg/HAp was carried out using the method 
previously published by Lorke [19]. Eighteen rats that 
weighted 140–150 gm were equally divided into six 
groups. They were injected intravenously with different 
doses of nAg/HAp (10, 30, 50, 90,120, and 150  mg/kg 
b.wt.). Mortality was recorded for 24 h and the final LD50 
value was determined from the minimum concentration 
(full death) and maximum concentration (no death) of 
the dose according to the coming relation:

where: M0 = Highest dose of substance at which no mor-
tality, M1 = Lowest dose of substance at which mortality.

LD50 = M0 +M1/2
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A preliminary study using nano‑HAp to treat brain damage
Several experiments were carried out to evaluate the 
pathophysiological features of the brain in rats intoxi-
cated by CdCl2 before and after treatment with nAg/
HAp. The selected dose of nAg/HAp was examined by 
the intravenous injection at different time intervals in 
either a single dose or a fractionated dose to detect the 
optimal therapeutic results. The structural and func-
tional changes in the brain were investigated including 
DNA fragmentation, neurotransmitters, and oxidation 
status. Based on the obtained results and consistent 
with the previous study by Abdel-Gawad et al. [11], the 
divided dose of 200  mg/kg b.w. nAg/HAp was applied 
in the present experiment.

Animals and treatment schedule
Twenty-four male albino rats (140 ± 20 g body weight) 
were housed in standard laboratory conditions (12  h. 
dark/light cycle), a temperature of 25  °C and suitable 
humidity. Animals were provided with standard food 
and water ad  libitum for at least one week before the 
experiment. Rats were assorted into three groups (8 
rats/each). Group 1: normal control rats. Group2: rats 
were received intraperitoneal (i.p.) injection of CdCl2 
solution at a dose level of 1.0  mg/kg b.wt. 3 times a 
week for three months [20]. Group3: rats were received 
i.p. injection of CdCl2 with the same conditions as those 
of group 2, and then injected intravenously with nAg/
HAp at a dose level of 50 mg/Kg bwt. once a week for 
4 weeks [11] on the next day of the last dose of CdCl2.

On the next day of the last injection of nAg/HAp, the 
animals were euthanized by diethyl ether and sacrificed 
by cervical decapitation. The brains were separated 
carefully by making a midline incision to view the skull. 
A small incision from the caudal part of the parietal 
bone and a firm cut in the anterior part of the frontal 
bone was made to remove the brain more easily. The 
isolated brain tissues were immediately taken out and 
washed with ice-cold saline to remove the excess blood 
and they were stored at − 80 °C, until later analysis.

Preparation of brain homogenate
The whole brain was homogenized in ice-cold phos-
phate buffer solution (PBS; pH 7.4). The volume of the 
buffer was depended on the weight of the tissue and 
usually kept at 10% (brain mass: the buffer volume). The 
homogenate was centrifuged at 4000 rpm for 20 min at 
4 °C. The clear supernatant was separated for biochem-
ical assays. All the processes were carried out in cold 
conditions.

DNA fragmentation
Brain DNA damage was determined by a single-cell gel 
electrophoresis (comet) assay according to the method 
previously published by Singh et  al. [21]. A 0.5  g of 
crushed brain sample was transferred to 1 mL ice-cold 
phosphate buffer saline (PBS). The suspension was 
stirred for 5 min then filtered. Cell suspension (100 μL) 
was mixed with 600 μL of low-melting agarose (0.8% in 
PBS). 100 μL of this mixture was spread on pre-coated 
slides, which were immersed in lyses buffer (0.045  M 
TBE, pH 8.4, containing 2.5% SDS) for 15  min. The 
slides were placed in an electrophoresis chamber con-
taining the same TBE buffer, but devoid of SDS. The 
electrophoresis conditions were 2  V/cm and 100  mA 
for 2  min. Staining was made with Ethidium bromide 
(EtBr) 20 μg/mL at 4 °C. The observation was reported 
while the samples are still humid, the DNA fragment 
migration patterns of 100 cells for each dose level were 
evaluated with a fluorescence microscope (With excita-
tion filter 420–490 nm (issue 510 nm). For visualization 
of DNA damage, observations were made of EtBr-
stained DNA using a 40 × objective on a fluorescent 
microscope. The comets tails lengths were measured 
from the middle of the nucleus to the end of the tail.

Comet capture and analysis
A total of 100 randomly captured comets from each 
slide were examined at 40 ×magnification using a fluo-
rescence microscope connected to a CCD camera using 
an image analysis system [Comet 5 image analysis soft-
ware developed by Kinetic Imaging Ltd. Liverpool, UK]. 
A computerized image analysis system acquires images, 
computes the integrated intensity profiles for each cell, 
estimates the comet cell components, and then evalu-
ates the range of derived parameters. To quantify the 
DNA damage, the tail length (TL), the percentage of 
migrated DNA (tail DNA %), and tail moment (TM) 
were evaluated. TL (length of DNA migration) is related 
directly to the DNA fragment size and is presented in 
micrometers. It was calculated from the center of the 
cell. Finally, the program calculates TM.

The DNA damage was quantified by measuring the 
displacement between the genetic material of the 
nucleus (Comet head) and the resulting (tail).

Tail DNA% = tail DNA intensity
/

cell DNA intensity× 100

Tail moment = tail DNA% × length of the tail
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Biochemical analyses
Calmodulin and Ca+ + ATPase were determined in 
tissues according to the method of Vig et  al. [22]. The 
activities of ATPase enzyme in tissue were expressed as 
μmol of inorganic phosphate liberated/min/mg protein. 
Tau protein was measured by Rat Tau Protein ELISA 
Kit Catalog # MBS725098 from MyBiosource, Inc, 
Southern California, San Diego (USA) but caspase-3 
was assessed using sandwich ELISA kits. NA was meas-
ured using ELISA kits, while GABA and DA were esti-
mated according to the method of Zagrodzka et al. [23]. 
Assessment of oxidant/antioxidant status in brain tis-
sues was performed by measuring the activities of GSH 
and MDA as the product of lipid peroxidation accord-
ing to the colorimetric method of Paglia and Valentine 
[24] and Erdelmeier et al. [25]. The inorganic phosphate 
was measured according to Schulz et  al. [26] and the 
protein content was estimated by the method of Lowry 
et al. [27].

Statistical analysis
The values presented are the mean ± SE. Data were ana-
lyzed using a one-way analysis of variance (ANOVA): 
post Hoc Multiple Comparison, Duncan’s multiple range 
test. The level of significance between mean values was 
set at p ≤ 0.05. All statistical analyses were performed 
using SPSS software (version 20.0).

Results
Characterization of the formed nAg/HAp
The formed nanocomposite was analyzed using, SEM, 
TEM, and EDAX. It was clearly shown that silver synthe-
sized in nano range (75–80  nm) dispersed successfully 
in the nHAp carrier (Fig.  1). While the EDAX analysis 
showed the presence of nAg after filtration and drying 

with its percentage, as the analysis of the filtered solution 
did not detect the silver or calcium ions (Fig.  2). While 
TEM showed the distribution of agglomerated nAg on 
the nHAp as shown in Fig. 3a, b. The characteristic XRD 
pattern showed the formation of Ca/P with molar ratio 
1.67. It was noticed that the presence of nAg did not 
change the crystal structure of nHAp.

Detection of DNA damage (comet assay)
The effect of nAg/HAp on CdCl2 induced DNA damage 
in rat brains has been investigated using the comet assay. 
This assay facilitates the detection of various types of 
DNA injury such as double-strand breaks, single-strand 
breaks, alkali-labile sites, incomplete repair sites, and 
cross-links. The migration length of DNA is directly pro-
portional to its damage.

Brain cells of control rats showed no tails (Table 1 and 
Fig. 4a). Tail length was substantially long in CdCl2 intox-
icated group (Table 1 and Fig. 4b) as compared to corre-
sponding controls. However, the extent of damage has a 
notable decrease in rats after treatment with nAg/HAp as 
shown in Table 1 and Fig. 4c.

Biochemical results
Table. 2 and Fig.  5 showed that exposure to CdCl2 
induced augmentation in brain tau protein and caspase-3 
concentration (P < 0.05) as compared to control animals. 
Intravenous injection with nAg/HAp decreased signifi-
cantly (P < 0.05) the levels of Tau protein and caspase-3 as 
compared to the group that received CdCl2, but did not 
reach the control level.

Table. 3 and Fig. 6 showed that exposure to CdCl2 was 
the detrimental factor to the redox status as evidenced 
by a significant rise (p < 0.05) in MDA level and signifi-
cant depletion (p < 0.05) in GSH activity related to the 

Fig. 1  SEM of sample prepared after drying
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controls. As compared to the group administered CdCl2, 
the group treated with the nAg/HAp showed a significant 
increase (p < 0.05) in the activity of GSH and a significant 
decrease (p < 0.05) in the level of MDA.

Concerning the brain neurotransmitters (Table  4 and 
Fig. 7, there was a significant increase (p < 0.05) in GABA 
and a significant decrease (p < 0.05) in NA and DA con-
centrations in CdCl2–intoxicated rats. The injection of 
nAg/HAp counteracted the levels of these neurotrans-
mitters manifested by augmentation in GABA, NA, and 
DA activity.

As shown in Table. 5 and Fig.  8, administration of 
CdCl2 to rats caused alteration in brain tissue which was 
manifested by a significant increase (p < 0.05) in CaM 
level and a significant decrease (p < 0.05) in Ca++ATPase 
activity as compared to controls. While the intravenous 
treatment with nAg/HAp ameliorated the activity of 
CaM and Ca++ ATPase as compared to CdCl2 group but 
did not reach to control level. 

Discussion
The current study dealt to modify the manufacture of 
nAg supported on nHAp in order to examine the efficacy 
of this nanocomposite in facing CdCl2 induced neurotox-
icity in rats. The Nanocomposite contains low content of 
Ag nanoparticles (1/5 LD50) and has been obtained by 
the chemical route and subsequent chemical neutrali-
zation process. In this method, Polyvinyl alcohol (PVA) 
is used to act as a polymeric matrix where Ag ions are 

distributed on it to form a crystalline structure in nano-
rang as the same as Ca ions without agglomeration.

The brain is a highly complex tissue that regulates an 
array of biological metabolic events that render it con-
sumes a large amount of oxygen. However, the brain tis-
sues are prone to noxious oxidative stress attacks due 
to the presence of high concentrations of peroxidizable 
unsaturated fatty acids and a poorly developed antioxi-
dant defense system [28, 29]. The cardinal reason for 
CdCl2 induced neurotoxicity is the ability to penetrate 
blood brain-barrier and collocate in the brain, which 
ultimately hinders the vital cellular processes medi-
ated by induction of lipid peroxidation and competi-
tion with essential metals of cellular enzyme and DNA 
repair system [30]. As detected by comet assay, there was 
an increase in DNA fragmentation and the number of 
comets observed in CdCl2 intoxicated rats as compared 
to controls. Comet assay is widely used to detect geno-
toxicity and cellular DNA lesions [31]. CdCl2-induced 
alterations in DNA methylation metabolism through 
interaction with methyl transferase DNA binding 
domain, leading to initiation of gene-specific DNA hypo- 
or hyper-methylation and possibly aberrant gene expres-
sion [32]. On the other hand, it cannot be excluding the 
involvement of caspase-3 from DNA damage processes. 
Since, caspase-3 (executioner caspase), is activated dur-
ing apoptotic pathways (intrinsic and extrinsic) and plays 
a dominant role in the coordination of the demolition 
phase of neural apoptosis by cleaving a diverse array of 
protein substrates [33, 34]. Previous studies display that 

Fig. 2  The SEM and EDAX analysis of nHA carrier contains nAg dried at 80 °C for 24 h
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exposure to Cd activates the extrinsic receptor-mediated 
pathway via Fas/FasL-mediated activation of procas-
pase-3, leading to neuronal apoptosis [34]. Additionally, 
the adverse effect of Cd on mitochondria (intrinsic path-
way) is associated with up- regulation of apoptotic medi-
ators (Bax, p53 and p21) and down-regulation of Bcl-2/
Bcl-2 associated X protein (Bax) ratio, triggering the 
downstream apoptotic pathway [34, 35]. However, the 
elevation of caspase-3 level in the CdCl2-intoxicated 
group reflected a harmful effect of this metal on the 
molecular components of the cells.

Oxidative stress and rampant generation of free radi-
cals are the hallmark events of Cd that motivate neuro-
toxicity. Cd-induced lipid peroxidation may be through 
the production of ROS or a decrease in the activities of 
antioxidant enzymes and/or metal complex de-compart-
mentalization [36]. The performance of CdCl2 in aggra-
vating oxidation was manifested in the present study 

by a significant decrease in brain GSH and elevation of 
MDA. Thereby, there is a serious bearing on the func-
tional development of the central nervous system such as 
reduction of axonal mitochondria turnover, disruption of 
Golgi, and reduction of synaptic vesicles [37]. The event 
cascade of lipid peroxidation is mediated by the over 
generation of superoxide radical to form a toxic product, 
MDA [38]. On the other, Cd targets the cysteine residues 
of GSH and forms an inactive mercapeptide complex, 
and conjugates with free or protein-bound –SH groups 
of metallothionein [38]. This structural modification hin-
ders the antioxidant potential of GSH and thus makes the 
brain vulnerable to oxidative attack [39]. The lipid peroxi-
dation process is a governor of the neurochemistry in the 
brain by destroying the brain cells membrane and/or pro-
ducing carbonyl products, a mediator of neurotoxicity 
[40]. Consequently, the neuronal function disorder leads 
to inhibition of the catecholamine uptake in brain syn-
aptosomes [41]. Importantly, the interrelation between 
oxidative stress and neural death is mediated by releasing 
of pro-apoptotic factors into the cytoplasm via activation 
of the Jun amino-terminal kinases (JNK) pathway and/or 
by activation of nuclear factor (NF-κB) accompanied by 
a marked inhibition of anti-apoptotic protein like Bcl-2 
[42]. JNK activation induced neuronal death mediated by 
caspase-3 and specific nuclease, which cuts the genomic 
DNA between nucleosomes leading to apoptotic chro-
matin condensation and DNA fragmentation [43].

The obtained results elicited that the brain GABA and 
the catecholamine (NA, and DA) concentrations were 
significantly decreased in Cd-intoxicated rats. Boost of 
GABA release is due to inhibition of the voltage-depend-
ent calcium channels with cadmium [32] resulting in an 
alteration in the degree and balance of excitation–inhibi-
tion in synaptic neurotransmission [44]. The decrease in 
NA and DA transmission activity is mediated by impair-
ment in the intracellular calcium metabolism and func-
tion, as a second messenger in the CNS. In addition, 
overload production of calcium inhibits the Ca++ATPase 
activity in the cell membrane and modulates the intra-
cellular calcium homeostasis leading to the alteration’s 
neurotransmitter functions [29]. CaM is a binding Ca+2 
protein molecule and has a crucial role in the neurody-
namic process. To clarify, CaM acts as an enhancement 
factor for releasing the neurotransmitters from the neu-
ral vesicles and activates Ca+2ATPase to reduce the free 
Ca+2 [45]. The elevation of CaM level possibility that one 
of Cd manifestation toxicity may be through activation 
of CaM upsetting its normal regulation by a cellular flux 
of Ca2+ [32]. The present study revealed that Cd admin-
istration increased Tau protein content when compared 
to control. Tau protein is expressed mainly in neurons 
and its activity is ruled by phosphorylation. Cd exposure 

Fig. 3  a. TEM of low concentration of nAg. b TEM of high 
concentration of nAg
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caused Tau hyper-phosphorylation indirectly by activat-
ing the glycogen synthase kinase-3beta (GSK-3β) and 
cyclin-dependent kinase 5 (CDK5) [46]. As a result, Tau 
self-aggregates to form neurofibrillary structure subse-
quent to a cascade of events such as disruption in axonal 
transport and synaptic disconnection with ultimate dis-
sipation of brain cytoskeleton [47, 48].

The obtained data showed the efficiency of nAg/HAp 
in amelioration the neural dysfunction associated with 
CdCl2 exposure and such findings were evidenced in 

improvement the oxidant/antioxidant status with sub-
sequent repair of fragmented DNA and susceptibility to 
apoptotic cell death as well as improvement of neuro-
transmitters within the experimental period. Numerous 
studies have a special interest in the various methods of 
nAg/HAp preparation to be more qualified for usage in 
the sterilization field [2, 10, 49] or recently as an anti-
cancer agent [50]. However, the literature concerning 
with improvement of nAg preparation to be suitable for 
in vivo usage as a therapeutic agent is not available and 
the data explained the mechanism of the effect of nAg/

Table 1  Score of DNA damage in cells from different groups of 
male rats

Groups Control CdCl2 CdCl2 + nAg/
HAp

Parameters

 Tailed % 5 29 12

 Untailed % 95 71 88

 Tail length (μm) 1.59 8.51 3.2

 Tail DNA % 1.21 5.6 2.2

 Tail moment UNIT 5.55 64.46 15.84

Fig. 4  Photomicrographs showed DNA damage by Comet assay in rat brain. a Brain cells of the control group b Brain cells of CdCl2 group (× 40). c 
Brain cells of CdCl2 + nAg/HAp group (×40)

Table 2  Tau protein and caspase-3 levels of brain tissue in 
different groups

Values represent means ± S.E. Values bearing different superscript in the same 
raw are significantly different (P < 0.05)

Groups Control CdCl2 CdCl2 + nAg/HAp

Parameters

 Caspase-3 
(ng/100 mg)

105.80 c ± 1.55 173.38a ± 1.07 123.23b ± 1.03

 Tau protein (pg/
ml)

93.62 c ± 3.12 255.97a ± 2.50 153.47b ± 2.17
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HAp on neurotoxicity induced Cd noxiousness. There-
fore, the explanation of the present results was depend-
ent upon the properties of nAg that proven in other 
fields. Elsewhere, the studies by Sondi and Salopek-Sondi 
[51]; Mo et  al. [52], and Cameron et  al. [53] interesting 
with the toxicity of nAg which proved that low concen-
tration of nAg is non-toxic for mammalian cells. The 
confirmatory study conducted by Shayesteh et  al. [54], 
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Fig. 5  Tau protein and caspase-3 levels of brain tissue in different groups (n = 8)

Table 3  GSH and MDA levels of brain tissue in different groups

Values represent means ± S.E. Values bearing different superscript in the same 
raw are significantly different (P < 0.05)

Groups Control CdCl2 CdCl2 + nAg/HAp

Parameters

 GSH (mg/dL 61.83a ± 0.81 33.69c ± 1.09 45.42b ± 1.01

 MDA (nmol/mL) 7.83c ± 0.42 26.11a ± 0.46 12.17b ± 0.36
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Fig. 6  GSH and MDA levels of brain tissue in different groups (n = 8)
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detected that nAg is safe when administered in a range 
from 5 to 50 mg/kg/day for 4 weeks. In in vitro study of 
Gonzalez-Carter et  al. [49] examined the chemical and 
morphological transformation of nAg as well as neu-
rotoxic-related issues in mice. They reported that just 
nAg internalized into microglial cells, Ag+ ions released 
within it, sulphided and sequestered more efficiently in 
comparison to neurons. The formation of intracellular 
Ag2S, resulting from cystathionine γ-lyase-mediated H2S 
production in microglia, sequesters Ag+ ions released 
from nAg. The anti-inflammatory effect of Ag2S con-
trolled the microglia-mediated neurotoxicity because 
the insoluble Ag2S complexes around nAg particles may 
act as Ag+-sequestering and inhibit the toxicity mecha-
nism. The lack of cystathionine γ-lyase enzyme in certain 
neuronal cells associated with decreasing H2S levels may 
be one of the reasons for the restriction of the ability of 
some neural cells in preventing detoxification of Ag+ 
[55]. Thereby, highly controlled targeting of nAg into 
microglia could decrease brain inflammation locally by 
inhibiting microglia reactivity consequent by reduction 

in inflammatory injury to neighboring neuronal cells and 
serves a neuroprotective role [56]. On the other hand, the 
studies were conducted on drug delivery field proved that 
hybrid molecular unit of nAg particularly is a suitable 
carrier of anti-inflammatory [57], anti-oxidant [58] and 
anticancer [59] therapeutic molecules due to their excep-
tional biocompatibility and viable features for nanoscale-
derived therapeutic settings [60].

However, there is no consensus on nAg toxicity 
because in vivo studies were carried out with short-term 
experiments or in in-vitro studies, which cannot apply to 
the living system [61]. There are some studies challenged 
that nAg induced ROS production and based their results 
on the difference in experimental conditions such as 
treatment duration, cell types, the method used for ROS 
detection as well as factors that contributed to nAg syn-
thesis and the physiochemical characteristic of the final 
product [1, 62]. Moreover, Inder and Kumar [2] suggested 
that it is important to standardize the formulation of nAg 
to avoid the potential toxicity, and with each combination 

Table 4  GABA, NA and DA activity of brain tissue in different 
groups

Values represent means ± S.E. Values bearing different superscript in the same 
raw are significantly different (P < 0.05)

Groups Control CdCl2 Cd Cl2 + nAg/HAp

Parameters

 GABA (nmol/mg) 85.72c ± 0.42 120.11a ± 0.42 90.56b ± 0.94

 NA (ng/100 mg) 7.18a ± 0.22 4.23 c ± 0.166 6.24 b ± 0.08

 DA (ng/100 mg) 25.18b ± 0.32 15.51c ± 0.388 29.26a ± 0.66
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Fig. 7  GABA, NA and DA activity of brain tissue in different groups (n = 8)

Table 5  CaM and Ca++ATPase levels of brain tissue in different 
groups

Values represent means ± S.E. Values bearing different superscript in the same 
raw are significantly different (P < 0.05)

Groups Control CdCl2 CdCl2 + nAg/HAp

Parameters

 Calmodulin (mmol/
gm)

3.05c ± 0.14 43.17a ± 0.96 22.23b ± 1.23

 Ca++ATPase (μmol 
iP liberated/min/mg 
protein)

1.79a ± 0.13 0.59c ± 0.81 1.08b ± 0.43
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with another particle; the composite is being utilized to 
produce nanoparticles with unique properties with con-
trolled size and shape of particles.

The prevailing view is that oxidative stress accompa-
nied by ROS has complete responsibility for any damage 
at the cellular or systemic level that occurs from either 
extrinsic or intrinsic conditions [63]. The current results 
showed inhibition of lipid peroxidation products repre-
sented by a decrease of brain MDA level and activation 
of GSH antioxidant enzyme. Thus, the extent of brain 
physiological response to i.v. nAg/HAp against Cd neu-
rotoxicity may be attributed to an antioxidant property, 
scavenging activity, and chelating power as reported in 
in vivo [54, 64] and in vitro [65] studies. The antioxidant 
potential of nAg might be augmented due to the adhering 
functional group, which originated from nHAp. Because 
oxidative stress is the supervisor controlling the internal 
and/or external environments induced cellular adverse 
effect, the inhibition of damaged DNA and caspase-3 
content observed upon the injection with nAg/HAp is 
logical and considered great indicators for minimiz-
ing the neurodegeneration symptoms. Safari et  al. [66] 
hypothesized that although the deposit of nAg has been 
identified in the cutaneous nerves as well as astrocytes 
tend to reside for a considerable time within the CNS 
than in other organs, nAg was not a cause of neurotoxic 
damage neither by the acute exposure to nAg nor by the 
chronic presence of large amounts of accumulated.
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