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Abstract 

Long noncoding RNAs (lncRNAs) act as transcriptional regulators in plants and animals. To date, they have been 
reported to regulate various biological processes, such as phosphate homeostasis, grain yield, and fertility in rice 
(Oryza sativa L.). However, the lncRNAs involved in abiotic stress responses remain poorly identified in rice. In this 
study, we analyzed the expression profiles of lncRNAs using public rice transcriptome datasets derived from abiotic 
stress‑treated samples. We found that the expression of thousands of rice lncRNAs was significantly altered in the 
shoot and root tissues under different abiotic stresses (drought, high salinity, low temperature, and abscisic acid). We 
selected six novel drought‑induced lncRNAs (DRILs, specifically DRIL1 to DRIL6) for further study. Real‑time polymerase 
chain reaction analysis revealed the differential expression patterns of these DRILs under various stress conditions. The 
expression of abiotic stress‑responsive genes was upregulated in the protoplasts by transiently overexpressed DRIL1 
and DRIL4. Therefore, DRILs may be involved in the transcriptional regulation of abiotic stress‑responsive genes in rice.
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Introduction
Innovative sequencing technologies have revealed 
numerous unidentified transcripts in plants. To date, 
thousands of noncoding RNAs (ncRNAs) in plants 
have been annotated, and described ncRNA loci have 
increased continually in the plant genome [1]. ncRNAs 
do not code for proteins but have key regulatory roles 
in various biological processes [2]. Recent studies have 
demonstrated the broad range of long noncoding RNA 
(lncRNA) functions, including chromatin remodeling 
and transcriptional regulation at specific genomic loci 
[3]. The lncRNAs are ncRNAs that are longer than 200 
nucleotides and have low protein-coding potential (< 100 

amino acids); they modulate the expression of neigh-
boring genes by cis-action and the expression of distant 
genes by trans-action [4, 5].

The functions of lncRNAs in rice (Oryza sativa L.) 
have been experimentally characterized in a few studies, 
which demonstrated that lncRNAs are involved in critical 
biological processes in rice [6]. Among them, LRK Anti-
sense Intergenic RNA (LAIR) is a natural antisense tran-
script (NAT) transcribed from the antisense strand of the 
adjacent Leucine-rich Repeat Receptor Kinase (LRK) gene 
cluster in rice. LAIR overexpression increases grain yield 
and upregulates the expression of LRK genes [7]. Addi-
tionally, cis-NATPHO1;2 regulates phosphate homeostasis 
and plant fitness by promoting Phosphate 1;2 (PHO1;2) 
translation [8]. Overexpression of NATPHO1;2 leads to an 
increase in PHO1;2 protein levels under conditions of 
sufficient phosphate. Other rice NATs such as Twisted 
Leaf and Early Flowering-Completely Dominant regulate 
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leaf development and flowering, respectively [9, 10]. 
Moreover, intergenic lncRNAs, including Long-Day–Spe-
cific Male-Fertility–Associated RNA, An Leaf Expressed 
and Xoo-induced lncRNA 1, and Mis-shapen Endosperm, 
are involved in photoperiod-sensitive male sterility, dis-
ease resistance, and endosperm development, respec-
tively [11–13]. However, the lncRNAs related to abiotic 
stress responses have not yet been elucidated in rice.

Drought, high salinity, and low temperature are com-
mon abiotic stressors that adversely affect crop develop-
ment and productivity. Plants have evolved molecular 
systems that coordinate gene expression to protect them 
from abiotic stress and boost their chances of survival in 
locations with abiotic stressors [15]. Intensive research 
has focused on protein-coding genes to understand the 
mechanisms of these stress responses and has provided 
a valuable platform for stress-tolerant crop development.

Here, we sought to identify abiotic stress-respon-
sive lncRNAs via transcriptome analysis [16]. We then 
selected a group of unknown noncoding transcripts that 
were responsive to abiotic stresses and designated six of 
them as drought-induced long noncoding RNAs (DRILs) 
whose induced expressions were further validated under 
long-term drought stress. We aimed to investigate 
whether DRILs regulate the expression of stress-respon-
sive genes and demonstrate that lncRNAs play essential 
roles in abiotic stress responses in rice.

Results and discussion
Transcriptome‑wide re‑analysis of abiotic stress‑related 
lncRNAs
We re-analyzed public RNA-sequencing data to iden-
tify lncRNAs that responded to diverse abiotic stresses. 
Overall, 3,425 lncRNAs were induced or repressed under 
abiotic stress. Among them, 1,794 lncRNAs were com-
monly up-regulated and 1,631 were down-regulated in 
shoot and root samples (Fig.  1a). The heat map analy-
sis in Fig. 1b shows the expression patterns of lncRNAs 
under different abiotic stress conditions. We considered 
the six most upregulated lncRNAs under four different 
abiotic stress conditions as DRILs (Table  1). Five of the 
lncRNAs (DRIL1 to DRIL5) are intergenic, and DRIL6 is 
a NAT. Schematic diagrams of the genomic locations of 
the DRILs are shown in Additional file 1: Figure S1; the 
DRILs had various transcript lengths. Predicted gene 
structures of the DRILs were diagramed using the Inte-
grative Genomics Viewer browser (Additional file 1: Fig-
ure S2). We evaluated the protein-coding potential of the 
DRILs using the Coding Potential Calculator 2 to predict 
the coding potential of each transcript [17]. Five DRIL 
transcripts showed a very low coding potential score 
(0–0.2), similar to that of ELENA1, an lncRNA that has 
demonstrated no protein-coding potential [18]. DRIL6 

showed a high coding potential score, comparable to that 
of the known protein-coding gene OsNAC14 (Additional 
file  1: Figure S3) [19]. Although there are no reports of 
NATs with protein-coding capacity, examining DRIL6 
using mutated putative ORF is necessary to prove that it 
is an authentic lncRNA.

DRILs are abiotic stress‑inducible lncRNAs
The expression patterns of DRILs under abiotic stress 
were investigated using quantitative real-time polymer-
ase chain reaction (qRT-PCR) analysis. Total RNA was 
extracted from the leaves and roots of 15-day-old rice 
seedlings (O. sativa L. cv. Kitaake) after exposure to 
drought, high salinity, abscisic acid (ABA), and low tem-
perature. Each  DRIL  responded differentially to abiotic 
streses. DRIL1 expression was significantly upregulated 
in shoots by ABA, whereas it was highly induced in the 
roots by salt. DRIL5 expression was induced by drought, 
ABA, and salt stress in shoots, whereas it was strongly 
induced in roots, especially under cold conditions. The 
expression of DRIL2, DRIL3, and DRIL4 was induced 
under all stress conditions. To distinguish DRIL6 expres-
sion from the sense gene, the expression of DRIL6 and 
sense genes was verified using strand-specific qRT-PCR 
analysis. The results showed that DRIL6 expression was 
induced under drought conditions. Thus, the expres-
sion of DRILs was induced by various abiotic stressors 
(Fig.  2). Next, we examined the expression patterns of 
the DRILs under long-term drought conditions. After 
drought treatment, the time-course transcript levels of 
DRILs in the leaves were investigated using qRT-PCR 
analysis. Dehydration stress-inducible protein 1 (OsDip1, 
Os02g0669100) was used as a marker gene for the 
drought response. Our results showed that the expres-
sion of all DRILs gradually increased during long-term 
drought treatment, suggesting that all six DRILs were 
involved in drought stress responses in rice (Fig. 3).

DRILs positively regulate the expression 
of stress‑responsive genes
To understand the transcription network that is regulated 
by DRILs, we performed transient expression analysis 
using a rice protoplast system. DRILs were overexpressed 
via the GOS2 constitutive promoter (Fig.  4a). We per-
formed qRT-PCR analysis using the total RNA extracted 
from the rice protoplasts. The results showed that the 
expression of stress marker genes, such as OsWRKY71 
(Os02g0181300), WIH2 (Os08g0205800), OsABA45 
(Os12g0478200), and RBBI2-3 (Os01g0124650), was 
increased by DRIL1 overexpression (Fig.  4b). Addition-
ally, cells that overexpressed DRIL4 showed enhanced 
expression of stress marker genes, such as WIH2, RGLG2 
(Os12g0288400), OsGDH2 (Os04g0543900), and OsTPP1 
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(Os02g0661100), compared to the control (empty vec-
tor) (Fig.  4d). These stress marker genes were noted by 
previously reported RNA gel blot analysis results [20] 
and were confirmed by qRT-PCR analysis (Additional 
file  1: Figure S4). OsGDH2, RBBI2-3, and RGLG2 were 
expressed under drought, ABA, salt, and cold stress 

conditions. OsWRKY71 and WIH2 expression was 
induced by drought, ABA, and salt stress. GEM expres-
sion was induced under drought and low temperature, 
and OsTPP1 was induced only by cold stress. We then 
selected a downstream gene that responded to multiple 
abiotic stresses as a marker gene for various patterns. To 

Fig. 1 Genome‑wide screening of abiotic stress‑related lncRNAs. A Venn diagrams show the number of commonly expressed lncRNAs in shoot 
and root samples treated with drought, cold, abscisic acid (ABA), and salt. B Heat map analysis shows the differential expression of lncRNAs after 
drought, cold (4 °C), ABA (100 µM), and high salt (150 mM NaCl) treatments
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confirm whether DRIL1 and DRIL4 have cis-target genes, 
the expression of two neighboring genes was examined. 
Our results showed that there was no change in the 
expression levels of these neighboring genes, suggesting 
that DRIL1 and DRIL4 are trans-acting lncRNAs (Fig. 4c, 
e). Subsequently, we investigated the spatiotemporal 
expression of DRIL1 and DRIL4 corresponding to each 
developmental stage. lncRNAs exhibit tissue and cell 
type specificity similarly to protein-coding genes [21]. 
Hence, DRIL1 showed specific expression in root tissue; 
however, DRIL4 did not significantly differ, regardless 
of the tissue and the developmental stages (Additional 
file  1: Figure S5). To assess whether DRIL6 expression 
changed that of the sense gene OsDof2, we analyzed their 
relative expression levels using strand-specific qRT-PCR. 
Our results indicated that there was a mutual activa-
tion between DRIL6 and OsDof2 (Fig. 4f ) because DRIL6 
was the antisense transcript of the OsDof2 transcription 
factor. A previous study showed that OsDof2 has a cir-
cadian rhythm and is regulated by phytochrome sign-
aling, which is associated with grain size in rice [22]. It 
has been reported that lncRNAs, as pivotal regulators, 
are involved in every step of gene expression. In gen-
eral, lncRNAs act in cis or trans, regulating neighboring 
or distal target genes. For instance, lncRNAs alter gene 
transcription by changing chromatin modifications and 
guiding or sequestering transcriptional activators or 
repressors. Also, lncRNAs control post-transcriptional 
processing, such as splicing, editing, and stability of mes-
senger RNAs. Besides, lncRNAs affect translation, locali-
zation, and stability of proteins [2, 3, 5, 6]. In this study, 
we demonstrated that DRIL1, DRIL4, and DRIL6 activate 
the expression of stress marker genes and cis-target gene, 
respectively. Therefore, we assume that these three DRILs 

might activate their target genes through the regulatory 
mechanisms mentioned above. Although the precise 
mechanism and function of DRILs are still unknown, we 
expect that DRILs could affect abiotic stress responses in 
plants. Further research should focus on functional char-
acterization of DRILs to understand the molecular mech-
anisms of lncRNAs in these stress responses.

Materials and methods
Plant growth conditions and stress treatments
The O. sativa L. japonica rice cultivar Kitaake was used 
in this study; its genetic sequence was obtained from 
the Phytozome v. 13 genomics resource data. For ger-
mination, dehusked rice seeds were surface-sterilized 
by soaking in a 70% ethanol solution for 1 min, followed 
by washing with a 50% sodium hypochlorite solution 
for 30–40  min. The seeds were then washed ten times 
with sterile distilled water and sown on Murashige and 
Skoog media. After three days, the rice was transferred to 
seedling culture containers (Phytohealth, 120 × 80  mm; 
SPL, Korea), which were used to grow the seedlings. All 
rice materials were grown in a growth chamber at 28 °C 
under a 12 h light/12 h dark photoperiod. For the stress 
treatment, 14-day-old seedlings were adapted to water 
for one day and treated for each stress condition.

RNA extraction and quantitative real‑time PCR
Total RNA was extracted from wild-type plants using a 
total RNA purification kit (Hybrid-R, Geneall, Korea), 
following the manufacturer’s instructions. For cDNA 
synthesis, 1  µg of total RNA was reverse-transcribed 
using an improved reverse transcriptase (SuperiorScript 
II Reverse Transcriptase, Enzynomics, Korea) for 5  min 
at 37 °C and 60 min at 50 °C. Subsequently, the reaction 

Table 1 Six most up‑regulated lncRNAs under abiotic stress conditions

Name Genomic location Size (bp) Strand Type Flanking genes

DRIL1 Chr08:4,543,173..4,544,172 1000 − lincRNA Os08g0177300, Os08g0177550

DRIL2 Chr10:12,121,875..12,125,997 4123 − lincRNA Os10g0378450, Os10g0379100

DRIL3 Chr02:8,735,040..8,740,967 5928 − lincRNA Os02g0254700, Os02g0255000

DRIL4 Chr02:17,320,371..17,323,522 3152  + lincRNA Os02g0494000, Os02g0494400

DRIL5 Chr04:24,983,361..24,986,221 2861 − lincRNA Os04g0500600, Os04g0500700

DRIL6 Chr01:8,949,585..8,950,987 1403  + NAT

(See figure on next page.)
Fig. 2 Relative expression patterns of the DRILs in response to abiotic stresses. Fifteen‑day‑old rice seedlings were exposed to drought (air‑drying), 
salt (400 mM NaCl), ABA (100 µM abscisic acid), and cold (4 °C). Leaves from the rice plants were harvested at the indicated times after treatment. 
The left graph shows expression in the shoot, and the right graph shows expression in the root. OsUBIQUITIN1 (OsUbi1) was used as an internal 
control for normalization. Data represent the mean value and standard deviation (n = 3). Significant differences from the mock 0 h control are 
indicated by asterisks (unpaired Student’s t‑test, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001)
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Fig. 3 Expression patterns of the DRILs during long‑term drought conditions. One‑month‑old rice seedlings were exposed to drought conditions 
for 3 d. Relative expression of DRILs was determined via qRT‑PCR analysis.  OsUbi1 was used as an internal control for normalization. Data represent 
the mean value and standard deviation (n = 3). Significant differences from the control are indicated by asterisks (unpaired Student’s t‑test, 
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001)
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was terminated by incubating for 10 min at 70 °C. qRT-
PCR was performed (using the 2X Real-Time PCR Smart 
Mix, SRH72-M10h, SolGent, Korea). The reaction was 
performed at 95  °C for 15 min, followed by 40 cycles of 
95  °C for 20  s, 60  °C for 20  s, and 70  °C for 30  s, using 
an qRT-PCR machine (AriaMx, Agilent, USA). OsUbi1 
(Os06g0681400) was used as an internal control for nor-
malization. Three replicates were analyzed for quan-
titative experiments. The primer sequences used for 
qRT-PCR are listed in Additional file 2: Table S1.

Strand‑specific reverse transcription
An adapter-mediated qRT-PCR assay was used to dis-
tinguish strand-specific expression, as stated previously 
[23]. We used synthesized cDNAs  with a  antisense  

DRIL6- or Dof2- specific reverse primer and including a 
tag sequence (Additional file 2: Table S1). Subsequently, 
qRT-PCR was performed with the tag-specific primer 
and DRIL6- or Dof2-specific forward primer.

Protoplast isolation and transient gene expression
A polyethylene glycol (PEG)–mediated protoplast trans-
formation method was used to transiently express DRILs 
and verify the relationship between DRILs and stress 
marker genes [24, 25]. Leaf sheaths of 100 rice seed-
lings were cut into 0.5 mm pieces using a sharp blade on 
glass. The pieces were transferred into 0.6  M mannitol 
solution and incubated for 20 min at room temperature 
in the dark. After removing the mannitol solution, the 
pieces were soaked in enzyme solution consisting of 1.5% 
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Fig. 4 Overexpression of the DRILs in rice protoplasts. A Schematic diagram of the transient overexpression constructs of the DRILs. In the 
constructs, the DRILs are under the GOS2 promoter and PinII terminator. The binary vector was generated through the gateway system. B DRIL1 
overexpression and the expression levels of stress marker genes. OsUbi1 was used as an internal control for normalization. C The expression of 
the putative cis‑target genes of DRIL1. Numeric values in Tables indicate fold changes derived from RNA‑sequencing with long‑term drought 
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Cellulase R-10 (Yakult, Japan), 0.75% Macerozyme R-10 
(Yakult, Japan), 0.5  M mannitol, 10  mM MES (pH 5.7), 
0.1% BSA, 10 mM  CaCl2, and 5 mM β-mercaptoethanol 
for cell wall degradation. Vacuum infiltration was 
repeated thrice for 15 min to apply the enzyme solution. 
Digestion was performed in a dark chamber with gentle 
shaking for 4 h. The solution was filtered twice through 
70 µm and 40 µm nylon meshes (Falcon, USA) and cen-
trifuged at 150 × g for 3  min. The protoplast pellet was 
resuspended in W5 solution, which contained 154  mM 
NaCl, 125  mM  CaCl2, 5  mM KCl, and 2  mM MES (pH 
5.7). The protoplast concentration was measured under 
a microscope using a hemocytometer and was adjusted 

to 7 ×  107 protoplasts/mL. To transfect DNA into cells, 
50 µL of the protoplast solution (2 ×  106 cells) was mixed 
with 15 µL of plasmid (1  µg) and 130 µL of PEG solu-
tion, which contained 0.2  M mannitol, 100  mM  CaCl2, 
and 40% w/v PEG4000. The mixture was incubated for 
15  min in the dark; subsequently, 1  mL of W5 solution 
was added. The mixture was then centrifuged at 300 × g 
for 2 min to collect protoplasts, which were resuspended 
in an incubation solution containing 0.5  M mannitol, 
20  mM KCl, and 4  mM MES (pH 5.7) for 12  h. Proto-
plasts were harvested by centrifugation at 300 × g for 
2 min and used for RNA extraction and qRT-PCR.
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