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Abstract 

Since its invention, polyethylene (PE) has brought many conveniences to human production and life. In recent years, 
however, environmental pollution and threats to human health caused by insufficient PE recycling have attracted 
widespread attention. Biodegradation is a potential solution for preventing PE pollution. In this study, Bacillus sub-
tilis and Bacillus licheniformis, which are widespread in the environment, were examined for their PE degradation 
abilities. Biodegradation of low-density polyethylene (LDPE) was assessed by weight loss, Fourier transform infrared 
spectroscopy (FTIR), and high performance liquid chromatography (HPLC) analyses. Weight losses of 3.49% and 
2.83% were observed for samples exposed to strains B. subtilis ATCC6051 and B. licheniformis ATCC14580 for 30 days. 
Optical microscopy revealed obvious structural changes, such as cracks, pits, and roughness, on the surfaces of the 
microorganism-exposed LDPE sheets. Oxidation of the LDPE sheet surfaces was also demonstrated by the FTIR-based 
observation of carbon-unsaturated, –OH, –NO, –C=C, and –C–O bonds. These results support the notion that B. 
subtilis ATCC6051 and B. licheniformis ATCC14580 can degrade PE and could potentially be used as PE-biodegrading 
microorganisms. Further research is needed to examine potential relevant degradation mechanisms, such as those 
involving key enzymes.
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Introduction
Plastics were invented in the 1850s and replaced com-
monly used materials such as glass, metal, and wood. In 
current, plastic materials are widely used in all aspects of 
human production and life, due to their low manufactur-
ing cost, good durability, and high strength [1]. The most 
widely used plastics are polyethylene (PE), polyethylene 
terephthalate (PET), polychlorinated vinyl (PVC), poly-
propylene (PP), polystyrene (PS), and polyurethane (PU) 
[10, 33, 37].

Among them, PE has the highest yield, more than 100 
million tons each year globally [10]. PE-based materi-
als are used in various industries, including transporta-
tion, construction, agriculture, machine building, and 

packaging [14]. However, a large proportion of PE prod-
ucts are not subjected to proper disposal after use. Pub-
lished statistics indicate that less than 20% of PE waste 
is recycled each year [3]. In the natural environment, 
the accumulation of large amounts of PE waste severely 
impacts animals, plants, and microorganisms on land 
[25]. Consequently, PE waste flows into the ocean and 
affects marine ecology via toxicity exerted on organisms 
through consumption and suffocation [23, 30].

Conventional disposal methods for PE waste include 
landfilling, thermal treatment, and chemical treatment 
[17, 31, 35, 52, 58]. The management and recycling 
of waste through these traditional methods has been 
improved to a certain extent over time. However, such 
methods may cause secondary pollution of the envi-
ronment. For example, burning PE waste can cause 
air pollution and excessive emissions of greenhouse 
gases. Toxic compounds released from PE waste can 
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eventually be consumed by the human body through 
the food chain, threatening human health [4, 36].

Given some of the shortcomings of traditional meth-
ods, the advantages of recycling and degrading PE 
waste by biological methods have gained increasing 
interest [1]. Biodegradation has the advantages of low 
cost, strong operability, and low risk for releasing toxic 
fumes and/or harmful compounds to the environment. 
In recent years, researchers have isolated microorgan-
isms with PE degradation potential from landfills, sea-
water, soil, and other sources [13, 20, 40, 46, 55]. For 
example, Anabaena spiroides, Bacillus sp., Lysinibacil-
lus sp., Pseudomonas sp., and Aspergillus flavus were 
identified as good candidate strains [15, 20, 21, 29, 40, 
43, 55, 57]. Invertebrates can also degrade PE, such as 
Tenebrio molitor, Galleria mellonella, Achroia grisella, 
and Lumbriculus variegatus [5, 28, 34, 45].

In this study, we selected five kinds of Bacillus spe-
cies, which are widely present in natural soil, as poten-
tial strains to degrade LDPE. Their biodegradation of 
LDPE was assessed by weight loss, high performance 
liquid chromatography (HPLC), and attenuated total 
reflection Fourier transform infrared spectroscopy 
(ATR-FTIR) analyses. Furthermore, we identified some 
relevant chemical bond changes in LDPE.

Materials and methods
Materials
LDPE film was obtained from Goodfellow (9002884, 
Huntingdon, England). The chemical composition of 
the product was further characterized using FT-IR 
IS50 (Thermo Fisher, Waltham, USA). Bacterial cells 
were cultured in Luria Bertani (LB) broth composed of 
sodium chloride (10  g/l), tryptone (10  g/l), and yeast 
extract (5 g/l). The pH of LB broth was adjusted to 7.4 
with NaOH. In the assay for microbial degradation of 
LDPE, mineral salt medium, Bushnell-Haas (BH) broth 
was used. BH broth contained K2HPO4 (1 g/l), KH2PO4 
(1  g/l), NH4NO3 (1  g/l), CaCl2 (0.02  g/l), MgSO4 
(0.20  g/l), and FeCl3 (0.05  g/l): pH was adjusted to 7 
with NaOH [51]. Organic solvents such as acetone, 
chloroform, and ethanol were used for sample process-
ing and analysis (Daejung, Siheung, Korea).

Microbial strains
Microbial strains used in this study were obtained 
from Korean Collection for Type Cultures (KCTC): 
Bacillus subtilis ATCC6051, Bacillus licheniformis 
ATCC14580, Bacillus pumilus ATCC7061, Bacillus 
amyloliquefaciens ATCC23350 and Bacillus velezensis 
KCTC13012.

LDPE film
Polythene film was cut into approximately square 
pieces with a dimension of 3 × 3  cm. The cut pieces 
were soaked in 70% ethanol solution for 30  min and 
washed with sterile distilled water. Subsequently, the 
PE sheets were dried at 60 °C for 1 h and weighed sepa-
rately. The dried LDPE film samples were stored in glass 
desiccators until further use.

LDPE biodegradation in flasks
To see if PE could be decomposed by bacterial strains, 
Bacillus strains were cultured in 250 ml flasks contain-
ing 100 ml of BH broth along with LDPE film (3 × 3 cm) 
[27]. For inoculum preparation, 10  ml of overnight-
culture Bacillus cells were collected by centrifugation 
at 12,000  rpm for 2  min at 4  °C, and resuspended in 
distilled water. The same process was further repeated 
twice times to remove LB medium. The final cells were 
inoculated into 100  ml BH broth and incubated at 
37  °C with constant shaking at 135  rpm. LDPE film in 
BH broth without bacterial inoculation was used as a 
negative control, which was incubated under the same 
conditions as the sample group. As a blank, the LDPE 
film was used as received without culturing. All experi-
ments were performed independently in triplicate.

Determination of cell counts during LDPE biodegradation
Once every 2 days, the absorbance of culture broth was 
measured at 600 nm (OD600). In addition, the number 
of viable cells was also determined by the colony count-
ing method. For determination of colony counts, 100 µl 
of culture broth was spread on LB plates. Then, plates 
were incubated at 37 °C for 24 h. Viable cell counts were 
expressed in colony forming units (CFU) per milliliter.

Determination of weight loss
Once every 10 days, the LDPE film was taken from the 
cultures and washed with 2% sodium dodecyl sulfate 
(SDS) solution for 30  min, 70% ethanol solution for 
30 min, and distilled water for 30 min in turn to remove 
the bacterial biomass. Then, the film was dried at 60 °C 
for 1 h and weighed. The weight loss of LDPE was cal-
culated by using Eq. 1.

Optical microscopic analysis
Surfaces and edges of LDPE film were observed using 
an optical microscope. Optical microscopic analysis 
was performed with LDPE film specimens, indicating 

(1)

Weight loss (%) =
initial weight− final weight

initial weight
× 100%.
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the blank (as-received), the negative control cultured 
without microbe, and the samples cultured with bacte-
rial cells, at 1000 × magnification.

High‑performance liquid chromatography (HPLC) analysis
Supernatant taken from the 30-day culture was filtered 
and applied to HPLC, Agilent 1100 series (Agilent Tech-
nologies, CA, USA) equipped with the RI-101 refractive 
index detector (Shodex, Denmark) [32, 44]. The flow rate 
was controlled at 500 µl per minute through a MetaCarb 
87H column (Agilent Technologies, USA) at 25 °C using 
5 mmol/l sulfuric acid as a single mobile phase.

Attenuated total reflection‑Fourier transform infrared 
spectroscopy analysis
Samples were analyzed in the same conditions in attenu-
ated total reflection (ATR) mode using an FT-IR IS50 
(Thermo Fisher, Waltham, USA) [50]. All LDPE film 
specimens, including blank (as-received), negative con-
trol, and samples, were washed with 2% SDS, 70% etha-
nol, and distilled water sequentially. The PE specimens 
from the negative control was incubated under the same 
conditions as the sample group. In the final step, the 
LDPE film specimens were fully dried. IR spectra of all 
specimens were recorded in the 4000–400 cm−1 range at 
room temperature [38]. There were no significant differ-
ences between the three scans of each specimen.

Results and discussion
Growth of Bacillus cells in the medium containing LDPE 
as a sole carbon source
In this study, as potential strains to degrade LDPE, we 
selected five kinds of Bacillus species, including B. sub-
tilis ATCC6051, B. licheniformis ATCC14580, B. pumi-
lus ATCC7061, B. amyloliquefaciens ATCC23350 and 
B. velezensis KCTC13012. The five Bacillus strains were 
cultured for 30 days at 37 °C in the mineral salt medium 
supplemented with PE film fragments for the prelimi-
nary screening. As a result, B. subtilis ATCC6051 and B. 
licheniformis ATCC14580 showed cell growth by absorb-
ance measurement at 600  nm after 30  days of culture, 
while the other strains didn’t (data not shown).

Thus, for these two strains B. subtilis and B. licheni-
formis, the bacterial culture was monitored for 30  days 
with a 2-day sampling interval to see the detailed growth 
profiles in the salt medium supplemented with LDPE 
as the sole carbon source (Fig. 1a, b). Immediately after 
inoculation with B. subtilis and B. licheniformis, the 
absorbance values were similar, at 0.10 and 0.11, respec-
tively. These values dropped sharply over the next 6 days 
(Fig.  1a, b). We speculated that this might reflect the 
hysteresis of Bacillus strains when using LDPE as the 
only carbon and energy source, due to the removal of 

the original medium during inoculation. However, via-
ble count analysis revealed that the viable cell counts 
decreased significantly only in the first 2  days, from 
1.29 × 104  CFU/ml (B. subtilis) and 5.62 × 104  CFU/
ml (B. licheniformis) at the time of inoculation to 
9.77 × 102 CFU/ml and 4.67 × 103 CFU/ml at day 2 post-
inoculation, respectively (Fig. 1c, d). Thereafter, the trend 
flattened. This difference was presumed to reflect that 
the mineral salt medium contains a small amount of pre-
cipitate, leading to a pronounced decrease in absorbance 
caused by its early bacterial consumption [47]. For B. 
subtilis, bacterial growth significantly increased starting 
at day 6 of culture; the growth rate reached a plateau at 
day 12 and remained at that level to day 30 (Fig. 1a). The 
OD600 value reached the highest point of 0.062 at day 14. 
The viable cell counts of B. subtilis also showed the same 
patterns, reaching 1.95 × 104 CFU/ml at day 16 (Fig. 1c). 
Comparison of the results for each strain revealed that 
the absorbance of B. licheniformis showed a longer lag 
time than that of B. subtilis, and B. subtilis showed a 
stronger increase in viable cells in the presence of LDPE 
as the sole carbon source (Fig. 1b, d).

The average weight loss of LDPE films was determined 
every 10  days during incubation with B. subtilis or B. 
licheniformis (Fig.  2). Cultures without inoculation of 
microorganisms were incubated as negative controls. The 
weight of the LDPE film steadily decreased over 30 days 
in the presence of the tested Bacillus strains, while that of 
the negative control was almost unchanged (Fig. 2). After 
30  days, LDPE weight losses of 3.49% and 2.83% were 
observed for films exposed to B. subtilis and B. licheni-
formis, respectively. The weight losses of LDPE and the 
increases in viable cell counts indicate that both Bacil-
lus strains utilized the polymer as a carbon source for 
growth. Meanwhile, when the bacteria entered the sta-
tionary phase (12–30 days), LDPE was still being gradu-
ally degraded. At this time, the Bacillus strains may be in 
a viable but not culturable (VBNC) state, which is a sur-
vival state exhibited in response to adverse growth condi-
tions [48]. Interestingly, the VBNC state of bacteria was 
reported to have a positive effect on the degradation of 
LDPE [12]. To determine the degradation status of LDPE 
in our experimental setting during this period, further 
examination in combination with more methods would 
be required.

In earlier reports, Bacillus sp. SM1 generated an 18.9% 
weight loss in LDPE sheets within 180  days [3]. Harsh-
vardhan and coworkers reported 1.50% and 1.75% of 
LDPE weight loss due to a 30-day exposure to B. pumi-
lis M27 and B. subtilis H1584, respectively [19]. Bacil-
lus sp. ISJ55 isolated from plastic-contaminated soil 
reduced the weight of LDPE by 1.50% at 60 days [18]. In 
another study, 3.5% and 10% weight losses were reported 
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in HDPE and LDPE degradation tests using B. sphaericus 
strain over 1 year [49].

When seeking to degrade plastics in the natural envi-
ronment, it may be more effective to employ a microbial 
community composed of various microorganisms rather 
than using a single strain. In a recent study, Gao and Sun 
suggested an artificial community containing Idioma-
rina sp., Marinobacter sp., and Exiguobacterium sp. to 
degrade PE effectively [13]. In this aspect, future devel-
opment of B. subtilis within microbial communities and 
further studies on the interaction of various enzymes in 
B. subtilis during degradation could be needed.

LDPE morphology
To assess the morphology of the LDPE film specimens 
after 30 days of incubation, the films were washed and 
dried. Polymer samples were analyzed using an optical 
microscope (Fig. 3). Freshly prepared LDPE film with-
out any treatment was observed as a blank (Fig.  3a, 
e). In the comparisons with the blank, after 30 days of 

incubation, there was no noticeable change on the sur-
face of the negative control group (Fig.  3b). However, 
the surfaces of LDPE samples cultured with B. subtilis 
(Fig.  3c) or B. licheniformis (Fig.  3d) were roughened 
and exhibited some cracks. We speculate that these 
changes occurred because the bacteria formed a biofilm 
on the LDPE surface.

Microscopic observation of the LDPE film edges 
(Fig.  3e–h) revealed that after 30  days of culture, the 
edges of negative control LDPE (Fig.  3f ) were more 
rounded and flatter than those of the blank (Fig.  3e). 
This suggests that the sample experienced friction dur-
ing the culture process, however the data on weight 
loss indicate that this friction was insufficient to sig-
nificantly decrease the weight of the LDPE film (Fig. 2). 
In contrast, fine cracks with peeling were observed at 
the edges of LDPE cultured with B. subtilis (Fig. 3g) or 
B. licheniformis (Fig. 3h). Taken together, these results 
indicate that LDPE is degraded to a certain extent by 
the two Bacillus strains tested in this study.

Fig. 1  Growth profiles of B. subtilis and B. licheniformis strains in a minimal salt medium supplemented with LDPE as a sole carbon source. 
a, c B. subtilis; b, d B. licheniformis; a, b cell density at 600 nm (OD600); and c, d viable cell count as CFU/ml. All experiments were performed 
independently in triplicate
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LDPE decomposition products
Because PE can be structurally classified as a hydrocar-
bon, it might follow the terminal oxidation, double ter-
minal oxidation, or subterminal oxidation metabolic 
pathway. PE molecules that undergo one of the above 
processes are eventually carboxylated and structurally 
similar to fatty acids upon carboxylation [26]. Thus, we 
hypothesized that low-molecular-weight organic acids 
would be produced from the decomposition of LDPE. To 
determine the decomposition products of LDPE, super-
natants taken from 30-day cultures of the two Bacillus 

strains were subjected to HPLC analysis (Fig.  4). The 
Bacillus-inoculated samples each revealed three distinct 
new peaks, found at 21.8, 24.5, and 29.7  min (Fig.  4). 
Identification for these peaks was not conducted in this 
study, but it seems that the peak at 21.8  min indicates 
butyrate, based on retention time of the standard. We 
were also unable to confirm the component of the other 
two peaks due to a lack of standards. More specifically, 
after 30 days of culture, the peak at 21.8 min (estimated 
as butyrate) was detectable in both bacteria-containing 
culture supernatants (Fig.  4b, c) but not the negative 
control (Fig.  4a). Alkane oxidase and laccase, present 
in Bacillus species, are predicted to be involved in the 
degradation of PE [22]. Polyethylene molecules are con-
verted to alcohols by the action of monooxygenases, and 
these alcohols are further oxidized to aldehydes by alco-
hol dehydrogenase [7]. The aldehydes are converted to 
fatty acids by aldehyde dehydrogenases [11] and, finally, 
the fatty acids are metabolized through the β-oxidation 
pathway and finally converted into CO2 and energy [6, 8]. 
Butyrate estimate (the peak at 21.8 min) in HPLC analy-
sis, as one of the typical volatile lower fatty acids, indi-
cates that Bacillus strains can utilize LDPE as the sole 
carbon source for metabolic activities to produce organic 
acids and other products, further verifying that Bacillus 
can degrade LDPE.

Surface functional groups on LDPE
The analysis of surface functional groups can be used 
as an indicator of PE degradation [2]. In this study, the 
functional groups on LDPE were determined by ATR-
FTIR (Fig. 5). All four LDPE specimens, including blank, 
negative control, two samples incubated with B. subti-
lis or B. licheniformis, exhibited peaks at wavelengths 

Fig. 2  Weight loss of LDPE film samples. Symbols are: filled circle, 
LDPE samples incubated with B. subtilis; open circle, LDPE samples 
incubated with B. licheniformis; and filled triangle, negative control, 
indicating LDPE specimens incubated in the flask in which bacterial 
cells were not inoculated. All experiments were performed 
independently in triplicate. See the Methods section for the details 
on calculating the weight loss of LDPE film samples

Fig. 3  Morphologies of LDPE film under the optical microscope. For morphological analysis, all LDPE specimens were taken after 30-day incubation 
except for blank (fresh film). Surfaces (a–d) and edges (e–h) were analyzed separately. a, e Blank group, indicating fresh LDPE film; b, f negative 
control, indicating LDPE specimens incubated in a flask in which bacterial cells were not inoculated; c, g LDPE film incubated with B. subtilis; and d, 
h LDPE film incubated with B. licheniformis 
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of 700  cm−1, 1390  cm−1, 1485  cm−1, 2851  cm−1, and 
2922  cm−1, which indicated C–H, –CH3 (methyl, C–H 
asymmetric/symmetric bend), =CH2 (methylene, C–H 
bend), =CH2 (methylene, C–H asymmetric/symmetric 
stretch) and =CH2 (methylene, C–H asymmetric/sym-
metric stretch) bonds, respectively [9, 24].

There were a number of peak differences between 
negative control (or blank) and LDPE samples incubated 
with bacterial strains, as follows: On the surface of LDPE 
incubated with B. subtilis, a new peak was observed at 

1030.65  cm−1 (Fig.  5), indicating C–O stretching and 
the presence of alcohol, carboxylic acid, ester, and ether 
groups [53]. This phenomenon was also reported in 
LDPE biodegradation using B. siamensis [16].

On the other hand, the LDPE incubated with B. subti-
lis also exhibited a new peak at 1538.86 cm−1 indicating 
N–O stretching. In recent studies for PE degradation, it 
has been reported that the N–O stretching was found in 
PE samples [39, 41, 50]. For example, it has been reported 
that the corrosive gas NOx can cause PE degradation 
[39]. Furthermore, nitric oxide synthase (NOS), ubiqui-
tous in Bacillus, can generate nitric oxide gas in an enzy-
matic reaction, which is thought to be responsible for the 
formation of nitro groups on LDPE [41]. Another study 
speculated that bacteria might secrete nitro and sur-
factants [50]. Although the partial pressure of NOx pro-
duced by Bacillus strains during culture was much lower 
than the reaction conditions of Oluwoye and cowork-
ers’ study, the NOx-induced LDPE free radical reaction 
deserves further investigation.

Additional new peaks at 1646.10 cm−1 and 3281.24 cm−1 
were observed in LDPE incubated with B. subtilis, suggest-
ing the existence of C=C stretching and an –OH group, 
respectively. These results indicate that the B. subtilis-
exposed LDPE underwent oxidation under our experi-
mental conditions. Hydroxylation is generally considered 
to be an important step in PE biodegradation, because an 
hydroxyl group is necessary for the formation of carbonyl 
groups [54], which can be converted into esters for even-
tual cleavage by lipase or esterase [56].

Finally, LDPE incubated with B. subtilis exhibited 
decreases in the peaks at 2851  cm−1 and 2922  cm−1, 
indicating the weakening of =CH2 stretching. In a previ-
ous study on the biodegradation of LDPE, similar results 
were obtained using Acinetobacter baumannii [42].

The results obtained for surface functional groups of 
LDPE incubated with B. licheniformis were consistent 
with those obtained for LDPE incubated with B. subtilis, 
but of a lesser degree (Fig. 5). Collectively, these findings 
on the changes in surface functional groups support the 
notion that LDPE films are degraded by the two Bacillus 
strains tested herein.  In this study, we tested two Bacil-
lus strains, B. subtilis ATCC6051 and B. licheniformis 
ATCC14580, and reveal that they both exhibit potential 
for the colonization and biodegradation of LDPE. B. sub-
tilis could form biofilms on untreated LDPE films and 
grow using PE as the sole carbon source. After 30 days, it 
effectively degraded 3.49% of the input LDPE. The LDPE 
degradation ability of B. licheniformis was slightly lower 
than that of B. subtilis, effectively degraded by 2.83%. 
This is the highest rate reported so far for LDPE degrada-
tion using a single Bacillus strain. Morphological changes 

Fig. 4  Determination of LDPE decomposition products using HPLC. 
For HPLC analysis, the broth was taken after 30-day culture. a In the 
negative control, the LDPE specimens were incubated in a flask 
without bacteria; b, c LDPE samples were incubated with b B. subtilis 
and c B. licheniformis 
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seen by microscopic observations, differences in peaks 
on HPLC analysis, changes in peak intensities on ATR-
FTIR, and the generation of new absorption peaks all 
confirmed the microbial-induced degradation of the PE 
film. Biofilm development and PE film degradation were 
observed by incubating LDPE films with each microbe as 
the sole carbon source. The study highlights that B. sub-
tilis and B. licheniformis, the most common bacteria in 
soil, can be candidate microorganisms for bioremedia-
tion of plastic pollution. Various enzymes or microbial 
communities can be developed for polymer degradation. 
It will be a safe and environmentally friendly method. 
However, as aerobic bacteria, Bacillus has obvious limita-
tions for plastic degradation in anaerobic environments 
(such as deep soil, and inside landfills), and it is neces-
sary to further develop microbial communities composed 
of various microorganisms to cope with complex natural 
environments.
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