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Abstract 

The ability of natural plants to treat chronic diseases is closely related to their antioxidant function. Lactic acid bacteria 
(LAB) fermentation is an effective way to improve the nutritional value, biological activity and flavor of food. This study 
investigated the pH, titratable acidity, total polysaccharide, total flavone, total saponin, total polyphenol, and anti‑
oxidant activity of the FH06 beverage before and after probiotic fermentation. Results: After fermentation, FH06 had 
lower contents of total polysaccharides, total flavonoids, total saponins and total polyphenols but higher titratable 
acidity. The antioxidant activity was tested by total antioxidant capacity (FRAP method) and DPPH· scavenging abil‑
ity. The FRAP value significantly increased after fermentation (P < 0.05), and the maximum increase was observed for 
Lactobacillus fermentum grx08 at 25.87%. For DPPH· scavenging ability, the value of all fermentations decreased, and 
L. fermentum grx08 had the smallest reduction at 2.21% (P < 0.05). The results of GC–MS and sensory analysis showed 
that fermentation eliminated bad flavors, such as grass, cassia and bitterness, and highlighted the fruit aroma and soft 
sour taste. Conclusion: The FRAP value and sensory flavor of FH06 fermentation by L. fermentum grx08 were signifi‑
cantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good 
flavor.
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Introduction
Obesity and other chronic diseases are prevalent in the 
world [1]. Natural plants have important advantages and 
a long history of application in the prevention and treat-
ment of obesity and other chronic diseases [2]. Oxidative 
stress and chronic inflammation play a central role in the 
pathogenesis of obesity, diabetes, chronic nephritis, fatty 
liver and other chronic diseases [3]. Moreover, oxidative 
stress can activate inflammatory mediators, leading to 
the development of metabolic and inflammatory diseases 
[4]. Studies have shown that the mechanisms of action of 
many natural plants in the treatment of chronic diseases 
are closely related to antioxidant function [5]. In China, 
there is a special class of natural plant raw materials that 
not only have the nutritional ingredients of ordinary 
food and can be used as diet but also have the functional 
ingredients of medicine and can be used as medicine. The 
National Health Commission of the People’s Republic of 
China lists it as a raw material for both food and medi-
cine. This kind of special food raw material is tradition-
ally called medicine food homology (MFH) raw material, 
which has a universal and long history in daily diet and 
clinical application, so it has a high edible safety [6].

With the development of health concepts, there is 
an increasing demand for fermentable plant products 
(FPPs). Chen et  al. [7] found that water extract of fer-
mented rice bran (FRB) had strong antioxidant activ-
ity and protective effect on liver injury in rats fed with 
high-fat diet. Hwang et  al. [8] found that fermentation 
by Leuconostoc mesenteroides KCCM 12010P improved 
the antioxidant and anti-inflammatory properties of 
ginseng. Song et  al. [9] found that hydroponic ginseng-
fortified Yogurt fermented by Lactobacillus brevis B7 can 
significantly increase the antioxidant activity in RAW 
264.7 cells. Bacillus subtilis-fermented dried citrus peel 
extract exerts anti-inflammatory activity in RAW 264.7 
macrophages induced by lipopolysaccharide (LPS) [10]. 
Fermentation of apple juice by Saccharomyces cerevisiae 
and Lactobacillus plantarum significantly improved anti-
oxidant activity [11]. At present, there are only studies 
on the fermentation of individual raw materials, such as 
ginseng, rice bean and tangerine peel, but there are few 
reports on the use of LAB to ferment plant-based com-
pound beverages with homologous food and medicine 
to enhance their biological functions. However, there is a 
consensus that multiple targeted therapies are needed to 
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treat chronic conditions such as obesity. The compound 
plant-based beverage FH06 is composed of six MFH 
materials: ginseng, lotus leaf, poria cocos, rice bean, tan-
gerine peel and cassia. Their combination is based on the 
traditional Chinese medicine weight loss theory of toni-
fying qi and invigorating the spleen, dispelling dampness 
and resolving phlegm [12]. Ginseng [13], lotus leaf [14], 
poria cocos [15], tangerine peel [16], rice bean [17] and 
cassia [18] all have antioxidant and anti-inflammatory 
properties and are commonly used as food or dietary 
supplements for weight loss in China, Korea and other 
eastern countries.

In addition, the conditioning of chronic diseases such 
as obesity is not a short-term process, as is its formation. 
Therefore, the flavor of products is an important factor 
for consumers to adhere to long-term use. Some natural 
plant raw materials generally have bad flavors, such as 
grass and bitterness [19], so it is difficult for consumers 
to persist in consumption. Studies have found that micro-
bial fermentation can reduce the odor of plants such as 
grass [20]. Therefore, this study focuses on screening 
LAB strains from probiotics of longevity people who 
are suitable for growing in FH06, improving efficacy and 
improving flavor to develop functional beverages with 
both efficacy and good flavor. The growth was character-
ized by the number of viable bacteria. The physicochemi-
cal properties were characterized by pH, titration acidity, 
total polysaccharides, total flavonoids, total saponins and 
total polyphenols. The antioxidant activity was evalu-
ated by DPPH· scavenging activity and total antioxidant 
capacity (FRAP value). Volatile flavor compounds were 
determined by gas chromatography–mass spectrometry 
(GC–MS).

Materials and methods
Chemicals
1, 1-Diphenyl-2-trinitrophenylhydrazine (DPPH) was 
purchased from Shanghai Macklin Biochemical Tech-
nology Co., Ltd. Gallic acid, rutin, ginsenoside Re and 
anhydrous glucose were obtained from Shanghai Yuanye 
Biotechnology Co., Ltd, China. Folin-Ciocalteu phenol 
reagent was purchased from Sangon Bioengineering 
(Shanghai) Co., Ltd, China. The total antioxidant (FRAP) 
kit was purchased from Nanjing Jiancheng Biological 
Engineering Research Institute Co., Ltd, China. The rest 
of the chemicals, reagents, consumables and culture 
media were purchased from National Pharmaceutical 
Chemical Reagent Co., Ltd, China.

Preparation of FH06
Ginseng (Panax ginseng C. A. Meyer), lotus leaf 
(Nelumbo nucifera Gaertn.), poria cocos (Poria cocos 
(Schw.) Wolf.), rice bean (Vigna umbellata (Thunb.) 

Ohwi et Ohashi), tangerine peel (Citrus sinensis (Linn.) 
Osbeck) and cassia (Cinnamomum cassia Presl) were 
mixed in the proportion of 10 ∶ 6 ∶ 10 ∶ 10 ∶ 3 ∶ 1 by 
weight, fully crushed, mixed evenly with ultrapure water 
in the proportion of 1 ∶ 10 (g/ml), soaked at room tem-
perature for 30 min, heated at 100 °C for 30 min, cooled 
and centrifuged at 4000 × g for 10  min. The superna-
tant was FH06. The raw materials above were purchased 
from Beijing Tongrentang Health Pharmaceutical Co., 
Ltd., Beijing, P. R. China, and identified by the chief 
pharmacist Ying Yao, Yangzhou University, P. R. China. 
Voucher specimens YZU20201015-1 ~ 6 were preserved 
in the specimen room of Yangzhou University, Yangzhou, 
Jiangsu Province, P. R. China.

Preparation of fermented FH06
Lactobacillus fermentum grx08 (grx08, CGMCC No: 
7695), Lactobacillus rhamnosus hsryfm1301 (1301, 
CGMCC No: 8545), Lactobacillus rhamnosus grx10 
(grx10, CGMCC No: 2526), Lactobacillus plantarum 67 
(67, CGMCC No: 21268) and Lactobacillus plantarum 
S7 (S7, CGMCC No: 19021) were provided by the Jiangsu 
Provincial Key Lab of Dairy Biotechnology and Safety 
Control, Yangzhou University, China. Lactic acid bacteria 
strains were inoculated into conventional MRS medium 
and cultured at 37 °C for 18 h. Then, the cells were centri-
fuged at 5000 × g for 1 min, the supernatant was poured 
out, sterile normal saline was added to wash the precipi-
tated bacteria, and washing was repeated twice. Finally, 
the bacterial suspension was obtained by resuspending 
bacteria in sterile physiological saline and adjusting the 
OD600 to 1.0. The above bacterial suspension was inocu-
lated into FH06 at a ratio of 3% (v/v) and then cultured 
under anaerobic conditions at 37 °C for 72 h. After inocu-
lation, 40  mL was sampled immediately, of which 1  mL 
was used to count living bacteria, and the rest was cen-
trifuged at 5000 × g for 5 min. The supernatant was taken 
as the fermentation broth for 0 h and stored at  − 80 °C 
until use. After that, samples were obtained and treated 
according to the above method at 12 h, 36 h and 72 h.

Determination of live bacterial count, pH and titratable 
acidity
The number of living bacteria in the sample was deter-
mined by the plate colony counting method. The pH 
value was measured by an FE20 pH meter (METTLER 
TOLEDO Int. Ltd., Zurich, Switzerland). The pH meter 
was calibrated with pH 4.01 and 7.00 standard buffer 
solution before use. The titratable acidity was determined 
by standard sodium hydroxide (0.1 mol/L) titration with 
a pH value up to 7.0. The determination method of titra-
tion acidity is as follows: Weigh 5 g sample and titrate by 
0.1 mol/L NaOH solution until a pH value up to 7.0. The 
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number of milliliters of NaOH solution used × 20 is the 
titratable acidity value of the sample (°T).

Determination of total polysaccharide content (TPSC)
The TPSC in the sample was determined by the phenol–
sulfuric acid method and slightly modified according to 
the method of Nazeam et al. [21]. Anhydrous glucose was 
used as the standard. A total of 0.5 mL of sample (diluted 
50 times with distilled water) was added to 0.5 mL of 6% 
phenol solution, and then 2.5 mL of concentrated sulfuric 
acid was added and mixed well. Keep at 25 °C for 30 min. 
Finally, the absorbance at 490  nm was measured by a 
microplate reader (Thermo Fisher Co., Ltd., Waltham, 
USA). The data were expressed as mg of glucose equiva-
lent (GlcE) per milliliter of FH06.

Determination of total flavonoid content (TFC)
The TFC was determined by the aluminum nitrate col-
orimetric method with rutin as the standard and slightly 
modified according to the method of Chen et  al. [22]. 
The sample (0.5 mL) was mixed with 0.05 g/mL NaNO2 
(1 mL) and allowed to stand for 6 min; then, 0.1 g/mL Al 
(NO3)3 (1 mL) was added, mixed evenly and allowed to 
rest for 6 min. Next, 0.04 g/mL NaOH (3 mL) was added, 
mixed evenly and allowed to rest for 15 min; finally, the 
absorbance at 510  nm was measured by a microplate 
reader (Thermo Fisher Co., Ltd., Waltham, USA), and the 
data are expressed as milligrams of rutin equivalent (RE) 
per milliliter of FH06.

Determination of total polyphenol content (TPC)
TPC was slightly modified according to the literature of 
Derakhshan et al. [23]. As determined by the Folin-Cio-
calteu method, a standard curve was prepared with gallic 
acid as the standard. A total of 400 μL of Flynn-Chocard 
reagent was added to 100 μL of standard or sample and 
mixed well. After 1 min, 300 μL of 10% sodium carbonate 
was added to the mixture, mixed well, brought to a vol-
ume of 5 mL with ultrapure water, and incubated at room 
temperature for 60 min. The absorbance was measured at 
765 nm by a microplate reader (Thermo Fisher Co., Ltd., 
Waltham, USA). Data are expressed as mg of gallic acid 
equivalent (GAE) per milliliter of FH06.

Determination of the total saponin content (TSC)
TSC was determined by the vanillin-sulfuric acid colori-
metric method with ginsenoside Re as the standard and 
slightly modified according to the method of [24]. Ten 
microliters of the sample was placed in a 1.5 mL centri-
fuge tube and dried at 42 °C for 1 h. Then, 100 μL of van-
illin (10% w/v) dissolved in ethanol was added and mixed 
well. Add 750 μL of 75% concentrated sulfuric acid in an 

ice bath and mix well. Then, the samples were incubated 
in a water bath at 60  °C for 20  min. To stop the reac-
tion, the samples were cooled on ice for 10 min. Finally, 
the absorbance was measured with a 96-well micro-
plate reader (Thermo Fisher Co., Ltd., Waltham, USA) at 
544 nm. The data were expressed as mg of ginsenoside Re 
equivalent (GRE) per milliliter of FH06.

Determination of total antioxidant capacity (FRAP value)
The determination of the total antioxidant capacity of 
plasma by the iron reduction (FRAP) method was car-
ried out according to the kit instructions. Then, 180 μL 
of FRAP working liquid was added to each well of the 
96-well plate, and 5 μL of ultrapure water was added to 
the blank control well. Five microliters of sample were 
added to the test well and mixed gently. A593 nm was 
measured after incubation at 37 °C for 3 min. The stand-
ard curve was determined with FeSO4 as the standard 
product. The FRAP value of the sample is expressed in 
mM FeSO4 equivalents.

Determination of scavenging ability of DPPH
The method mentioned in the literature by Kwon et  al. 
was slightly modified [25]. Samples diluted 10 times with 
45 µL and 100 μL of DPPH solution at 0.2 mM (soluble in 
ethanol) were added to a 96-well plate, mixed well, and 
placed in the dark for 30 min at room temperature. The 
absorbance A1 at 516 nm was measured by a microplate 
reader (Thermo Fisher Co., Ltd., Waltham, USA), and 45 
µL of anhydrous ethanol was used to replace the sample 
as blank absorbance A0. Ascorbic acid was selected as the 
positive control. The unit of the DPPH· scavenging rate is 
recorded as ‘%’.

Determination of volatile flavor compounds
The determination of volatile flavor compounds before 
and after fermentation was slightly modified according to 
the method of Dan et al. [26].

Aging of the extraction head: aging occurred at the 
inlet at 250  °C for 30–60 min. Solid phase microextrac-
tion conditions: adsorption on a magnetic stirrer at 
50  °C for 45 min. Desorption conditions: desorption for 
3 min at 250 °C. The carrier gas was He, with a flow rate 
of 1.0  mL/min; splitless injection, inlet temperature of 
250 °C. Temperature program mode: the starting temper-
ature was 35 °C, and after holding for 5 min, it increased 
to 140 °C at a rate of 5 °C/min, held for 2 min, increased 
to 250 °C at a rate of 10 °C/min, and held for 3 min. Full 
scan mode, EI ion source, electron energy 70  eV, ion 

(1)
DPPH · scavenging rate (%) = (A0 − A1)/A0 ∗ 100
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source temperature 230 °C, mass scan range m/z: 35–500 
AMU, no solvent delay.

The NIST2.2 standard library of the Masshunter 
workstation that comes with the machine was used 
to automatically retrieve the mass spectrum data of 
each component and calculate the relative content of 
each component with o-chlorodiphenyl as the internal 
standard.

Sensory evaluation
According to the sensory scoring criteria (Additional 
file  2: Table  S1), 10 trained graduate students in food 
science and engineering conducted sensory evalu-
ations on various flavor and mouthfeel indicators 
of SHLE before and after fermentation, giving 0 to 
10 points as quantitative indicators. The taster only 
knows the number of samples. Normal temperature 
boiled water was used at the beginning of the evalua-
tion and between the evaluations of the different sam-
ples to clean the palate and remove residual taste.

Statistical analysis
All samples were repeated three times. Statistical analysis 
was performed using SPSS 22 (Statistical Package for the 
Social Science, SPSS Ins., Chicago, USA). The results are 
presented as the means ± SE, and the differences among 
the different samples were analyzed using one-way analy-
sis of variance (ANOVA, Tukey’s Method). Correlation 
and partial correlation were used to analyze the relation-
ship among different factors. Values of P < 0.05 or P < 0.01 
were considered statistically significant.

Results and discussion
Growth of different lactic acid bacteria in FH06
The pH, titratable acidity and number of viable bacteria 
of FH06 fermented at 37  °C for 12 h, 36 h and 72 h are 
shown in Fig. 1. It can be seen from the graph that six lac-
tic acid bacteria, including grx08, 1301, grx10, 67 and S7, 
had good growth characteristics in FH06. After fermen-
tation, the pH value of FH06 (Fig.  1A) was significantly 
lower than that of unfermented FH06 (P < 0.01), while 
the titratable acidity (Fig.  1B) was significantly higher 

Fig. 1  Changes in pH (A), acidity (B) and viable bacteria count (C) of FH06 fermented by different LAB. * represents a significant difference 
compared with before fermentation (BF) (P < 0.05)
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than that of unfermented FH06 (P < 0.01). In short, the 
pH value of FH06 before fermentation was 5.05, and the 
pH values of different LAB after fermentation were 3.30 
(grx10), 3.35(67), 3.51(S7), 3.56(1301) and 3.88(grx08) 
from low to high. This is similar to the results reported in 
the literature that the pH value of papaya juice fermented 
by L. plantarum decreased from 5.34 to 3.55 [27]. The 
pH value of fermentation FH06 decreased significantly, 
which was attributed to the organic acids produced by 
fermentation. The titratable acidity of FH06 before fer-
mentation was 8.50°T, and after 72  h of fermentation, 
the titratable acidity was 103.22°T (67), 100.15°T (grx10), 
86.27°T (S7), 67.85°T (1301) and 53.30°T (grx08). The 
pH value of 67, grx10 and S7 decreased rapidly, and the 
titratable acidity increased rapidly, but the number of 
viable bacteria decreased obviously after 36  h (Fig.  1C). 
Most likely due to faster fermentation and excessive 

nutrient consumption, the accumulation of metabolites 
such as organic acids causes LAB to be under the dual 
stress of starvation and acid, thus inhibiting their growth 
and reproduction. After 72 h of fermentation, the highest 
viable cell count was 8.84 lg (CFU/mL) for grx08, and the 
lowest was 8.33 lg (CFU/mL) for S7.

Effects of LAB fermentation on some components of FH06
The changes in some components of FH06 during 12 h, 
36 h and 72 h of fermentation by LAB are shown in Fig. 2. 
The contents of total polysaccharides, total flavonoids, 
total polyphenols and total saponins decreased to differ-
ent degrees (P < 0.05).

Total polysaccharides
After fermentation by LAB for 72  h, the total polysac-
charide content of FH06 decreased the most (Fig.  2A), 

Fig. 2  Changes in the contents of functional components in FH06 fermented by LAB. A Total polysaccharide; B Total flavonoid; C Total polyphenol; 
D Total saponin. * Indicates a significant difference from before fermentation (BF) (P < 0.05). Different letters indicate significant differences before 
fermentation (BF) and after fermentation for 72 h (P < 0.05). glucose equivalent (GlcE), rutin equivalent (RE), gallic acid equivalent (GAE), ginsenoside 
Re equivalent (GRE)
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and the decrease in each LAB group was as follows: 1301 
(−  38.21%) < grx10 (−  49.81%) < grx08 (−  50.91%) < S7 
(−  67.72%) < 67 (−  67.91%). Of them, L. plantarum (67 
and S7) consumed much more sugar in speed and quan-
tity than other strains. These results were consistent with 
the results of previous studies showing that fermenta-
tion by L. plantarum significantly decreased the reduc-
ing sugar content of Bog bilberry juice [28]. The possible 
reason is that L. plantarum releases β-glucosidase, which 
breaks down sugars into their own carbon source for 
growth [29].

Total flavonoids
After 72  h of fermentation, the total flavonoid con-
tent of each LAB group (Fig. 2B) decreased from low to 
high as follows: grx08 (− 18.44%) < 1301 (− 44.63%) < 67 
(−  45.32%) < S7 (−  46.34%)) < grx10 (−  47.43%). Tkacz 
et al. [30] found that a decrease in flavonoids content was 
observed after fermentation in juices inoculated with L. 
plantarum DSM 100,813 and DSM10492 strains by 8.3 
and 10.3%, respectively. In turn, the juice inoculated with 
the L. plantarum DSM 20,174 strain had a final flavo-
noidconcentration that was 9.5% higher than that of the 
uninoculated juice. However, L. plantarum subsp. had no 
significant effect on the flavonoids content in sea buck-
thorn juice. They believed that the type of LAB strain 
determines the difference in flavonoids concentration. 
Therefore, studies have also found that LAB fermentation 
of papaya juice can increase the total flavonoid content 
[27].

Total polyphenols
After 72 h of fermentation, the total polyphenol content 
decreased the least (Fig.  2C), and the decrease in each 
LAB group was grx08 (− 10.06%) < grx10 (− 11.8%) < 67 
(−  12.52%) < 1301 (−  19.21%) < S7 (−  20.44%). This is 
consistent with the reported result that the phenolic acid 
content of seabuckthorn apple juice after 72  h of fer-
mentation by LAB decreased by 17.7% [30]. It was also 
reported that Solanum lycopersicum L. decreased its 
polyphenol content after in  vitro gastrointestinal diges-
tion and colon fermentation [31]. Phenolic acids exist 
mainly in the form of covalent bonds in plants. The 
decrease in phenolic acids in the process of FH06 fer-
mentation may be due to the microbial decomposition 
of the covalently bonded macromolecular phenolic acids 
into small molecules.

Total saponins
After 72 h of fermentation, the total saponin content of 
each LAB group (Fig. 2D) decreased in the order of grx08 
(−  18.04%) < grx10 (−  20.94%) < 1301 (−  24.57%) < S7 
(− 34.90%) < 67 (− 37.66%). Park et al. [32] used Phellinus 

linteus for solid fermentation of ginseng. Fermentation 
increased the total saponin content of the sample. The 
contents of Rg2, Rc, Rh1(S), Rh1(R) and Rd increased, 
but the contents of Re and Rf decreased. Lessa O. A 
[33]. used Penicillium roqueforti to produce saponins by 
solid-state fermentation of cocoa shells. The reason for 
the increase in the total amount may be that the cellu-
lase produced by fungal solid fermentation destroys the 
plant cell wall and increases the dissolution of saponins 
and other substances.

In general, L. plantarum (67 and S7) made more use of 
the above four functional components in different spe-
cies of LAB. This may be related to the strong ability of 
L. plantarum to ferment carbohydrates [34]. Except for 
the total polysaccharide, the decrease in the content of 
the other three functional components was the smallest 
when grx08 was fermented, which was consistent with 
the result of the lowest titratable acidity. The utilization 
of different components by different LAB is different.

Effect of LAB fermentation on the antioxidation function of 
FH06 in vitro
The antioxidant properties of FH06 fermented by LAB 
for 12 h, 36 h and 72 h are shown in Fig. 3. The total anti-
oxidant capacity (FRAP method) and DPPH· scaveng-
ing capacity were tested before fermentation (BF) and 
0.2 mg/mL vitamin C (Vc).

Figure  3A shows that the FRAP value gradually 
increased after the fermentation of grx08, and the other 
four LABs showed a trend of first rising and then fall-
ing after fermentation. This is consistent with the trend 
that the FRAP value of L. acidophilus fermentation sig-
nificantly decreased after the 48  h fermentation period 
[27]. In general, FH06 significantly increased the FRAP 
value after fermentation by LAB (P < 0.05). This is con-
sistent with the report that fermenting quinoa with LAB 
can improve in  vitro antioxidant capacity (FRAP) [35]. 
Figure  4 shows that the increase in the FRAP value of 
FH06 by different LAB fermentations was as follows: 
grx08 (25.87%) > grx10 (15.00%) > 1301 (13.09%) > 67 
(9.34%) > S7 (7.36%). After grx08 fermentation, the FRAP 
value (Fig.  3A) was significantly higher than that of the 
other fermentation groups and the positive control group 
(P < 0.05).

Oxidative stress and inflammation are closely related 
pathophysiological processes, one of which is easily 
induced by the other. Thus, both processes are found in 
many pathological conditions at the same time [3]. The 
fermentation process has been shown to enhance the 
anti-inflammatory activity of herbs through a variety of 
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mechanisms. In addition, there is increasing evidence 
that enhancing the anti-inflammatory activity of herbal 
medicines through fermentation is mediated by regulat-
ing the gut microbiome [36], so the antioxidant and anti-
inflammatory effects in vivo need to be further validated 
in animal studies.

Effects of LAB fermentation on the DPPH· scavenging activity 
of FH06 in vitro
Figure  3B shows that the scavenging rate of BF was 
83.42% before fermentation, and the DPPH· scavenging 
ability was decreased by fermentation (P < 0.05), but the 
reduction was smaller (Fig. 4) and still higher than 56.61% 
of the positive control (P < 0.05). The results showed that 
grx08 (−  2.21%) < 1301 (−  2.62%) < 67 (−  4.38%) < grx10 

(− 7.25%) < S7 (− 10.94%) decreased the scavenging rate 
of DPPH·. In general, FH06 before and after fermenta-
tion has a strong DPPH· scavenging capacity. In this 
study, the sample was diluted 10 times and reacted with 
0.2 mM DPPH solution at a ratio of 45:100, and the clear-
ance rate was still above 74%. Among them, the DPPH· 
clearance rate of FH06 remained at 81.57% after grx08 
fermentation for 72  h, which is equivalent to 0.32  mg/
mL VC. Zhou et al. [37] used LAB to ferment kiwifruit to 
improve the scavenging ability of DPPH·, which is related 
to the increased total phenol content. In this paper, the 
total phenol content and DPPH· scavenging ability after 
fermentation are slightly reduced. Correlation analy-
sis (Table  1) also showed that DPPH· scavenging ability 
was positively correlated with total polyphenol content 
(P < 0.05). Similarly, studies such as Chen R. [27]showed 
that L. acidophilus-fermented papaya juice can scavenge 
DPPH·. The activity was significantly reduced after the 
fermentation process, the inhibition rate dropped from 

Fig. 3  Antioxidant function of different LAB before and after fermentation of FH06. A Total antioxidant capacity (FRAP value). B DPPH·scavenging 
ability * indicates a significant difference compared with before fermentation (BF) (P < 0.05). Different letters indicate a significant difference 
compared with BF and VC (0.2 mg/mL) after fermentation for 72 h (P < 0.05)

Fig. 4  Percentage change of antioxidant properties of FH06 after 
72 h fermentation compared with before fermentation

Table 1  Correlation coefficients between antioxidant capacity 
and some compounds in FH06

r: Pearson’s correlation coefficient
* P < 0.05

**P < 0.01

r TPSC TFC TPC TSC Acidity

TAC​ 0.139 0.246 0.161 0.318 − 0.191

DPPH 0.608* 0.722** 0.569* 0.591* − 0.696**

Acidity − 0.886** − 0.937** − 0.587* − 0.897** 1
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81.90% to 55.60%, and its polyphenol content was also 
reduced by 14.83%.

Some studies have shown that spathulenol has anti-
oxidant and anti-inflammatory activities and shows high 
antioxidant activity in the DPPH system, with an IC50 
value of 85.6 μg/mL [38]. It is speculated that spathule-
nol (Additional file 1: Fig. S1A, RT: 31.42 min, Additional 
file 2: Table S3 No. 88) may be a reason for its strong abil-
ity to remove DPPH·.

Effect of the pH of the fermentation broth of FH06 on its 
antioxidant function in vitro
FH06 is acidic after being fermented by LAB, and its 
pH value drops below 4.0. To remove the influence of 
pH value, the supernatant group before (0  h, Con) and 
after fermentation (72  h) of each group was uniformly 
adjusted to a pH value of 7.0 with saturated NaOH solu-
tion, and then the antioxidant function characteristics of 
each treatment group (pH treatment) were measured.

The effect of pH on the FRAP value
Figure  5A shows that after adjusting the pH, the FRAP 
value of each fermentation group decreased significantly. 
It may be that fermentation consumes part of the anti-
oxidant active substances as nutrients and converts them 
into antioxidant active acids. These acidic substances 
(H+) are neutralized by OH− in NaOH, thus reducing the 
antioxidant capacity. Studies have shown that the organic 
acid content of fruit vinegar is significantly positively cor-
related with antioxidant activity and may be an active 
substance that exerts antioxidant activity. This shows 

that the improvement in antioxidant capacity (FRAP) is 
closely related to the production of organic acids.

The effect of pH on the scavenging ability of DPPH
Figure  5B shows that after adjusting the pH value to 
7.0, the DPPH· scavenging capacity of each group (pH 
treatment) decreased significantly before and after fer-
mentation. It may be that some active substances were 
destroyed during the addition of NaOH, thus reducing 
the DPPH· scavenging ability.

Fig. 5  Comparison of the antioxidant properties of the FH06 extract before and after adjusting the pH to 7.0. A Total antioxidant capacity (FRAP 
value); B DPPH·scavenging rate. Data are expressed as the mean ± standard deviation (SEM). "Con" means the supernatant stock before and after 
fermentation; "pH treatment" refers to adjusting the supernatant stock before and after fermentation with a saturated NaOH solution to a pH of 7.0. 
Note: different letters indicate significant differences among groups after pH adjustment (P < 0.05)

Fig. 6  Principal component analysis of fermentation growth, 
fermentation characteristics and antioxidant properties of different 
LAB
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Principal component analysis
Principal component analysis (Fig.  6) can clearly distin-
guish BF and post fermentation samples. FH06 changed 
significantly after LAB fermentation, and the total poly-
saccharide, total flavonoids, total polyphenols, total 
saponins, DPPH· clearance rate and pH decreased after 
fermentation. In contrast, the titratable acidity, viable 
bacteria and FRAP value showed an upward trend. 
Among them, L. fermentum grx08 had the smallest 
reduction in overall active substances after fermenta-
tion, the largest increase in FRAP value (25.87%), and 
the smallest reduction in DPPH· scavenging capac-
ity (− 2.21%). It can be seen that L. fermentum grx08 is 
a good candidate strain for fermenting FH06 functional 
beverages to improve its antioxidant properties.

Effect of fermentation on the FH06 sensory score
Lactic acid bacteria fermentation significantly changed 
the sensory score of FH06 (Additional file  2: Table  S2). 
Fermentation significantly reduced the smell of cas-
sia, grass and bitterness of FH06 (P < 0.05). In contrast, 
fermentation increased the sour taste and fruity flavor 
(P < 0.05). There was no significant difference among 
the different lactic acid bacteria in the changes in green 
grass, bitterness and cassia flavors (P > 0.05). However, 
there were differences in the changes in sour taste and 
fruit flavor among the different strains (P < 0.05). Grx08 
and 1301 had higher scores on palatable sour taste and 
fruit flavor. The total score of sensory evaluation of FH06 
fermented by grx08 was the highest. Therefore, the fer-
mentation broth of grx08 was selected for the determina-
tion of volatile substances.

Effect of L. fermentum grx08 fermentation on volatile 
flavor compounds of FH06
The GCMS total ion current diagram before and after 
fermentation of FH06 is shown in Additional file  1: 
Fig. S1, which shows that fermentation has a greater 
impact on volatile substances. A total of 91 volatile fla-
vor substances were detected before and after fermen-
tation (Additional file 2: Table S3). The types of volatile 
substances before and after fermentation were 63 and 
55, respectively. The volatile components of each com-
ponent were searched through the NIST11 standard 
library, mainly including esters, alkenes, acids, alde-
hydes, ketones, phenols and alcohols. The odor activity 
value (OAV) is mainly used to evaluate the contribution 
of individual volatile compounds in food to the overall 
aroma. Volatiles with an OAV value higher than 1 are 
generally considered to have a significant contribution 

to the overall aroma. Before fermentation, 16 vola-
tile compounds had OAVs greater than 1, including 2 
esters, 1 ketone, 8 aldehydes, and 5 alcohols (Table 2). 
After fermentation, only 2 volatile compounds had 
OAV values greater than 1, including an ester and an 
alcohol. The most obvious changes after fermentation 
are aldehydes. The 8 aldehydes with OVA values > 1 
only have one remaining after 72  h of fermentation. 
Among them, cinnamaldehyde (Additional file  2: 
Table S3, No. 57) is the main flavor substance in FH06. 
It has a clear cassia flavor before fermentation, which is 
not easy to accept as a beverage, but after fermentation, 
the cassia flavor is not distinguished from the senses. 
The GCMS results showed that after fermentation, its 
content decreased from 3402.57 μg/L to 7.55 μg/L, and 
the OAV value decreased from 4.54 to 0.01 (Table  2, 
No. 6). Therefore, it is no longer a key substance of fla-
vor after fermentation.

There were 5 kinds of alcohols with OVA values > 1 
before fermentation, and only 1 kind was left after 
fermentation. Sensory, FH06 has a clear grassy and 
astringent taste before fermentation, and these undesir-
able flavors disappear after fermentation. Studies have 
shown that n-hexanol and n-hexanal have astringent 
taste and grassy smell [39]. The GCMS results showed 
that n-hexanol (Table 2, No. 16) and n-hexanal (Table 2, 
No. 7) were not detected after fermentation.

After fermentation, the main key flavor substances 
are linalool (OAV value = 1042.47) and methyl 
N-methylanthranilate (OAV value = 884.02). How-
ever, compared with BF, the content of the above two 
is reduced. However, the reduction or disappearance 
of undesirable flavor substances such as cinnamalde-
hyde, n-hexanal and n-hexanol can highlight the flavor 
of linalool and methyl N-methylanthranilate. Linalool 
is the main component of many essential oils, and its 
smell is described as floral, citric acid, fresh and sweet 
[40]. Linalool represents more than 70% of floral ter-
penoids [41]. It has been reported that linalool is one 
of the main contributors to aromatic compounds in 
papaya fruit. Methyl N-methylanthranilate is an impor-
tant aromatic compound in citrus peel oil [42]. It is an 
important fruit flavor substance and is widely used in 
the preparation of orange oil, peach, grape and other 
flavors. Therefore, fermented FH06 has a pleasant fruity 
aroma.

In addition, FH06 before fermentation has obvious 
bitterness in the senses, but the bitterness disappears 
after fermentation. Studies have found that the bitter 
taste of Compositae plants can be reduced by adjusting 
the pH value to acidity [43]. In this study, it may be that 
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fermentation produced organic acids, which lowered 
the pH of the beverage and masked the bitter taste. It is 
also possible that fermentation has metabolized bitter 
substances [44]. Due to the higher threshold of acids, 
their influence on volatile aromas is not obvious. How-
ever, in terms of taste, it adds a soft sour taste to the 
FH06 beverage.

The COVID-19 pandemic has made consumers gener-
ally raise their health awareness, but the requirements for 
the taste and flavor of the products have also remained 
high. In general, FH06 fermented by L. fermentum grx08 
produced beneficial changes in taste and flavor, removing 
undesirable flavors such as grass, bitter and cassia, and 
increasing fruity aroma and soft sourness.

Conclusion
In this study, the plant-based composite beverage FH06 
was used as the substrate to select suitable fermentation 
strains from human-derived probiotics. Probiotic fer-
mentation significantly affects the physicochemical prop-
erties and antioxidant capacity (FRAP value) of FH06 by 

changing the pH, titratable acidity, total polysaccharides, 
total flavonoids, total saponins and total polyphenol con-
tent of FH06. Among them, the FRAP value of FH06 
fermented by the L. fermentum grx08 strain was signifi-
cantly higher than that of unfermented FH06 and FH06 
fermented by other LAB. GCMS and sensory analysis 
of FH06 fermented by the grx08 strain showed that fer-
mentation removed the original green grass, cassia, bit-
ter and astringent flavors and highlighted the fruit aroma 
and soft sourness, making fermented FH06 more accept-
able to consumers. It is more conducive for consumers to 
insist on drinking for a long time. In short, the research 
results show that the FH06 beverage fermented by probi-
otics has the potential to become a functional food with 
both strong antioxidant activity and good flavor. In the 
future, the identification of its biologically active com-
pounds and their metabolic pathways, shelf-life testing, 
and extensive evaluation of the health-promoting effects 
of fermented FH06 beverages will all be valuable supple-
ments to these studies.

Table 2  Key flavor substances and their OAV values in FH06 before and after fermentation

“-” means not detected

No. Volatile components Odor threshold(μg·L−1) OAVs

Before fermentation After fermentation

Ester compounds

1  Methyl methylanthranilate 0.25 1295.3553 884.019

2  Methyl anthranilate 7.00 1.0933 0.5556

Subtotal 2 2 1

Ketone compounds

3  Carvone 27.00 1.4166 0.7604

Subtotal  1 1 0

Aldehyde compounds

4  Butanal, 3-methyl- 0.35 33.8091 –

5  Butanal, 2-methyl- 1.00 7.2550 –

6  Cinnamaldehyde 750.00 4.5368 0.0101

7  Hexanal 73.00 2.3619 –

8  Benzene acetaldehyde 6.30 2.1045 –

9  Heptanal 4.10 1.8485 –

10  Pentanal 12.00 1.4900 –

11  Nonanal 8.00 1.2701 –

Subtotal  8 8 0

Alcohol compounds

12  Linalool 0.22 2181.1849 1042.4713

13  4-Heptenal, (Z)- 0.03 155.6933 –

14  1-Octen-3-ol 1.50 43.3660 0.4485

15  1-Butanol, 3-methyl- 4.00 3.3923 –

16  1-Hexanol 5.60 1.9257 –

Subtotal  5 5 1

Total  16 16 2
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