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Allicin alleviates coronary atherosclerosis 
of mice via endothelial nitric oxide 
synthase(eNOS)/nuclear factor erythroid 
2‑related factor(Nrf2)/heme oxygenase‑1(HO‑1) 
signaling pathway
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Abstract 

Purpose  Endothelial progenitor cells (EPCs) have been revealed to interventions in atherosclerosis (AS) progressions. 
Traditional Chinese medicines (TCMs) have been discovered to modulate the functions of EPCs. Herein, effects of 
allicin on EPCs were explored in coronary atherosclerosis (CAS).

Methods  Allicin (5 or 10 mg/kg/d) was used to treat the ApoE−/− mice fed with high-fat diet (HFD. TC, TG, LDL-C, 
and HDL-C were examined. HE staining was applied for observation of CAS lesions. In vitro, EPCs were induced by ox-
LDL and then treated with allicin and an eNOS inhibitor, L-NAME. Thereafter, the cell viability, apoptosis and migration 
were examined using CCK-8, flow cytometry and Transwell methods. Western blot was applied for evaluating eNOS, 
Nrf2 and HO-1 protein expression. NO production, MDA content, and SOD activity were also measured.

Results  Allicin inhibited CAS progression, decreased serum levels of TC, TG, and LDL-C but increased HDL-C. Moreo-
ver, counts of circulating EPCs, and the protein levels of eNOS, Nrf2 and HO-1 were increased by allicin treatment in 
mice fed with HFD. Allicin suppressed MDA contents but enhanced SOD activities. In vitro, allicin reversed the impacts 
of ox-LDL induction in EPCs, facilitating cell mobility and NO production, and decreasing apoptosis. L-NAME treat-
ment reversed effects of allicin.

Conclusion  Allicin alleviated CAS progressions in mice, modulating the cell apoptosis and migration of EPCs via 
eNOS/ Nrf2/HO-1 pathway.
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Introduction
Atherosclerosis (AS), a chronic inflammatory disorder in 
vessels, can cause heart attack and ischemic stroke  [1]. 
Coronary atherosclerosis (CAS) is one type of AS that 

occurs in coronary arteries, causing coronary artery dis-
orders, thereby leading to heart failure eventually  [2]. 
Vascular endothelium can maintain and modulate vas-
cular tension, structure and homeostasis, which can 
also prevent vessels from damages of immune response, 
inflammation and thrombogenesis  [3]. Unfortunately, 
exposure of endothelial cells (ECs) in various damag-
ing stimuli can cause endothelial injuries and dysfunc-
tions  [4]. Additionally, oxidative stress also stimulates 
overproductions of proinflammatory cytokines, resulting 
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in persistent inflammatory state [5]. Then, these damages 
and inflammation accelerate AS progression.

Endothelial progenitor cells (EPCs) derived from bone 
marrows are precursor cells of ECs, which can repair 
endothelial damages to restrain the onset and develop-
ment of AS  [6]. However, evidence has revealed that 
hypercholesterolemia may hamper functions of EPCs, 
thereby reducing vascular repair  [7]. Beyond that, oxi-
dized low-density lipoprotein (ox-LDL) has been veri-
fied to discourage EPC mobilization through activating 
nuclear factor kappa-B (NF-κB) pathway  [8]. Hypertri-
glyceridemia has been discovered to disturb the binding 
of stromal cell-derived factor-1 with C-X-C chemokine 
receptor type 4 and NO production, leading to EPC dys-
regulation and further endothelial dysfunction and inju-
ries [9]. On the contrary, high-density lipoprotein (HDL) 
has been found to be positively correlated with EPCs pro-
gression via promoting eNOS [10].

Nowadays, therapeutic approaches that focus on EPCs 
have been widely explored. Garlic, an important food for 
human, is also a well-known medicinal plant  [11]. Alli-
cin is a sulfur-containing defensive molecule produced 
by garlics with pharmacological activity  [12, 13]. Alli-
cin has been applied for treating different disorders due 
to its anti-inflammation effect, anti-tumor activity and 
immune-protective effect [14–16]. Allicin alleviated renal 
injury in rats via inhibiting oxidative stress, cell apoptosis 
and inflammatory responses [17]. Evidence has indicated 
that allicin decreased the apoptosis in human umbili-
cal vein vascular endothelial cells (HUVECs) induced by 
ox-LDL and inhibited the reactive oxygen species (ROS) 
production [18]. Moreover, allicin has been discovered to 
elevate serum HDL-C, superoxide dismutase (SOD) and 
suppress contents of serum TC, LDL-C and malondial-
dehyde (MDA), according to a previous study in rabbits 
with hypercholesteremia, which also exerted anti-inflam-
matory effects of allicin via suppressing tumor necrosis-
alpha (TNF-α) and NF-κB  [19]. Hence, allicin might be 
a promising mediator to treat CAS. In this research, we 
evaluated effects of allicin on blood lipid levels, oxida-
tive stress, and biological functions of EPCs in mice to 
explore whether allicin inhibited CAS progression via 
mediating EPCs.

Materials and methods
Animal experiments
Male ApoE−/− mice(n = 15) were obtained from animal 
center and accommodated for 2  weeks before experi-
ments. Mice were maintained at 22 ± 2  °C, 55 ± 5% rela-
tive humidity, with a 12 h light/dark period. Afterwards, 
the mice were divided into 5 groups randomly: control 
(normal diet), control with allicin (10 mg/kg/d), high fat 
diet (HFD) group, HFD with allicin (5  mg/kg/d) group 

and HFD with allicin (10 mg/kg/d) group. Treatment of 
allicin was started with the 16th weeks using oral gavage. 
HFD was acquired from Beijing Keao Xieli feed CO., Ltd. 
Animal experiments were approved by the Medical Ethics 
Committee of Tianjin Chest Hospital (Ethical approval 
number: 2020YS-089–01) and performed strictly as per 
the Guide for the Care and Use of Laboratory.

Blood samples collection and lipid level detection
Mice were euthanized using with pentobarbital sodium 
(50 mg/kg of body weight) after fasting overnight. There-
after, blood samples were taken from posterior orbital 
venous plexus and collected using EDTA tubes. Then, 
collected plasma was centrifugated at 4 ℃, 1500  rpm 
for 20  min. Micro Total Cholestenone (TC) and Tri-
glyceride (TG) Content Assay Kit were obtained from 
Solarbio (Beijing, China). CheKine™ LDL-C and HDL-C 
Colorimetric Assay Kits were purchased from Abbkine 
(Wuhan, China). TC, TG, LDL-C, and HDL-C levels were 
examined.

Coronary arteries collection and atherosclerotic lesions 
analysis
Coronary arteries were collected and fixed using 4% 
paraformaldehyde for 24 h. Thereafter, coronary arteries 
were embedded into paraffin followed by sectioned into 
5 μm. After dewaxing, hematoxylin, and eosin (HE) was 
used for staining. Zeiss Axiolab 5 (ZEISS, Germany) was 
used to take images.

Endothelial progenitor cells (EPC) separation and counting
Peripheral blood samples (20  mL) of mice in different 
groups were collected followed by Ficoll-density gradi-
ent centrifugation. Thereafter, mononuclear cells were 
separated and incubated in Endothelial Cell Growth 
Basal Medium-2 (EBM-2, Lonza, USA) added with 5% 
fetal bovine serum (FBS), human vascular endothelial 
growth factor (hVEGF), human basic fibroblast growth 
factor (b-FGF), human epidermal growth factor (EGF), 
human insulin-like growth factor-1 (IGF-1), ascorbic acid 
and GA-1000 (Lonza). The medium was replaced every 
2 days for 14 days. After that, cells were incubated with 
dil-acLDL and UEA-1 (Maokangbio, China) and then 
observed under the lab fluorescence microscope from 
4 different fields (Nikon, Japan). The cells positive with 
both dil-acLDL and UEA-1 were considered as EPCs.

Cell culture and pre‑treatments
After EPCs were isolated, EPCs in control group were 
chosen for following experiments. DMEM/F12 medium 
with 10% FBS and 1% penicillin–streptomycin was used 
to cultivate EPCs at 37 ℃, 5% CO2 (Gibco). To simulate 
atherosclerotic environment, ox-LDL (20  μg/mL) was 



Page 3 of 9Yang et al. Applied Biological Chemistry           (2023) 66:28 	

applied to induce EPCs for 24 h. Beyond that, Allicin (0.3, 
0.5, 1.0, 5.0 and 10.0 μM, Solarbio) was used to treat cells 
for 12 h. Additionally, N omega-Nitro-L-arginine methyl 
ester hydrochloride (L-NAME, Abcam, UK), an eNOS 
inhibitor, was applied to inhibit eNOS expression. EPCs 
treated by allicin (10 μM) were cultivated for another 2 h 
with or without L-NAME (200 μM).

CCK‑8
CCK-8 assay was used to evaluate viabilities of EPCs. 
After EPCs (1 × 104 cells/well) were plated into a 
96-well plate and cultivated for 24 h. Ox-LDL, Allicin or 
L-NAME were added to treat cells for 12 h. Next, EPCs 
in wells were added with 10 μL CCK-8 (Beyotime) and 
cultivated for another 1  h. Using the Sunrise absorb-
ance microplate reader (Tecan, Switzerland), the absorb-
ance was detected at 450 nm. The experiment was run in 
triplicate.

Flow cytometry
To measure EPCs apoptosis, cells after treatment were 
first resuspended by Annexin V-FITC binding buffer 
(Beyotime). Later, cell suspension was mixed with 5 μL 
Annexin V-FITC and 10 μL PI (Beyotime) following by 
incubation for 20  min at 23 ℃ in darkness. Thereafter, 
Accuri C6 Plus (BD Biosciences, USA) was used to detect 
apoptosis of EPCs.

EPCs migration assays
Transwell assays were performed to observe the migra-
tion of EPCs after treatment. We conducted the experi-
ments as described previously [20].

MDA and SOD detection
MDA assay kit (Solarbio) and SOD assay kit (Solarbio) 
were applied for detecting MDA and SOD, respectively. 
EPCs were lysed by cell lysis buffer and samples were 
quantified by BCA protein kit (Beyotime). In accord-
ance with manufacturer’s protocols, MDA and SOD 
contents were examined. Absorbance of MDA was exam-
ined at 532  nm and absorbance of SOD were evaluated 
at 560  nm using Sunrise absorbance microplate reader 
(Tecan).

NO content detection
After EPCs were treated, NO content assay kit (Solarbio) 
was used to detect NO levels. Supernatant was added 
with Griess Reagent I (50 μL) and Griess Reagent II (50 

μL) at 25 ℃. Thereafter, the absorbance was examined by 
Sunrise absorbance microplate reader (Tecan) at 540 nm.

Western blot
After EPCs were harvested, cell lysis buffer (Beyotime) 
was used to segregate total protein followed by separa-
tion using SDS-PAGE and shifting onto PVDF mem-
branes. Then, membranes were blocked by 5% non-fat 
milk powder and incubated with anti-eNOS (1:1000, 
ab76198, Abcam, UK), anti- Nrf2(1:1000, ab62352, 
Abcam), anti-HO-1(1:1000, ab52947, Abcam), and anti-
GAPDH (1:2000, ab9484, Abcam) overnight at 4  ℃. 
Then, goat Anti-Rabbit IgG (HRP) (1:800, ab97051, 
Abcam) was added to incubate membranes at 23 ℃ for 
1 h. BeyoECL Star (Beyotime) was applied for develop-
ing and protein bands were checked by Image J.

Statistical analysis
Data analysis was conducted on GraphPad Prism 9 
(GraphPad). Kruskal–Wallis test and Dunn’s multiple 
comparison was used to analyze the statistical signifi-
cance between the groups where there were multiple 
groups. Student’s t-test examined differences between 
two groups. Two-way ANOVA was used in analysis of 
the cck8 results. **P < 0.032.

Results
Allicin alleviated coronary atherosclerosis development 
in mice
To evaluate effects of allicin on coronary atherosclero-
sis (CAS), ApoE−/− mice were fed with normal diet, 
normal diet with allicin (10  mg/kg/d), HFD or HFD 
with allicin (5  mg/kg/d and 10  mg/kg/d). Serum TC, 
TG, and LDL-C levels in mice were elevated and the 
serum HDL-C level was reduced in HFD group com-
pared to the control group with normal diet(Fig.  1A–
D). The allicin treatment of 5 mg/kg/d reduced LDL-C 
and increased HDL-C significantly but didn’t change 
the serum TC and TG levels in mice fed with HFD 
(Fig. 1A–D). Moreover, serum TC, TG, and LDL-C lev-
els were decreased while the serum HDL-C level was 
elevated with significant difference after allicin treat-
ment of 10  mg/kg/d in mice fed with HFD (Fig.  1A–
D). No significant change was detected in the control 
group with allicin treatment (10 mg/kg/d) in compari-
son with the control group; no significant changes were 
found in the mice fed with normal diet and then treated 
with allicin (10  mg/kg/d) group (Fig.  1A–D).Further-
more, CAS lesions showed that HFD increased lesions 
of atherosclerosis in animals while allicin treatment 
alleviated this (Fig. 1E). Hence, allicin treatment could 
alleviate CAS development in ApoE−/− mice.
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Allicin suppressed CAS progression via eNOS/Nrf2/HO‑1 
signaling pathway
Circulating EPC counts were elevated in mice fed with 
HFD, suggesting that circulating EPCs were triggered 
to repair CAS lesions (Fig. 2A). After allicin treatment 
for 4  weeks, circulating EPC counts in mice were fur-
ther elevated, indicating that allicin might facilitate the 
repair functions of EPCs (Fig.  2B). Moreover, the pro-
tein levels of eNOS, Nrf2 and HO-1 in EPCs were all 
downregulated in HFD-fed mice while allicin treatment 
recovered their protein expressions (Fig.  2C). Further-
more, MDA level was increased by HFD in mice but 
was decreased after allicin treatment (Fig.  2E). How-
ever, HFD reduced NO production and SOD activ-
ity in mice, which were recovered by allicin treatment 
(Fig. 2D, F).

Suppression of eNOS reversed protective effects of allicin 
on ox‑LDL‑induced injuries in EPCs
To further explore effects of allicin on EPCs in CAS, dif-
ferent concentrations of allicin were applied to treat EPCs 
that were isolated from mice in normal group. Results 
of CCK-8 showed that allicin had no toxicity to EPCs 
at a concentration of 0.3, 0.5, 1, 5 and 10 μM (Fig. 3A). 

Thereafter, ox-LDL (20  μg/mL) was applied to induce 
injuries of EPCs, inhibiting eNOS, Nrf2, and HO-1 pro-
tein expressions (Fig.  3B). We used allicin (10  μM) to 
treat EPCs. Moreover, L-NAME, an eNOS inhibitor, was 
used. Western blot results indicated that allicin treat-
ment upregulated eNOS, Nrf2, and HO-1 protein expres-
sions while L-NAME treatment suppressed their protein 
expressions (Fig.  3B). Additionally, MDA level was ele-
vated by ox-LDL induction, which was inhibited with 
allicin treatment but promoted by L-NAME treatment 
(Fig.  3C). SOD activity and NO production were sup-
pressed in ox-LDL-induced EPCs while allicin treatment 
increased their levels, which were inhibited by L-NAME 
treatment (Fig. 3D, E).

Allicin treatment restored the viabilities and migration 
in ox‑LDL‑induced EPCs via eNOS/Nrf2/HO‑1 regulation
Furthermore, results of CCK-8 and migration assays indi-
cated that ox-LDL induction decreased EPCs viabilities 
and migration, which were recovered after allicin treat-
ment, but L-NAME treatment could revert this in EPCs 
(Fig.  4A, C). Beyond that, ox-LDL-induced apoptosis of 
EPCs was suppressed by allicin treatment and then fur-
ther reverted by L-NAME treatment (Fig. 4B).

Fig. 1  Allicin alleviated CAS development in ApoE−/− mice. A–D TC, TG, HDL-C and LDL-C levels of mice in control, HFD and HFD with allicin (5 μM 
and 10 μM) groups were examined, n = 3 in each group. vs HFD group, **P < 0.032, ns: not significant. **C: significant vs control; **H: significant vs 
HFD group. B CAS lesions were evaluated using HE staining
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Discussion
Recently, Cardiovascular diseases (CVDs) have become a 
prevalent problem in modern society, in which AS is an 
essential contributor to the increasing mortality and dis-
ability in patients with CVDs  [21]. Allicin was revealed 
to activate SOD and glutathione peroxidase and reduce 
levels of 8-hydroxy-desoxyguanosine and ROS to inhibit 
Acrylamide-caused oxidative stress and DNA inju-
ries  [22]. Nrf2/HO-1 is a well-known signaling path-
way against oxidative stress. Nrf2 was detached from its 
endogenous inhibitor, Kelch Like ECH Associated Pro-
tein 1, and translocated to the nucleus to protect from 

oxidative stress  [23]. Elevated Nrf2 caused by Se yeast 
consolidated antioxidant defense system and restrained 
apoptosis and inflammatory responses [24]. Downregula-
tion of Nrf2 and HO-1 could weaken antioxidant defense, 
causing myocardial cell apoptosis  [25].According to Ma, 
L., et  al., allicin decreased the apoptosis of ischemia/
hypoxia-induced H9C2 cell via elevating eNOS, Nrf2 
and HO-1 protein expressions and NO production and 
suppressing oxidative stress  [26]. Allicin has been dis-
covered to reduce viabilities and lipid accumulation of 
foam cells derived from THP-1 macrophage by upregu-
lating ABCA1 expressions via activating PPARγ/LXRα 

Fig. 2  Allicin suppressed oxidative stress in Apoe−/− mice. A, B Circulating EPCs from mice groups, control, HFD and HFD with allicin (5 μM and 
10 μM) groups were counted. C eNOS, Nrf2 and HO-1 protein expressions in EPCs from mice in different groups were validated using western 
blot, n = 3 in each group. D–F MDA, SOD and NO levels from mice in different groups, **P < 0.032, ns: not significant. **C: significant vs control; **H: 
significant vs HFD group
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signaling pathway [27]. In our study, TC, TG, and LDL-C 
levels were decreased after HFD-fed mice were treated by 
allicin while the HDL-C level was increased. Moreover, 
CAS lesions were also reduced after allicin treatment. 
Allicin elevated eNOS, Nrf2 and HO-1 protein expres-
sions and promoted SOD activities and inhibited MDA 
contents in HFD-fed mice. These results suggested that 
allicin treatment could inhibit CAS development by sup-
pressing oxidative stress via activating eNOS/Nrf2 and 
HO-1 signaling pathway.

According to previous studies, allicin could prevent 
the AS progression, decreasing plasma homocysteine, 
TC and TG levels and carotid artery intima-media thick-
ness  [28]. Allicin could reduce AS plaques through the 
modulation of gut microbiota and trimethylamine-N-
oxide  [29].Allicin accelerated migratory and angiogenic 
capacities of cardiac microvascular endothelial cells 

to protect hearts via activating platelet endothelial cell 
adhesion molecule-1   [30]. Therefore, we have analyzed 
impacts of allicin related to EPCs in  vivo and in  vitro. 
Based on the mice model, we counted the circulating 
EPCs, and found that the circulating EPC counts in the 
HFD mice group were increased compared to the nor-
mal control, which might suggest that EPCs were mobi-
lized to repair the damaged endothelium in mice with 
CAS lesions. In addition, the circulating EPCs were 
increased after 4-week allicin treatment, suggesting that 
allicin treatment promoted the EPCs function to facili-
tate the repair of CAS lesions. This indicated that allicin 
might alleviate the CAS progression in mice through 
EPC regulations via eNOS/Nrf2/HO-1 pathway. We 
used allicin (0.3 μM-10 μM) to treat normal EPCs from 
mice, only to find that cytotoxicity of allicin (10 μM) on 
EPCs could be excluded. Considering the role of ox-LDL 

Fig. 3  Allicin alleviated ox-LDL induction in EPCs in vitro. A CCK-8 was applied for examining cytotoxicity of allicin in EPCs in vitro. B eNOS, Nrf2 and 
HO-1 protein expression after ox-LDL induction(24 h), allicin treatment(12 h) and L-NAME treatment (2 h) were evaluated using western blot. C–E 
MDA, SOD and NO level were detected after ox-LDL induction, allicin treatment and L-NAME treatment in vitro. **P < 0.032, **N: significant vs NC; 
**O: significant vs ox-LDL group; **A: significant vs ox-LDL + Allicin
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in AS progression and endothelial dysfunction  [31], ox-
LDL was applied to induce EPCs to establish a cellular 
model. Hu, Z., et  al., have reported that EPCs mobili-
zation was associated with eNOS elevation  [32]. Jiang, 
Q., et  al., have discovered that ox-LDL suppressed Nrf2 
expressions and inactivation of Nrf2 enhanced ROS pro-
duction in EPCs [20]. According to the study of Shen, X., 
et  al., the activation of HO-1 inhibited ROS levels and 
facilitated endothelial repair ability of EPCs [33]. In this 
study, allicin elevated eNOS, Nrf2 and HO-1 expressions 
in ox-LDL-induced EPCs and elevated NO production. 
Moreover, allicin treatment decreased MDA levels but 
increased SOD levels in EPCs induced by ox-LDL. There-
fore, allicin might alleviated ox-LDL-induced injury via 
eNOS/Nrf2/HO-1 signaling pathway and suppressing 

ROS generation in EPCs. Furthermore, we used L-NAME 
to inhibit eNOS, and results showed that L-NAME could 
reverse the protective effect of allicin in EPCs.
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