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In vitro repress of breast cancer 
by bio‑product of edible Pleurotus ostreatus 
loaded with chitosan nanoparticles
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Abstract 

Despite advances in early detection and therapy, cancer still is a significant health challenge with the highest prior‑
ity for investigation. Breast cancer represents the most common cancerous disease among women in the world. 
The study’s purpose is to estimate the cytotoxic activity of the edible mushroom Pleurotus ostreatus extract (PE), 
chitosan nanoparticles (ChNPs), and PE loaded with ChNPs (PELChNPs), as well as to identify the molecular docking 
of the cytotoxicity of methyl gallate (MG) as a main component of the PE against breast cancer (MCF‑7) cell line. High‑
performance liquid chromatography (HPLC) analysis of PE exhibited the existence of various phenolic and flavonoid 
compounds such as MG, gallic acid, chlorogenic acid, hesperetin, naringenin, rutin, and cinnamic acid. The pro‑
liferation of the MCF‑7 cell line was inhibited at 1, 3.9, and 62.50 µg/mL of PELChNPs, PE, and ChNPs, respectively. 
PELChNPs were more effective against the MCF‑7 cell line than PE, particularly at low concentrations. For instance, 
at 7.8 µg/mL of PELChNPs and PE, the inhibitory % of MCF‑7 proliferation was 20.59±1.75% and 8.57±0.59%, respec‑
tively. At 15.6 µg/mL of PELChNPs and PE, the inhibitory % of MCF‑7 proliferation was 51.37±1.09% and 25.18±1.64%, 
respectively. While there is slight difference in the inhibition % of MCF‑7 cells (98.64±0.21 and 97.22±0.16%) at high 
concentration 500 µg/mL of PELChNPs and PE, respectively.  IC50 was 15.25 ± 0.54 µg/mL, 46.27 ± 1.94 µg/mL, 
and 337.38 ± 13.68 µg/mL against MCF‑7 cell line of PELChNPs, PE, and ChNPs, respectively. The value of  IC50 docu‑
mented the efficacy of PELChNPs compared with the  IC50 (5.91 ± 0.43 µg/mL) of Vinblastine sulfate. Noticeable distor‑
tions were observed in the MCF‑7 cell line mainly treated with PELChNPs, followed by PE alone. While ChNPs exhibited 
less effect on the morphology of the MCF‑7 cell line. Antioxidant activity of ChNPs, PE, and PELChNPs was evaluated 
compared with Trolox, which reflected  IC50 = 118.33 ± 4.02, 85.63 ± 3.96, 36.80 ± 2.52 and 24.74 ± 0.45 µg/mL. Methyl 
gallate binding interactions were assessed using molecular docking with the MOE‑Dock tool against the target crystal 
structures of Breast cancer cell line 3HB5. The results shed light on how molecular modeling techniques can inhibit 
methyl gallate with possible uses in treating breast cancer.
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Introduction
Cancer is one of the most severe diseases that threaten to 
kill people worldwide, although promising developments 
in treatment and medical diagnosis [1]. Among the vari-
ous types of cancer, breast cancer is the most common 
in women worldwide [2]. Moreover, breast cancer is the 
second most significant common cancer and the num-
ber one killer among women. Breast cancer accounts for 
12.5%   of newly diagnosed cancers worldwide each year. 

*Correspondence:
Tarek M. Abdel Ghany
tabdelghany@yahoo.com; tabdelghany.201@azhar.edu.eg
1 Department of Biology, College of Science, Princess Nourah bint 
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
2 Botany and Microbiology Department, Faculty of Science, Al‑Azhar 
University, Nasr City 11725, Cairo, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13765-023-00788-0&domain=pdf
http://orcid.org/0000-0001-6418-5890


Page 2 of 14Al‑Rajhi and Ghany  Applied Biological Chemistry  (2023) 66:33

In 2020, 684,996 fatalities and 2,261,419 new breast can-
cer cases were reported [2, 3]. There are numerous fac-
tors related to breast cancer, for example, diet, gender, 
alcohol consumption, physical activity, history of family, 
lifestyle, endocrine aspects, and both extrinsic and intrin-
sic aspects. Several other vital factors, such as previous 
benign tumors, may lead to breast cancer. However, it 
is still unclear which factors are most important in the 
development of breast cancer. Because mammography is 
unavailable for routine screening, breast cancer is usually 
detected too late, leading to poor and inadequate healing, 
pain control, and reassuring care for women. Breast can-
cer has vital implications for society and women’s quality 
of life. Thus, leading to life-threatening conditions such 
as lowered productivity and premature death [3].

Chemotherapy remains one of the promising strategies 
for cancer treatment till now. Many chemotherapeutic 
agents from natural sources are currently used to treat 
cancer, including vinblastine, vincristine, bleomycin, 
camptothecin, and paclitaxel. So, extensive attention has 
been devoted to checking anticancer agents from natu-
ral, safe sources, comprising medicinal plants, fungi, and 
bacteria [4].

About 270 species of mushrooms have been detected 
to be potentially beneficial to the health of humans. How-
ever, few fungi have been investigated for bioactive con-
stituents that could be useful in treating different diseases 
[5]. Across the past 30 years, scientific and therapeutic 
studies in China, Japan, South Korea, and most recently 
in the United States have demonstrated that mushroom-
derived properties and unique constituents effectively 
prevent and treat cancer, among other chronic diseases. 
These species include Cordyceps, Agaricus, Antrodia, 
Albatrorus, Carpathia, Kritocybe, Flammulina, Formus, 
Ganoderma, Hunria, Innonotus, Inocybe, Lactarius, 
Felinus, Russula, Pleurotus, Schizophyllum, Trametes, 
Zerocoms, and Suylas. They display promising influence 
against cancer and may comprise substantial antican-
cer agents. Lectins (carbohydrate-binding proteins) are 
a great content in mushrooms that exhibit anticancer/
antiproliferative activities with various mechanisms. 
Mushrooms are also rich in essential compounds such 
as phenolics and flavonoids which were recognized as 
antioxidants. Overall, the use of mushrooms appeared 
safe and free of side effects in oncological studies [6, 
7]. Numerous mushrooms have been experimented in 
phase I or II clinical trials, primarily to treat breast can-
cer (18.6%), colon cancer (14%), and followed by pros-
tate cancer (11.6%) [5]. Pleurotus highking extract was 
tested against the human breast cancer cell line (MCF-7) 
and exhibited potential anticancer activity [8]. Recently, 
Mishra et  al. [9] concluded that Pleurotus ostreatus is a 
valuable source of vital components and a reservoir of 

secondary metabolites imparting critical biological activ-
ities, including anticancer, antibacterial, and antioxidant 
in vitro and silico investigations. P. ostreatus has attracted 
the attention of researchers due to its potent antitumor 
properties with a promising  IC50 (4.5  µg/mL) against 
breast cancer cell proliferation, besides apoptosis induc-
tion and angiogenesis inhibition, thereby halting the 
metastasis process [10].

Currently, nanotechnology is more effective in medici-
nal applications than traditional treatments, such as 
chemotherapy, in reducing side effects of chemothera-
peutic agents. Therefore, the development of nano-
technology is in progress today in many investigations 
[11–15]. The biological activities of natural compounds 
were enhanced by incorporating nanomaterials, particu-
larly polymers such as chitosan, gelatin, and starch [16–
19]. According to some studies, chitosan nanoparticles 
(ChNPs) have proven efficacy against cancer proliferation 
alone or in combination with other compounds; besides, 
these polymers are widely applied as carriers of active 
therapeutic ingredients [20, 21]. Anticancer mechanisms 
associated with ChNPs selectively penetrate the cancer 
cells and reveal antiproliferative potential through immu-
nopotentiation, anti-angiogenesis, apoptosis, antioxidant 
protection, and regulation of enzymes [22, 23]. Within 
the current decade, Silico tools like molecular docking 
are successfully utilized for giving knowledge into the 
binding besides interaction strengths of ligand inhibi-
tors for drug discovery [16]. Silico tools includes a tar-
get-based approach based on the target and structure of 
ligand, thus saving time, effort, and cost as well [24]. The 
current study aimed to determine the impact of a com-
bination between edible mushroom (Pleurotus ostreatus) 
extract and ChNPs against breast cancer cells.

Materials and methods
Chemical materials
The agriculture research center in Egypt provided a 
mushroom sample (Pleurotus ostreatus). Chitosan nano-
particles (ChNPs) were supplied from Primex, Siglufjor-
dur, Iceland. The other chemicals including Tween 20 in 
the current investigation were supplied via Sigma Aldrich 
(USA). The characterized chitosan nanoparticles were 
provided from Professor Tarek M. Abdelghany [16].

Extraction of P. ostreatus and loading with chitosan 
nanoparticles
Ten g of mature P. ostreatus were washed with distilled 
water, air-dried fruiting bodies, then dried in an oven 
at 40 ºC were grounded and extracted with 100 mL of 
methanol under shaken conditions (150 rpm for 24 h) at 
25 ºC. The extract was filtrated via Whatman No. 1 paper. 
Methanol was removed utilizing a rotary evaporator 
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(Model: Laborata 4001, Heidolph WB, Germany) at 
40  °C, and the residual solution was lyophilized. The 
obtained crude extract was re-dissolved for preparing 
stock solution containing 5 mg/ mL in mixed solvent of 
methanol: DMSO (8:2). The extract was kept at 4  °C in 
the dark to stop oxidative damage until further analy-
sis. ChNPs were prepared by the addition of chitosan 
(2%) in aqueous solution acetic acid (1%, v/v), then allied 
to stirred for 2  h. Subsequently tween 20 was added to 
obtain a concentration of 0.05% (v/v) that required to 
raise the wettability and adhesion properties of the solu-
tion. P. ostreatus extract (PE) was loaded with the solu-
tion of ChNPs via agitation and then ultrasonication for 
25 and 45 min, respectively, to obtain 10% by weight. The 
construction of ChNPs was characterized [16].

HPLC analysis of mushroom contents of flavonoid 
and phenolic
HPLC conditions
An agilent 1260 series was used for the HPLC analysis of 
P. ostreatus extract (5µL were injected in HPLC). Eclipse 
C18 column was used to separate sample contents 
(4.6 mm x 250 mm i.d., 5 m). Water (A) and 0.05% trif-
luoroacetic acid in acetonitrile (B) were the components 
of the mobile phase, which had a flow rate of 0.9 mL/min. 
The linear gradient was sequentially programmed into 
the mobile phase as follows: 0 min (82% A), 0–5 min (80% 
A), 5–8 min (60% A), 8 min (12%), 12 min (15%), 15 min 
(16%), and 16 min (20%). The column was kept at a con-
stant temperature of 40  °C. The presence of phenolic 
compounds and flavonoids was determined using an 

ultraviolet (UV) detector with a wavelength of 280  nm. 
Phenolic and flavonoid compounds were achieved quali-
tatively and quantitatively based on the injected authen-
tic of phenolic and flavonoid compounds in HPLC. The 

Fig. 1 P. ostreatus sample and further bioprocess including extraction process, phenolic and flavonoid characterization, antioxidant activity, 
anticancer against MCF‑7 cells, molecular docking interaction of the main detected compound in P. ostreatus extract with MCF‑7 cells

Table 1 Flavonoid and phenolic compounds of  Pleurotus 
ostreatus extract assessed by HPLC

R.T.*, retention time

Compound R.T.* Area Area% Conc. 
(µg/g)

Molecular weight

Gallic acid 3.313 33.85 2.5149 28795.97 C6H2(OH)3CO2H.

Chlorogenic 
acid

4.099 17.90 1.3297 24470.58 C16H18O9

Catechin 4.615 0.00 0.00 0.00 –

Methyl gallate 5.636 169.47 12.5924 93932.64 C8H8O5

Coffeic acid 6.070 0.00 0.00 0.00 –

Syringic acid 6.610 0.00 0.00 0.00 –

Pyro catechol 6.800 0.00 0.00 0.00 –

Rutin 8.230 1.24 0.0921 1468.19 C27H30O16

Ellagic acid 8.899 0.00 0.00 0.00 –

Coumaric acid 9.185 0.00 0.00 0.00 –

Vanillin 9.810 1.81 0.1344 802.65 C8H8O3

Ferulic acid 10.268 0.00 0.00 0.00 –

Naringenin 10.698 3.67 0.2725 4489.95 C15H12O5

Daidzein 12.425 6.14 0.4563 3786.60 C15H10O4

Querectin 12.769 0.00 0.00 0.00 –

Cinnamic acid 14.059 2.34 0.1738 439.95 C9H8O2

Apigenin 14.539 0.00 0.00 0.00 –

Kaempferol 15.039 0.00 0.00 0.00 –

Hesperetin 15.437 11.35 0.8435 6069.74 C16H14O6
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quantity of detected phenolic and flavonoid compounds 
was detected using the calibration curve through plot-
ting the peak area in contrast to the concentration of the 
respective authentic compounds [25].

Cell line propagation, cytotoxicity assessment 
and microscopic studies
PE and PELChNPs were tested against the prolifera-
tion of human breast cancer cell line (MCF-7 cells) pro-
vided by the American Type Culture Collection (ATCC, 
Rockville, MD). Dulbecco’s modified Eagle’s medium 
(DMEM) containing 10% heat-inactivated fetal bovine 
serum, L-glutamine (1%), and gentamycin (50 gm/L was 
used to propagate the tested cells. Under certain condi-
tions (37  °C and a humid environment with 5%  CO2), 
the tested cells were grown and maintained in DMEM 
medium. The tested cells were planted in 96-well plates. 
Each well containing 100  L of DMEM was seeded with 
1 ×  104 cells. The growth medium with various concen-
trations of the investigated extracts was added to wells 
after 24 h, followed by incubation. The viability and count 
of cells was detected via MTT [3 (4,5-dimethyl thiazol 
2 yl) 2,5-diphenyl tetrazolium bromide] colorimetric 
approach. MTT solving solution (150 µL) were added per 
well after the incubating period (4  h) with the five mg/

mL staining solution of MTT-PBS. The values of OD at 
570  nm were measured via a Microplate reader model 
SunRise, TECAN, Inc., USA to calculate the viability % 
(V%) of cells via the following formula.

The relation between living cells and extract concentra-
tion was plotted to obtain the survival curve of MCF-7 
after treatment. The 50% inhibitory concentration  (IC50) 
is necessary to cause toxic effects in 50% of whole cells. 
 IC50 was assessed from the graphic plots of the quantity 
response curve for each concentration utilizing Graph-
Pad Prism software (San Diego, CA., USA).

Microscopic characteristics of treated cells with tested 
substances were monitored using an inverted microscope 
(CKX41; Olympus, Tokyo, Japan) supplemented with a 
digital camera [26].

For this perform experiment, the prepared MCF-7 cell 
cultures with a 96-well plate were incubated for 12 h. The 
different concentrations of the tested substances were 
added to each well including the MCF-7 cell culture, then 
the plate was incubated for 3 days. At the end of incuba-
tion period, the cells were examined. Vinblastine sulfate 
at different concentrations was used as a positive control 
and applied against MCF-7 cells approbriate conditions 
as mentioned in case assay of PE or PELChNPs.

V (%) = 1 −

The optical density of well streatedwith the tested extract

The optical density of the untreated cells (Control)
× 100

Fig. 2 Flavonoid and phenolic compounds chromatogram of P. ostreatus extract assessed by HPLC with different retention times and area
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doses (3.9, 7.8, 15.62, 31.25, 62.5, 125, 250, 500, and 
1000 g/mL) were combined with one milliliter of a 0.1 
mM solution of DPPH in methanol. The mixture was 
shaken for 30  min at 22  °C, after which the absorb-
ance (Abs) of the reaction mixture was determined at 
517  nm using a spectrophotometer (UV-VIS milton 
roy). Radical absorbance without the tested PE and 
PELChNPs was utilized as control. A log dose inhibi-
tion curve documented the concentration of tested 
substances required to obstruct 50% of the DPPH free 
radical  (IC50) [16]. All results of antioxidant activity 
were compared with ascorbic acid as a standard agent. 
DPPH scavenging (%) was calculated via the next 
equation:

Docking studies
Molecular docking analyses of Methyl gallate via 
Molecular Orbital Environment (MOE) software were 
developed to explore the binding modes between the 

DPPH scavenging (%) =

Abs control − Abs in the existence of tested sample

Abs control
× 100

Fig. 3 Chemical formula of the detected phenolic and flavonoid compounds in P. ostreatus extract

Fig. 4 Anticancer activity of ChNPs against MCF‑7 cells indicated 
by cell viability %

Antioxidant activity
PE and PELChNPs were tested for their antioxidant 
capacity using the 1,1-diphenyl-2-picrylhydrazyl 
(DPPH) radical scavenging test. Three milliliters of 
the dissolved tested substances in ethanol at various 
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ligand and the target (Breast cancer cell line 3HB5). 
The compounds’ structure was drawn using Chem-
Draw Ultra 12.02 and saved as MDL files (“.sdf ”) for 

MOE. The crystal structures of Breast cancer cell 
line 3HB5 were obtained from the protein data bank 
(http:// www. rcsb. org/ pdb, accessed on 20 June 2021). 
Hydrogen atoms were supplied after the water mol-
ecules around the protein were removed. The param-
eters and charges were assigned using the MMFF94x 
force field. After alpha-site spheres were made using 
the site finder module of MOE, our methyl gallate was 
docked in the active site using the DOCK module of 
MOE. The MOE program’s dock scoring was calcu-
lated using the London dG scoring formula, place-
ment: triangle matcher, retain 10, and refinement: 
force field. The leading conformations of the docked 
ligands were determined by considering the root mean 
square deviation (RMSD) values, binding energies, and 
binding modes with the chosen residues [26].

Fig. 5 Anticancer activity of PE against MCF‑7 cells indicated by cell 
viability %

Fig. 6 Anticancer activity of PELChNPs against MCF‑7 cells indicated 
by cell viability %
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Fig. 7 Anticancer activity of Vinblastine sulfate against MCF‑7 cells 
indicated by cell viability %

Table 2 Anticancer activity of ChNPs, PE, PELChNPs and Vinblastine sulfate against MCF‑7 cells

Conc. (µg/mL) ChNPs PE PELChNPs Vinblastine sulfate

Viability % Inhibitory % Viability % Inhibitory % Viability % Inhibitory % Viability % Inhibitory %

500 34.76 65.24±2.48 2.78 97.22±0.16 1.36 98.64±0.21 5.49 94.51±0.23

250 58.19 41.81±2.07 9.47 90.53±0.39 4.29 95.71±0.07 7.82 92.18±0.16

125 80.65 19.35±1.39 17.52 82.48±0.74 9.85 90.15±0.13 15.18 84.82±0.49

62.5 98.42 1.58±0.64 38.17 61.83±1.29 20.64 79.36±0.22 23.87 76.13±1.59

31.25 100 0.0 60.95 39.05±2.71 36.79 63.21±0.83 31.95 68.05±0.72

15.6 100 0.0 74.82 25.18±1.64 48.63 51.37±1.09 40.56 59.44±1.18

7.8 100 0.0 91.43 8.57±0.59 79.41 20.59±1.75 47.21 52.79±2.35

3.9 100 0.0 99.56 0.44±0.12 90.64 9.36±0.52 52.94 47.06±1.78

2 100 0.0 100 0.0 97.23 2.77±0.31 58.76 41.24±0.24

1 100 0.0 100 0.0 99.52 0.48±0.16 67.16 32.84±0.32

0 100 0.0 100 0.0 100 0.0 100 0.0

IC50 337.38 ± 13.68 µg/mL 46.27 ± 1.94 µg/mL 15.25 ± 0.54 µg/mL 5.91 ± 0.43 µg/mL

http://www.rcsb.org/pdb
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Fig. 8  Morphological changes of MCF‑7 treated with different concentrations of PE, A (Control): 0, B: 7.8, C:15.6, D: 31.25, E:62.5, F:125, G:250, and 
H: 500 µg/mL
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Statistical analysis
Results are expressed as mean ± standard deviation (SD) 
based on triplicate experiments.

Result and discussion
Phenolic and flavonoid compound analysis in P. ostreatus 
extract
The collected mushroom was subjected to extraction, 
followed by HPLC analysis to recognize flavonoid and 
phenolic compounds content (Fig.  1). Methyl gallate 
(MG) represents the main constituent of mushroom 
28795.97  µg/g, followed by gallic acid (28795.97  µg/g) 

and chlorogenic acid (24470.58 µg/g). Other biologically 
active compounds were detected but with moderate con-
centrations, including hesperetin (6069.74  µg/g), narin-
genin (4489.95 µg/g), and rutin (1468.19 µg/g). Cinnamic 
acid was also recognized in the extract but in low quan-
tity (439.95  µg/g)  (Table  1 and Fig.  2). Compared with 
identified standards in HPLC, compounds such as coffeic 
acid, syringic acid, pyro catechol, ellagic acid, coumaric 
acid, ferulic acid, querectin, apigenin, and kaempferol 
were not recognized in the extract of mushroom. The 
chemical formulas of all detected compounds are shown 
in Fig.  3. MG exhibited antioxidant activity besides 

Fig. 9  Morphological changes of MCF‑7 treated with different concentrations of ChNPs, A: 31.25, B:62.5, C:125, D:250, and E: 500 µg/mL
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Fig. 10  Morphological changes of MCF‑7 treated with different concentrations of PELChNPs, A: 7.8, B:15.6, C: 31.25, D:62.5, E:125, F:250, and G: 
500 µg/mL
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several other biological properties, including antispas-
modic, antiatherogenic, anti-inflammatory, and antibac-
terial activities [27]. In addition, it has shown antitumor 
activity. It may be an effective therapeutic adjunct for 
patients with hepatocellular carcinoma [28]. According 
to the literature review of Podkowa et al. [29], gallic acid 
and Chlorogenic acid were identified in numerous spe-
cies of mushrooms, including Pleurotus ostreatus, Lac-
tarius deliciosus, Morchella esculenta, Russula aurora. 
Naringenin and rutin were also found in various edible 
mushrooms and exhibited killer effects against tumor 
cells [30].

Anticancer activities and morphological studies on MCF‑7 
cancer cell line
ChNPs, up to 31.25 µg/mL, exhibited no anticancer activ-
ity against the MCF-7 cell line. Insignificant anticancer 
activity was observed at higher concentrations (Table 2; 
Fig.  4). PE and PELChNPs increase in concentration 
increased their antitumor activity. PE and PELChNPs 
concentrations of 3.9 and 1  µg/mL were the minimum 
effective concentrations, respectively (Table 2; Figs. 5 and 
6). Significant differences among the cytotoxicity of PE 
and PELChNPs at relatively low concentrations, where 
the inhibition of MCF-7 proliferation was 8.57±0.59 and 
20.59±1.75% at 7.8  µg/mL, 25.18±1.64 and 51.37±1.09% 
at 15.6 µg/mL, 39.05±2.71 and 63.21±0.83% at 31.25 µg/
mL, respectively. Concentrations higher than 125  µg/
mL showed insignificant differences in the inhibition 
of MCF-7 proliferation not exceeding 10%. Gener-
ally, ChNPs enhanced the antitumor activity of PE with 
 IC5015.25 ± 0.54  µg/mL compared to  IC50 of PE alone 
(46.27 ± 1.94 µg/mL) and ChNPs (337.38 ± 13.68 µg/mL). 
All these results were compared with the standard anti-
cancer agent Vinblastine sulfate, which exhibited  IC50 
5.91 ± 0.43 µg/mL (Table 2; Fig. 7). The anticancer activity 
may be due to the existence of active compounds in PE, 
such as methyl gallate, gallic acid naringenin, and rutin. 

The enhancement of the anticancer activity of PELChNPs 
could be explained based on the unique properties of 
nanomaterials. Polysaccharides-based nano-formulation 
has been booming in biological activities [16, 18]. As [31] 
mentioned, ChNPs enhance the bioavailability and regu-
late the release of loaded therapeutic compounds, besides 
raising cellular uptake, and targeting tumor cells. Our 
findings were promising compared to other mushroom 
extracts; for instance, Ganoderma lucidum extract  IC50 
was 209.6 ± 0.24  µg/mL against MCF-7 [32]. In another 
study, using the extract of Flammulina velutipes against 
MCF-7 and MDA-MB-231 showed  IC50 ranged from 
17.7  µg/mL to 38.36  µg/mL and ranged from 114.5  µg/
mL to 184.2  µg/mL, respectively [33]. Polysaccharides 
from Agaricus bisporus succeeded in repressing the pro-
liferation of MCF-7 cells but had little activity against 
other cancer cells, including prostate, gastric cancer, 
colon, and murine Sarcoma 180 cells [34]. In vivo study 
[35], ChNPs loaded by extract of Pleurotus eryngii com-
pared with extract alone could synergistically have potent 
antioxidant and antiapoptotic activity against doxoru-
bicin-induced testicular injury in rats [35].

After 24  h of treatment with different concentra-
tions of PE, ChNPs, and PELChNPs, the morphology 
of the MCF-7 cell lines was visualized in (Figs. 8, 9 and 
10, respectively). Marked deformations and alterations 
were observed on the cell surface, which could be attrib-
uted to the impact of tested compounds, particularly 
with PELChNPs followed by PE alone. While ChNPs 
showed less effect on cell morphology The increment of 
PELChNPs and PE concentration was accompanied to 
the increment of cell morphology and apoptotic altera-
tion. The untreated cells exhibited remarkable conflu-
ence and had adherent progress and a polygonal form; 
besides, it demonstrated dense cell populations. Mecha-
nisms of chitosan’s antitumor activity are associated with 
membrane-disrupting and apoptosis-inducing actions 
[36]. Jedinak and Sliva [37] demonstrate that PE explic-
itly represses the growth of breast cancer and colon cells 
without any influence on normal cells and induces mor-
phological changes causing the elongation of MCF-7 
cells.Mishra et  al. [9] observed numerous changes in 
the morphological features of MCF-7 treated with PE, 
including apoptotic cells with cytoplasmic membrane 
blebbing, cells shrinkage, and nuclear fragmentation, 
while intact stretched morphological structures were 
observed in the untreated MCF-7 cells. Our results 
showed that the treated cells’ structural changes varied in 
a concentration-dependent manner.

118.33

85.63

36.8
24.74

0

20

40

60

80

100

120

140

ChNPs  PE  PELChNPs Trolox

IC
50

  (
µg

/m
L)

Tested compound

Fig. 11 IC50 values of antioxidant activity of ChNPs, PE, PELChNPs 
and Trolox as a positive control



Page 11 of 14Al‑Rajhi and Ghany  Applied Biological Chemistry  (2023) 66:33 

Antioxidant activities
Antioxidant activity of ChNPs, PE, and PELChNPs 
was evaluated compared with Trolox, which reflected 
 IC50 of 118.33 ± 4.02, 85.63 ± 3.96, 36.80 ± 2.52 and 
24.74 ± 0.45  µg/mL. The antioxidant activity of PE and 
ChNPs was detected. The antioxidant activity of PELCh-
NPs was superior to PE, which suggests that ChNPs 
enhance PE antioxidant activity (Fig.  11). The antioxi-
dant properties of PE may occur due to the presence of 
flavonoid and phenolic compounds. In a previous report, 
strong antioxidant capacity was associated with mush-
room fungi such as Pleurotus columbinus with  IC50 
of 35.13  µg/mL and Pleurotus sajor-caju with  IC50 of 
40.91  µg/mL, but it was less with using Agaricus bispo-
rus with  IC50 of 83.93  µg/mL [38]. Recently, a DPPH 
assay was used to assess the antioxidant potential of 
the extracts of edible termite mushrooms including 

Termitomyces eurhizus, T. albuminosus, and T. robustus, 
 IC50 ranging from 710.00 to 714.05 µg/mL was detected 
and correlated to the bioactive secondary metabo-
lites which can be utilized as safe antioxidants [39]. 
The antioxidant activity of Agaricus bisporus extract 
was compared to A. bisporus extract loaded on ChNPs 
to evaluate the role of ChNPs [40] demonstrated that 
ChNPs improved the antioxidant capacity of the extract. 
An earlier study explained the enhanced antioxidant 
activity of natural compounds loaded by ChNPs due to 
the stability and continuous release of active compounds 
from ChNPs [41]. Extracts with low  IC50 (less than 
10 mg/mL) have an antioxidant capacity and give hydro-
gen atoms to scavenge free radicals [42].

Molecular modeling: docking study of Methyl gallate 
with MCF‑7 cancer cell line
To evaluate the MOE-Dock program’s accuracy, the 
co-crystallized ligand was removed from the active 
site and re-docked within the inhibitor binding cavity. 
RMSD value was determined to be 0.62351Å, demon-
strating that our docking method is appropriate for the 
inhibitors under study and that the MOE-Dock method 
is trustworthy for docking these inhibitors. Methyl 

Table 3 Docking scores and energies of methyl gallate with MCF‑7 cells 3HB5

Mol rseq mseq S rmsd_refine E_conf E_place E_score1 E_refine E_score2

1 1 −5.01197 0.62351 2.645754 −66.1692 −10.8736 −26.0427 −5.01197

1 1 −4.99384 1.59043 1.470515 −70.3849 −10.8288 −24.7089 −4.99384

1 1 −4.90764 1.466602 7.633593 −68.9083 −12.8659 −21.0736 −4.90764

1 1 −4.90188 2.290448 6.923578 −62.4627 −10.9264 −28.2436 −4.90188

1 1 −4.88986 1.417585 2.700965 −82.8003 −12.373 −25.8585 −4.88986

Table 4 Interaction of Methyl gallate with MCF‑7 cells 3HB5

Mol Ligand Receptor Interaction Distance E (kcal/
mol)

Methyl 
gallate

O 9 O ASN 90 
(X)

H‑donor 3.28 −0.7
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gallate was bound deeply with 3HB5 enzyme making 
interaction by ASN 90 residue and the O 9 of ligand. 
The docking score was found to be -5.01197Kcal/mol, 
and the results obtained are calculated in Tables  3 
and 4. Recently molecular docking analysis by Hamed 
et  al. [43] showed that methyl gallate bound with the 

epidermal growth factor receptor tyrosine kinase 
(EGFRwt) (PDB ID: 1M17) through hydrogen bonding 
with MET-769, THR-766, GLN-767 amino acid resi-
dues. In addition, methyl gallate is bound with ASP-831 
in the EGFR kinase domain activation loop. The bind-
ing pose score was −4.5287 kcal/mol with a root mean 

Fig. 12 Molecular docking process of Methylgallate with 3HB5 showing, A The interaction between Methyl gallate and activesites of 3HB5 
protein, B Theidentified  most likely bindingconformation of Methyl gallate and the corresponding intermolecularinteractions, C Molecularsurface 
of Methyl gallate ‑ 3HB5 complex, D The contact preference of Methyl gallate with 3HB5, E Interaction potential of Methylgallate with 3HB5, and F 
TheElectrostatic map of Methyl gallate with 3HB5
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square deviation (RMSD) value of 1.69 Å. Figure  12 
shows 2D and 3D docking modes via MOE visualizing 
tool. Recently Mishra et al. [9] concluded that P. ostrea-
tus, via In silico studies, is a rich source of biologically 
active compounds that play a vital role in repressing 
the MCF-7 cancer cell line. Docking scores study was 
reported in numerous studies reflecting the efficacy of 
active compounds against cancer cells as well as patho-
genic microorganisms [12, 26, 44, 45].
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