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Abstract 

Ten benzimidazole chalcone derivatives were synthesized, and their monoamine oxidase (MAO) inhibitory activ-
ity was evaluated. Most compounds showed higher inhibitory activity against MAO-B than MAO-A. Compound 
BCH2 exhibited an  IC50 value of 0.80 μM, thereby showing the most potent inhibition amongst all. In addition, BCH2 
showed the highest MAO-B selectivity index (SI) with an SI value of 44.11 compared to MAO-A. Among the sub-
stituents, the halogen group showed the best MAO-B inhibition, and the ortho-position of the B ring showed better 
inhibitory activity than the para-site. In comparison with ortho-substituents, the inhibitory activity increased in the 
order, -Cl > -Br > -F > -H. BCH2 was found to be a competitive inhibitor of the enzyme with optimum inhibition kinet-
ics, where  Ki was found to be 0.25 ± 0.014 μM. In the reversibility experiment, BCH2 showed a recovery pattern after 
MAO-B inhibition, similar to that of lazabemide. Thus, BCH2 is a potent, reversible, and selective MAO-B inhibitor and 
has been suggested as a candidate for the treatment of neurological disorders.
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Introduction
Alzheimer’s disease (AD) is a prominent neurodegen-
erative condition that causes dementia and impairs 
intellectual performance. Amyloid plaques and intracel-
lular neurofibrillary tangles (NFTs) built in the brain of 
AD patients, which inevitably lead to cerebral atrophy. 

Elevated oxidative stress is detected in the initial phases 
of AD, implying a surge in reactive oxygen species (ROS) 
[1]. Monoamine oxidases (MAOs) play a significant role 
in ROS production by facilitating oxidative deamina-
tion, resulting in the production of  H2O2, an ROS that is 
a key contributor to the development of oxidative stress 
[2–4]. The two MAO isoforms, MAO-A and MAO-
B, are generated by distinct genes and exhibit different 
substrate preferences. The brains of patients with AD 
have higher levels of MAO-B expression than the typi-
cal human brain, which results in the production of ROS 
and enhances the metabolism of monoamine neurotrans-
mitters such as dopamine, both of which exacerbate the 
symptoms of the disease [5].

Due to its pathological and pharmacological properties, 
MAO-B is a promising target for AD therapy. Selegiline, 
rasagiline, and safinamide are the three main MAO-B 
inhibitors currently available in the market. While the 
former two are irreversible MAO-B inhibitors, the latter 
is a reversible MAO-B inhibitor. All these medications 
are used in the management of neurological disorders 
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because of their ability to prevent dopamine degradation 
[6–8].

Benzimidazole is regarded as a useful compound 
because of its presence in a diverse range of bioactive 
molecules. Benzimidazole is a bicyclic heteroaromatic 
compound with imidazole and benzene rings fused at 
positions 4 and 5. The first benzimidazole synthesis 
was reported by Hoebrecker through the reduction of 
2-nitro-4-methyl acetanilide in 1872 [9]. Benzimidazole 
exhibits both acidic and basic properties; its NH group 
is highly acidic and mildly basic. Various benzimidazole 
derivatives display different pharmacological activities, 
including anti-inflammatory, antifungal, antituberculo-
sis, anticancer, antimalarial, antihistamine, antiviral, and 
antidiabetic. Due to these variations in pharmacological 

actions, several FDA-approved drugs have been devel-
oped based on benzimidazole scaffold, which includes 
azilsartan (angiotensin II receptor blocker), albendazole 
(anthelmintic agent), esomeprazole (proton pump inhibi-
tors), benperidol (antipsychotic), bezitramide (opioid), 
astemizole (antihistamine), benomyl (fungicide), and 
nocodazole (anticancer agent) (Fig. 1) [10–12].

Since chalcones are a biosynthetic precursor of flavo-
noids, they are known as open-chain flavonoids and are 
chemically α,β-unsaturated ketones consisting of two 
aromatic rings joined by an unsaturated three-carbon 
system. The presence of three rotatable bonds in the 
structure enables chalcones to have more flexibility, 
which contributes to a variety of pharmacological activi-
ties, including neuroprotective and MAO-B inhibitory 

Fig. 1 Structure of FDA-approved drugs containing benzimidazole scaffold
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activity [13–18]. Thus, several studies have been con-
ducted on the modification of the chalcone scaffold to 
examine the outcome of substitutions on the effective-
ness of the molecule. In particular, halogen substitutions 
have been extensively studied owing to their lipophilic 
nature [19, 20]. In the current study, 10 benzimidazole-
based chalcone compounds (BCH) were synthesized, and 
their MAO inhibitory activities were assessed. Ring A of 
the chalcone was replaced with a heterocyclic benzimi-
dazole ring, and ring B was substituted with various elec-
tron-withdrawing and electron-donating groups.

Materials and methods
Synthesis
Equimolar quantities of 2-acetyl benzimidazole and 
ortho- or para-substituted benzaldehyde were dissolved 
in 20 mL of ethanol and 40% KOH (7.5 mL). The reaction 
mixture was then allowed to stir for 24 h on a magnetic 
stirrer. The obtained mixture was poured into crushed 
ice, and the precipitate was filtered. After drying, the 
products were recrystallized from methanol. All reac-
tions were monitored by performing thin-layer chroma-
tography using hexane and ethyl acetate (2:0.5, v/v) as the 
mobile phase (Scheme 1). All molecules were previously 
synthesized and reported by our research group [21–23].

MAO inhibition study
Chemicals for MAO inhibition
Recombinant human MAO-A, MAO-B, benzylamine, 
kynuramine, pargyline, lazabemide, clorgyline, and 
toloxatone were purchased from Sigma-Aldrich (St. 
Louis, MO, USA). Mono- and dibasic anhydrous sodium 
phosphates were purchased from Daejung Chemicals 
& Metals Co Ltd (Siheung, Korea). Dialyzer (6–8  kDa, 
DiaEasy™) was purchased from BioVision (St. Grove, 
MA, USA) [24].

Inhibition studies of MAO‑A and MAO‑B
MAO-A and MAO-B were assayed for activities; the 
experiments were conducted by adding 0.06  mM of 

kynuramine and 0.3  mM of benzylamine as substrates, 
respectively. To determine the activity of each enzyme, 
changes in absorbance were continuously measured at 
316 and 250 nm. Toloxatone, clorgyline, lazabemide, and 
pargyline were used as reference compounds for compar-
ison with the inhibitor compounds [25].

Enzyme kinetics
Residual activity was evaluated at 10  μM during an ini-
tial activity screening, and  IC50 values were determined 
for potential compounds having  IC50 below 40 μM with 
the help of GraphPad Prism software 5 (San Diego, CA, 
USA) [26]. The selectivity index (SI) value of MAO-B was 
calculated using the formula,  IC50 of MAO-A /  IC50 of 
MAO-B [27]. The types of enzyme inhibition of MAO-A 
and MAO-B were determined at five different substrate 
concentrations (0.0075–0.12 and 0.0375–0.6 μM, respec-
tively) and three inhibitor concentrations (~ 1/2 x, 1 x, 
and 2 ×  IC50) [28]. The enzyme kinetic patterns and  Ki 
values were determined by comparing Lineweaver–Burk 
plots and their secondary plots, respectively [29].

Reversibility studies
The reversibility of MAO-A and MAO-B inhibition was 
evaluated by comparing undialyzed and dialyzed resid-
ual activities at a concentration two times the  IC50 after 
pre-incubation for 30 min, as described previously [30]. 
Two types of reference inhibitors were used for MAO-A 
and MAO-B: the reversible inhibitors toloxatone and laz-
abemide (MAO-A and MAO-B, respectively), and the 
irreversible inhibitors clorgyline and pargyline (MAO-A 
and MAO-B inhibitors, respectively). The reversibility 
patterns were determined by comparing the activities of 
undialyzed  (AU) and dialyzed  (AD) samples [31].

Computational studies
Molecular docking
The crystal structure of MAO-primary B was care-
fully obtained and retrieved from the Protein Data Bank 
(PDB) (http:// www. rcsb. org; ID: 2v5z; resolution: 1.60). 
This enzyme consists of two chains: A (499 residues) and 
B (494 residues). The Protein Preparation Wizard tool 
was used to remove water molecules, alter side-chain 
protonation states, and add missing hydrogen atoms to 
the crystal structures for optimization and reduction. 
The required proteins were digested and processed for 
grid construction. The centroid of the cocrystal ligand 
was used as the default parameter to build the grid. The 
compounds were prepared for docking using the Ligprep 
tool and an OPLS-2005 force field [32–35].

Scheme 1 Synthesis of benzimidazole chalcones

http://www.rcsb.org
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Molecular dynamics
The Desmond package (Desmond V 7.2) was installed 
at Dell Inc. A precision 7820 Tower Workstation with 
Intel  Xenon® Silver 4210R and NVIDIA Corporation 
GP104GL (RTX A 4000) graphics, configured by the 
Ubuntu 22.04.1 LTS 64-bit, was used to perform MD for 
the lowest docking pose of compound BCH2. Param-
eters for the MD investigation including solvent simula-
tion box shape, size, barometer, thermostat parameters, 
and long- and short-range interaction calculations were 
described in earlier studies [36]. Root-mean-square 
deviation (RMSD), root-mean-square fluctuation 
(RMSF), and protein–ligand contact analyses across all 
C atoms were built during the 100  ns MD simulation 
to evaluate the domain correlations. To investigate the 

protein–ligand interaction dynamics after the MD run, 
the MD trajectory was selected at 100  ps intervals with 
1000 frames generated for each [37].

Results and discussion
MAO‑A and MAO‑B inhibition studies
At a concentration of 10 μM, seven compounds showed 
low residual activity for MAO-B, less than 50% for MAO-
B, and three compounds showed less than 50% residual 
activity for MAO-A (Fig. 2, Table 1). BCH2 showed the 
best inhibitory activity against MAO-B with an  IC50 
value of 0.80  μM, followed by BCH4  (IC50 = 1.11  μM); 
BCH6 was identified as the best inhibitor against 
MAO-A with an  IC50 value of 1.63  μM, but it was a 
nonselective inhibitor with similar inhibitory activity 

Fig. 2 MAO activity inhibition evaluation of benzimidazole chalcone derivatives

Table 1 Inhibitions of MAO-A and MAO-B by benzimidazole chalcone  derivativesa

a Results are presented as the means ± standard error of duplicate or triplicate experiments
b Selectivity index (SI) are calculated for MAO-B using  IC50 values, i.e.,  IC50 of MAO-A/  IC50 of MAO-B

Compound Residual activity at 10 μM (%) IC50 (μM) SI

MAO‑A MAO‑B MAO‑A MAO‑B

BCH1 98.73 ± 10.74 99.95 ± 7.69  > 40  > 40 –
BCH2 76.00 ± 1.89 4.05 ± 1.91 35.29 ± 4.55 0.80 ± 0.0094 44.11

BCH3 37.50 ± 4.65 35.05 ± 7.27 5.59 ± 1.12 4.83 ± 0.76 1.16

BCH4 83.33 ± 0.94 16.48 ± 2.41 27.17 ± 0.14 1.11 ± 0.17 24.48

BCH5 43.38 ± 6.08 41.3 ± 7.69 8.39 ± 0.70 6.87 ± 1.79 1.22

BCH6 26.63 ± 0.77 23.36 ± 0.58 1.63 ± 0.10 2.04 ± 0.13 0.80

BCH7 83.70 ± 1.54 50.54 ± 1.52  > 40 10.94 ± 0.89 3.66

BCH8 82.28 ± 1.79 47.52 ± 0.98  > 40 8.32 ± 1.53 4.81

BCH9 78.48 ± 3.59 51.76 ± 3.33  > 40 10.02 ± 0.30 3.99

BCH10 87.5 ± 8.84 48.78 ± 6.90  > 40 11.09 ± 0.07 3.61

Toloxatone – – 1.646 ± 0.094 –

Lazabemide – – – 0.073 ± 0.0013

Clorgyline – – 0.0079 ± 0.00094 –

Pargyline – – – 0.11 ± 0.011
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for MAO-B  (IC50 value = 2.04). Regarding the SI value, 
BCH2 exhibited the highest value of 44.11, followed by 
BCH4 (SI = 24.48). BCH2 with ortho-Cl on the B ring 
showed the best MAO-B inhibitory function, followed 
by BCH4 with ortho-Br. BCH2 and BCH4 showed more 
than 50.0 and 36.0 times, respectively, higher MAO-B 
inhibitory activity than the parental compound BCH1 
 (IC50 > 40 μM) (Table 1). In comparison with ortho-sub-
stituents, the inhibitory activities increased in the order, 
-Cl > -Br > -F > -H. In addition, the ortho-site of the B 
ring showed better inhibitory activity than para-site 
(BCH2 > BCH3; BCH4 > BCH5). Uniquely, BCH6 with 
ortho-F of the B ring inhibited both MAO-A and MAO-B 
 (IC50 = 2.04 μM) to a similar degree. Overall, the halogen 
substituents exhibited better inhibitory capabilities than 
the alkyl groups, methoxy groups, and piperidine.

Enzyme kinetics
Enzyme and inhibition kinetics were analyzed at five 
substrate concentrations and three inhibitor concentra-
tions. According to the Lineweaver–Burk plots, BCH2 
appeared to be a competitive MAO-B inhibitor (Fig. 3A). 
In addition, secondary plots showed that the  Ki value was 
0.25 ± 0.014  μM. (Fig.  3B). These results suggested that 
BCH2 acts as a competitive MAO-B inhibitor.

Reversibility studies
The reversibility of BCH2 MAO-B inhibition was ana-
lyzed using the dialysis method. In these experiments, 
the compound BCH2 concentration used was two times 
the  IC50 (1.6 μM). The recovery pattern was compared by 
using undialyzed  (AU) and dialyzed  (AD) relative activi-
ties after 30 min of pre-incubation. The compound BCH2 
recovered from 24.14% to 57.10% (Fig. 4). The recovery of 

the compound was similar to that of lazabemide (revers-
ible type, from 22.66% to 67.94%) and could be distin-
guished from that of pargyline (irreversible type, from 
22.22% to 18.25%). These results indicated that BCH2 is a 
reversible MAO-B inhibitor.

Molecular docking
Using the Glide module, we docked the hit molecule into 
the binding cavity of protein 2V5Z. The lead molecule 
BCH2 showed a docking score (XP mode) of around 
-10.152 kcal/mol, which was comparable to that of safi-
namide’s score (−  11.684  kcal/mol), whereas the least 
active BCH1 showed −  9.198  kcal/mol. The hit was 
obtained through pi-pi stacking with Phe343 (Fig.  5A). 
Other interactions included hydrophobic interactions 
with Phe103, Pro102, Tyr60, Tyr435, Tyr398, Leu164, 
Tyr326, Leu328, Cys172, Ile198, and Ile199. A 2D interac-
tion diagram of the hit molecules is shown in Fig. 5A. We 
found that the chloro phenyl ring in BCH2 was close to 

Fig. 3 Lineweaver–Burk plots for MAO-B inhibition by BCH2 A, and the respective secondary plot B of the slopes vs. inhibitor concentrations

Fig. 4 Recovery of MAO-B inhibition by BCH2 using dialysis 
experiments
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FAD while the benzimidazole moiety in BCH1 was close 
to FAD, when comparing the docking contacts of the two 
compounds (Fig.  5B). The result showed that halogen 
alterations changed the orientation of BCH2, enhancing 
interaction.

Molecular dynamics
In drug discovery research, the MD simulation is used 
to simulate the dynamic behaviors of a protein–ligand 
complex as closely or as realistically as possible. This 
allows researchers to quickly obtain energy information 

Fig. 5. 2D A and 3D B ligand interactions with the lead compound BCH2. BCH2 and FAD were shown as red–orange and purple, respectively. For 
comparison, BCH1 was provided as green
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on how proteins and ligands interact. In this study, BCH2 
was modeled at the binding site of MAO-B protein using 
MD modeling by simulating according to the biological 
situations. RMSD, RMSF, and protein–ligand interac-
tions were calculated using MD trajectories. Numerous 
MD trajectory data analyses of the BCH2-MAO-B com-
plex are shown in Fig. 6. Both complexes were simulated 
using water molecules. With RMSD values for protein  Cα 
atoms in complex with ligand ranging from 1.2 to 3.6 Å, 
the RMSD plot (Fig. 6A) showed a stable ligand–protein 
complex during the simulation duration, while BCH1’s 
ligand RMSD ranged from 1.3 to 5.9  Å. The great-
est RMSD for BCH2 and BCH1 (Fig.  7) was 3.6  Å  and 
5.9 Å at 35 ns and 80–90 ns, respectively. During the sim-
ulation, it appeared that the BCH1 phenyl ring deviated 
more from the norm than the halogen-substituted phenyl 
ring. For compound BCH2, RMSD relative to the protein, 
the ligand RMSD ranged from 2.0 to 3.6. Apart from a 
small change, the RMSD of the simulation study for 
BCH2 was found to be constant. The maximum protein 
RMSD was measured at 20  ns, where the RMSD value 
was found to be 3.6 Å; after 45 ns, the protein begins to 
stabilize. The RMSD plot demonstrates that the ligand is 
stable with respect to the protein and its binding site. The 

simulation also evaluated the adaptability of the protein 
system by computing the RMSF for each amino acid resi-
due of the protein. The RMSF plot (Fig. 6B) indicates very 
fewer fluctuations (0.6–2.0 Å) and higher fluctuations in 
the N- and C-terminal residues. Tyr60 (0.544 Å), Glu84 
(1.128  Å), Pro102 (2.042  Å), Pro104 (1.507  Å), Leu164 
(0.727  Å), Leu167 (0.658  Å), Phe168 (0.658  Å), Leu171 
(0.7 Å), Ile198 (0.89 Å), Ile199 (1.201 Å), Ser200 (0.99 Å), 
Thr201 (0.938  Å), Gln206 (0.719  Å), Ile316 (0.88  Å), 
Tyr326 (0.768  Å), Leu328 (0.822  Å), Phe343 (0.69  Å), 

Fig. 6 MD simulation analysis of the BCH2-MAO-B complex. A RMSD of protein (blue) and BCH2 (red); B RMSF for amino acid residues of the 
protein; C Diagram of 2-D Interaction; D Plot of Protein–ligand interactions
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and Tyr398 (0.745  Å)  were the 18 amino acid residues 
with which the ligand interacted. Hydrophobicity, water 
bridges, and hydrogen bonding are the three main clas-
sifications in protein–ligand contact. These interactions 
in the ligand–protein complexes are shown in Fig.  6C 
and D. Gln206 is involved in a hydrogen bonding with 
the carbonyl group of BCH2 with a participation strength 
of 36%, while Tyr326 participates with 26% strength 
in a pi-pi stack interaction in 2D. MD simulations help 
understanding the binding patterns, because the physio-
logical environment is more accurately mirrored. Trajec-
tory analysis and overall MD simulations indicated that 
the lead molecule inhibited MAO-B.

ADME prediction
Solubility is an important feature determining absorb-
ance for drug discovery schemes that intend to develop 
drugs for oral delivery. In addition, a medication 
intended for parenteral administration must be suffi-
ciently dissolved in water to provide an adequate amount 
of the bioactive component in a modest pharmacological 
dosage.

Understanding the mechanisms by which chemicals 
interact with cytochrome P450 (CYP) is crucial. This 
superfamily of isoenzymes plays an important role in 
drug disposal through metabolic biotransformation. On 
average, the five main isoforms represent the substrates 
for 50–90% of the therapeutic compounds (CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, and CYP3A4). As these 
isoenzymes are inhibited, there is poor clearance and 
retention of the drug or its metabolites, which can result 
in toxic or undesirable side effects. This is one of the main 
causes of drug-drug interactions linked to pharmacoki-
netics. Nonetheless, interactions between all compounds 
and cytochrome isoenzymes were apparent  (Table  2). 
Blood–brain barrier (BBB) permeability is essential for 

the treatment of neurodegenerative diseases. All the sub-
sequent medications showed comparable BB permeation. 
The bulk of these compounds exhibits favorable ADME 
properties, making them viable candidates [38].

Collectively, we assessed the inhibitory potential of 
the 10 synthesized benzimidazole chalcone deriva-
tives  (BCH1-BCH10) against MAO-A and MAO-B. 
Most compounds exhibited selective MAO-B inhibitory 
actions. With an   IC50 value of 0.80 μM and an SI value 
of 44.11, BCH2 presented the highest selective MAO-B 
inhibition, followed by BCH4  (IC50 = 1.11, SI = 24.48). 
According to the kinetic and reversibility tests, BCH2 
is a competitive and reversible  inhibitor of MAO-B. An 
MD study also predicted that the addition of halogens to 
the benzimidazole chalcone framework might strengthen 
MAO-B inhibition. As a result, our study suggests that 
BCH2 is a potential candidate for the treatment of neu-
rodegenerative diseases such as AD.
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The pharmacokinetic properties were calculated in silico using the online database aSwissADME (http:// www. swiss adme. ch/)
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