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Abstract 

Xanthomonas campestris pv. vesicatoria (Xcv) causes brown spots on the leaves, stems, and fruits of plants, called 
bacterial leaf scorch (BLS). For the control of pathogens, antibiotics have been used frequently, and they can 
develop the resistance. In this study, the bactericidal and synergistic effects of caraway oil and its main components 
against the pathogen (Xcv) were investigated. The tested caraway oil consisted of 58.4% of carvone and 31.1% 
of limonene. The minimum inhibitory concentration (MIC) of caraway oil and carvone was the same as 125 μg  mL−1, 
and the minimum bactericidal concentration (MBC) was 1000 μg  mL−1 for caraway oil and 500 μg  mL−1 for carvone, 
while limonene showed no inhibition below 1000 μg  ml−1. In the growth of Xcv, carvone treatment over 31.3 μg  mL−1 
inhibited dose‑dependently, and the bactericidal effect showed after 18 h more than 250 μg  mL−1; It was agreed 
with the release of intracellular components over 250 μg  mL−1, especially. Furthermore, carvone damaged the plas‑
mid DNA of Xcv, and it would be the reason for the bactericidal activity. The synergistic effect of carvone was found 
with β‑lactams selectively; the fractional inhibitory concentration (FIC) indexes of carvone with ampicillin or amoxicil‑
lin were below 0.5, and the mixture of carvone (125 μg  mL−1) and ampicillin (500 μg  mL−1) showed the bactericidal 
activity as well.
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Introduction
The development of most plant diseases occurs as a 
result of various bacterial infections [1]. Bacterial leaf 
scorch (BLS) is caused by bacterial pathogens such as 

Xylella fastidiosa, Xanthomonas campestris pv. vesica-
toria and Xanthomonas arboricola pv. pruni [2–4]. BLS 
primarily affects the leaves of plants, causing them to 
turn brown or develop brown spots. The development 
of spots is also known to occur on branches, fruits, and 
entire aerial parts, depending on the infecting pathogen, 
and results in reduced productivity [5, 6]. Xanthomonas 
campestris pv. vesicatoria (Xcv), a gram-negative bacte-
rium, is mainly responsible for BLS affecting pepper and 
tomato, and antibiotics such as streptomycin and oxy-
tetracycline were applied to control Xcv [7–11]. How-
ever, the eventual emergence of antibiotic-resistant Xcv 
has been reported [8–11], and to suppress the resistance 
development, research on the discovery of alternative 
antibacterial substances from natural sources is currently 
underway [12–15]. These studies have evaluated the 
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natural substances from Lippia gracilis [12], Lentinula 
edodes [13], and Metasequoia glyptostoboides [14] which 
exhibit antibacterial activity against Xcv, while the stud-
ies of the antibacterial substances from caraway and its 
major metabolites against Xcv have not been reported.

Caraway (Carum carvi), an herbaceous plant, is a 
member of the Apiaceae family and is widely native to 
Asia, Europe, and Africa [16]. It is used as an ingredient 
in food, and its leaves and roots are mainly consumed as 
vegetables worldwide [17]. Although the seeds are also 
used in brewing and spices, they are best known for their 
use in essential oils known as caraway oil [18]. Accord-
ing to a previous study, the main components of caraway 
oil are carvone and limonene, which account for more 
than 60% and 30% of its total content, respectively [19]. 
Carvone and limonene, which are terpenoids, are listed 
as food flavoring by the United States Food and Drug 
Administration (FDA) [20, 21]. Their use as antibacterial 
activity against Bacillus, Staphylococcus, Pseudomonas, 
and Salmonella has also been reported [22, 23]. They can 
donate and accept electrons because of their structural 
characteristics along with their potential to function as 
inducers of reactive oxygen species (ROS) [24], and can 
destroy the cell membrane and penetrate the cytoplasm 
of bacteria, resulting in ROS [25], because intracellular 
ROS exerts a bactericidal effect through its involvement 
in DNA damage, lipid peroxidation, protein denatura-
tion, and enzyme inactivation [26–28].

Accordingly, this study aimed to evaluate the antibac-
terial potential of caraway oil and its main components, 
carvone and limonene, against Xcv, and the bacterial sen-
sitivity to Xcv was investigated with the minimum inhibi-
tory concentration (MIC) and minimum bactericidal 
concentration (MBC). In addition, the bactericidal activ-
ity of carvone was observed with a time-killing assay in 
growth, the release of the intracellular components, and 
the plasmid DNA damage assay. In addition, the syner-
gistic antibacterial effect of carvone with several conven-
tional antibiotics, including β-lactams, was investigated 
with the fractional inhibitory concentration (FIC) index.

Materials and methods
Chemicals and instruments
Measurement of bacterial turbidity in treated or 
untreated reagents was performed using an iD3 multi-
mode microplate reader (Molecular Devices, CA, USA). 
Caraway oil, which originated in Hungary, was purchased 
from a local market. Standard materials (R)-(-)-carvone 
and ( ±)-limonene were purchased from Tokyo Chemi-
cal Industry Co., LTD (Tokyo, Japan). Ampicillin, tetra-
cycline, validamycin, oxolinic acid, amoxicillin, penicillin 
G, and streptomycin were purchased from Sigma-Aldrich 
(St. Louis, MO, USA).

Bacterial culture conditions
Xanthomonas campestris pv. vesicatoria were donated by 
the Jeonnam Bioindustry Foundation (Gokseong, Korea). 
Xcv in Luria–Bertani (LB) broth was cultured at 37 °C for 
48 h in a shaking incubator. The initial concentration of 
Xcv was adjusted to approximately 1 ×  108 cfu  mL−1, and 
measurement of bacterial turbidity at 600  nm was per-
formed to confirm the concentration.

Composition analysis by GC–MS
The oil sample (0.10  g) was diluted with acetone, and 
the diluted solution was filtered using a syringe filter 
(0.23 μm). Quantitative and qualitative analyses of the oil 
were performed using gas chromatography-mass spec-
trometry (GC–MS; Shimadzu Co., Ltd. Kyoto, Japan). 
Qualitative analysis was initially performed in the total 
ion chromatogram (TIC) mode, and the candidates were 
compared with the NIST library and identified using 
standard materials. Quantitative analyses of carvone 
and limonene were performed in the selected ion mode 
(SIM). Detailed analytical conditions are listed in Table 1.

Determination of MIC and MBC
Caraway oil, carvone, and limonene were progressively 
diluted with DMSO, and 10 µL of the diluted samples and 
15 µL of 1 ×  108 cfu   mL−1 Xcv were added to 975 µL of 
LB broth. The treated broth was incubated at 35  °C for 
48 h in a shaker incubator. Following incubation, the low-
est concentration of antibacterial samples on the trans-
parent medium where Xcv growth was not observed was 
recorded as the MIC. The culture medium (300 μL) was 

Table 1 Instrumental condition for the analysis of components 
in caraway oil

Instrument GCMS-2010 (Shimadzu Co. Ltd., Kyoto, 
Japan)

Injection 1.0 uL (splitless)

Column DB-WAX (30 m × 0.25 μm × 0.25 mm)

Flow 1.0 mL/min

Injector temperature 200 ℃

Oven condition Rate(℃/min) Temp(℃) Hold time(min)

Initial 80 2

10 170 2

2 190 0

10 240 5

Mass spectrometer condition

Ion source EI

Selected ion (m/z) Compound Quantitative Qualitative

Carvone 93 108, 106

Limonene 93 107, 121
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then spread on LB agar plates and incubated for 48 h at 
35 °C. Monitoring for colony formation on the plate was 
performed to determine the MBC.

Measurement of the bacterial growth curve
Xcv usually reaches the stationary phase at least 40  h 
after incubation. Therefore, turbidity measurements 
were performed at 3 h intervals during culturing for 48 h 
after treatment with carvone at different concentrations 
(0, 31.25, 62.5, 125, 250, and 500 μg  mL−1) in Xcv broth. 
Briefly, 25 μL of Xcv (1 ×  108 cfu   mL−1) was added, and 
the initial optical density (OD) value was 0.09. The broth 
was incubated in a shaking incubator at 35  °C, and tur-
bidity was measured at 600 nm.

Determination of FIC by micro checkerboard method
The synergistic effects of the combination of carvone and 
representative antibiotics (ampicillin, tetracycline, vali-
damycin, oxolinic acid, and streptomycin) were evaluated 
using the fractional inhibitory concentration (FIC) index 
[29]. These combinations were prepared by serial twofold 
dilutions using DMSO according to the treatment con-
centration. The combination (10 μL) was added to 990 μL 
of Xcv broth (approximately 1 ×  108 cfu  mL−1) and incu-
bated for 48  h to determine whether the concentration 
affected the extent of Xcv growth. The FIC index is the 
sum of the individual FICs included in the combination. 
The FIC index indicated a synergistic effect (values ≤ 0.5), 
an additional effect (0.5 < values < 1), an indifferent effect 
(1 < values < 4), and antagonistic effect (values ≥ 4) [30]. 
The FIC index values were derived as follows: FIC index 
=  FICcarvone +  FICantibiotics. Where  FICcarvone or  FICantibiotics 
are the values obtained by dividing the MIC of carvone 
or antibiotics in the combination by the MIC in treated 
alone, respectively.

Time-killing kinetics
Time-killing kinetic curves were obtained by count-
ing colony-forming units per 1  mL every 6  h dur-
ing the growth of Xcv. Similar to the bacterial growth 
curve test, 990  μL of diluted Xcv broth (approximately 
1 ×  103 cfu  mL−1) was incubated with 10 μL of carvone at 
0, 31.25, 62.5, 125, 250, and 500 μg  mL−1 at 35 °C. During 
the incubation period, the mixture was collected and the 
number of colonies at each concentration of carvone was 
counted every 6 h.

Intracellular components release experiments
The experiments were conducted based on the principle 
that nucleic acids, such as DNA and RNA, are detected at 
a maximum absorption wavelength of 260 nm. Treatment 
of 990 μL LB broth containing 1 ×  103 cfu  mL−1 Xcv and 
10  μL of different concentrations of carvone (0, 31.25, 

62.5, 125, 250, and 500 μg  mL−1). The mixture was incu-
bated at 35 °C and harvested after 0, 6, 12, 36, and 48 h. 
The collected mixtures were centrifuged at 11,000  rpm 
for 10 min. Measurement of the supernatant, except for 
the cell pellet, was performed at 260 nm to monitor the 
intracellular components.

Effects of carvone on damage to plasmid DNA extracted 
from Xcv
For plasmid DNA damage measurement, 48 h incubated 
Xcv in LB broth was treated carvone as a final concentra-
tion of 125 μg   mL−1 and additionally incubated for 4, 8, 
and 12 h. Extraction and purification of DNA from Xcv 
were performed using alkaline lysis methods [31]. Briefly, 
harvested pellet was resuspended by 250 μL of S1 buffer 
containing RNase A, 250 μL of S2 buffer, and 350 μL of 
G3 buffer sequentially for the completely lysis. The mix-
ture lysate was injected into a filter column to wash and 
remove the other cellular components using 700  μL of 
PW buffer. Afterwards, the DNA samples were secured 
by elution with 50 μL of EB buffer. 5 µL of DNA sample 
and 1  µL of 6 × DNA loading buffer (Enzynomics, Dae-
jeon, Korea) were mixed and loaded into a 0.8% agarose 
gel containing a DNA dye solution (1 × RedSafe, Intron 
Biotechnology, Gyeonggi, Korea) in Tris–acetate EDTA 
(TAE) buffer. Agarose gel electrophoresis was performed 
for 30 min at 100 V, followed by visualization using a gel 
imaging system (Azure 200, Azure Biosystems, Dublin, 
CA, USA).

Statistical analysis
All experiments were performed in triplicates. Data were 
acquired using the Sigma Plot (version 14.0). Statistical 
significance was set at a 5% confidence interval to iden-
tify the differences among the treatments.

Results and discussion
Composition of caraway oil
The components of the tested caraway oil were identified 
and quantified with GC–MS. Carvone (64.2%), limonene 
(33.5%), dihydrocarvone (< 1%), cis/trans-carveols 
(< 1%), and cis/trans-limonene-1,2-epoxides (< 1%) were 
detected in the caraway oil (Table 2). It was similar to the 
previously reported results of the essential oil [19].

Antibacterial activity of caraway oil and its metabolites
The antibacterial activity of caraway oil and its main com-
ponents, carvone and limonene, against Xcv was evaluated 
using MIC and MBC. As shown in Table 3, almost no dif-
ference in MIC values was observed between caraway oil 
(MIC = 125  μg   mL−1) and carvone (MIC = 125  μg   mL−1), 
whereas limonene exhibited no inhibitory activity with 
a MIC of more than 1000  μg   mL−1. Caraway oil and 
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carvone inhibited Xcv growth in a dose-dependent man-
ner (Fig.  1A). Specifically, the results confirmed that the 
growth of Xcv decreased with increasing carvone concen-
tration (Fig. 1B).

The MBC values for caraway oil and carvone were 
1000  μg   mL−1 and 500  μg   mL−1, respectively. Thus, 
carvone was expected to be the bactericidal compound 
in caraway oil. In the comparison of antibacterial activ-
ity between carvone and various antibiotics including 
ampicillin (Amp), tetracycline (Tcc), validamycin (Val), 
oxolinic acid (Oxo), and streptomycin (Stp), carvone 
was more effective than Amp (MIC = 500  μg   mL−1) 
and Val (MIC = 1000  μg   mL−1). However, Tcc 
(MIC = 0.24 μg   mL−1), Oxo (MIC = 0.98 μg   mL−1), and 

Stp (MIC = 31.3  μg   mL−1) showed greater sensitivity 
than carvone.

Synergistic effect of carvone and antibiotics
To reduce the development of antibiotic resistance, the 
developments of alternatives and synergists are neces-
sary. In here, the synergistic effects of carvone com-
bined with representative antibiotics, including Amp of 
β-lactams, Tcc of tetracyclines, Val and Stp of aminogly-
cosides, and Oxo of quinolones were evaluated using the 
FIC index.

As shown in Table  4, Amp/Car combination indi-
cated a strong synergistic effect (FIC index ≤ 0.5) with 
0.41 at Amp (15.6  μg   mL−1)/carvone (46.9  μg   mL−1). 
Carvone (46.9 μg   mL−1) was 2.5-fold more effective than 
carvone alone (MIC = 125  μg   mL−1), and Amp usage 
(15.6  μg   mL−1) was decreased 30-fold compared with 

Table 2 Carvone and limonene contents in the tested caraway 
oil

Composition 
(%)

R‑(‑)‑Carvone 58.4

Limonene 31.1

Dihydrocarvone  < 1

cis‑carveol  < 1

trans‑carveol  < 1

cis‑limonene‑1,2‑epoxide  < 1

cis‑limonene‑1,2‑epoxide  < 1

Table 3 MIC and MBC of caraway oil, carvone, limonene, and 
antibiotics against Xcv

a MIC indicates the minimal inhibitory concentrations against Xcv
b MBC indicates the minimal bactericidal concentrations against Xcv
c NT means not tested
d NI means no inhibitory effect against Xcv

Samples MICa (μg  mL−1) MBCb (μg  mL−1)

Essential oil

 Caraway oil 125 1000

Main component

 Carvone 125 500

 Limonene  > 1000 NTc

Antibiotics

 Ampicillin 500  > 1000

 Amoxicillin 500 NT

 Penicillin G 500 NT

 Tetracycline 0.24 NT

 Validamycin NId NT

 Oxolinic acid 0.98 NT

 Streptomycin 31.3 NT

Concentration, (µg/ml)

A
60

0n
m

0.0

0.2

0.4

0.6

0.8

1.0
Caraway oil
Carvone

0 31.3 62.5 125 250 500

Incubation time, (h)

0 10 20 30 40 50

A
60

0n
m

0.0

0.2

0.4

0.6

0.8
0 µg/ml
31.3 µg/ml
62.5 µg/ml
125 µg/ml
250 µg/ml
500 µg/ml

(A)

(B)

Fig. 1 (A) Antibacterial effects of treatment with caraway oil 
and carvone at different concentrations (0, 31.3, 62.5, 125, 250, 
and 500 μg  mL‑1) at 48 hr incubation against X. campestris, (B) Growth 
curve for Xcv with influenced carvone at 0, 31.3, 62.5, 125, 250, 
and 500 μg  mL‑1.
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Amp alone (MIC = 500 μg   mL−1). The lowest  FICindex for 
Oxo (0.73 μg  mL−1)/Car (15.6 μg  mL−1) combination and 
Stp (23.4 μg  mL−1)/Car (15.6 μg  mL−1) were 0.87 and 0.88 
against Xcv, respectively. Otherwise, Tcc showed unre-
markable effects (FIC index > 1.0) in all combinations with 
carvone, and Val was inactive against Xcv both alone and 
in combination. Thus, we extensively investigated the 

synergistic effect of carvone with other β-lactams such 
as amoxicillin (Amo) and penicillin G (PenG). Amp and 
Amo belong to broad-spectrum antibiotics used for gram-
negative bacteria having relatively thick cell membranes 
and gram-positive bacteria, while PenG is natural peni-
cillin to have efficacy for gram-positive bacteria [32, 33]. 
All three β-lactams (Amp, Amo, and PenG) had the same 

Table 4 FIC index of the combination between antibiotics and carvone against Xcv

a NI means no inhibitory effect against Xcv

Group Antibiotics (μg 
 mL−1)

FIC index against Xcv

Carvone (μg  mL−1)

0 15.6 23.4 31.3 46.9 62.5 125

β‑lactams Ampicillin

 0 1.00

 15.6 0.41 0.53 1.03

 31.3 0.44 0.56 1.06

 50 0.48 0.60 1.10

 100 0.45 0.58 0.70 1.20

 250 0.63 0.69 0.75 0.88 1.00 1.50

 500 1.00 1.13 1.19 1.23 1.38 1.50 2.00

Amoxicillin

 0 1.00

 31.3 1.06

 50 0.48 0.60 1.10

 100 0.58 0.70 1.20

 250 0.63 0.69 0.75 0.88 1.00 1.50

 500 1.00 1.13 1.19 1.25 1.38 1.50 2.00

Penicillin G

 0 1.00

 100 1.20

 250 0.88 1.00 1.50

 500 1.00 1.13 1.19 1.25 1.38 1.50 2.00

Aminoglycosides Validamycin

 1000 NIa NI NI NI NI NI NI

Streptomycin

 0 1.00

 15.7 1.25

 23.4 0.88 0.94 1.00 1.12 1.25 1.75

 31.3 1.00 1.13 1.19 1.25 1.38 1.50 2.00

Quinolones Oxolinic acid

 0 1.00

 0.73 0.87 0.93 0.99 1.12 1.25 1.75

 0.98 1.00 1.13 1.19 1.25 1.38 1.50 2.00

Tetracyclines Tetracycline

 0 1.00

 0.12 1.50

 0.24 1.00 1.13 1.19 1.25 1.38 1.50 2.00
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MIC value of 500 μg  mL−1 (Table 3). Whereas, as shown in 
Table 4, carvone combinations were displayed in two types 
as follows; synergistic effect with Amp (FIC index = 0.41) 
and Amo (FIC index = 0.48), and an additional effect with 
PenG (FIC index = 0.88) were presented on Xcv. For the 
best FIC index on the carvone (46.9  μg   mL−1) combina-
tion, the MICs of Amp, Amo, and PenG exhibited 15.6, 
50.0, and 250  μg   mL−1, respectively; these MICs were 
shown as reduced 32-fold for Amp, tenfold for Amo, and 
twofold for PenG than their usage alone. As the results, 
carvone only exhibited the synergistic effect with β-lactam 
antibiotics specifically. These effects was presumed that 
the β-lactam can be interrupt bacterial cell wall production 
to increase the uptake of the carvone into the membrane 
of Xcv. Therefore, carvone could be used as a synergist for 
β-lactams, and it effectively reduce the antibiotics use for 
controlling Xcv.

Time-kill kinetics assay
The time-dependent bactericidal activity of carvone 
was investigated with the time-killing kinetic curve in 
culture media (Fig.  2A). The curve exhibited a signifi-
cant dose-dependent bactericidal activity against Xcv 
treated with carvone ranging from 31.3 to 500 μg   mL−1. 
At the MIC, the number of bacterial colonies counted 
(around 1.5 ×  103  cfu   mL−1) was equal to the incuba-
tion time from 0 to 54  h. Concentrations below the 
MIC showed a pattern similar to that of the negative 
control (1 ×  108  cfu   mL−1), however, the counted colo-
nies were 1.2 ×  107  cfu   mL−1 for 31.25  μg   mL−1 and 
3.16 ×  106 cfu   mL−1 for 62.5 μg   mL−1 after 48 h incuba-
tion; these were slightly lower than the control. Con-
centrations above the MIC (125  μg   mL−1) showed an 
outstanding bactericidal effect, as a reduction in the ini-
tial number of bacteria was observed. Specifically, the 
number of bacteria after incubation was close to zero at 
500  μg   mL−1 carvone after 42  h. The colonies number 
was maintained until 18  h incubation, and a difference 
was observed according to the concentration after 18 h.

To confirm the bactericidal effect, the release of intra-
cellular component was investigated time-depend-
ently. As shown in Fig. 2, carvone showed no inhibition 
effect on bacterial counts until 18  h after incubation in 
a time-killing curve, related to no intracellular nucleic 
acid release was observed at this time as well. However, 
carvone led to an increase in absorbance  (Abs260) and a 
decrease in the number of bacteria after 18 h. The absorb-
ance was not significantly changed  (Abs260 < 0.1) below 
the MIC (125 μg   mL−1), whereas it drastically increased 

up to  Abs260 0.32 above the MIC in a dose-dependent 
manner. Cell membrane disruptors such as β-lactames 
had been reported that the bactericidal effect and the 
release of intracellular components showed within sev-
eral hours [34, 35]. While, the component release and the 
bactericidal activity after carvone treatment was shown 
on Xcv after 18 h, thus cell membrane disruption was not 
expected to be the reason but the result of cell death.

In addition, the bactericidal potential of the syner-
gistic combinations of carvone with Amp was con-
firmed as well. The time-killing curve for Amp/carvone 
combination were presented at diversiform con-
centrations with 500/0  μg   mL−1, 500/125  μg   mL−1, 
250/62.5  μg   mL−1, 125/62.5  μg   mL−1, 25/62.5  μg   mL−1, 
and 15.6/46.9 μg   mL−1 of Amp/carvone (Fig. 3). Colony 
number of all the combination of carvone with Amp 
except the combination of Amp (500 μg   mL−1)/carvone 
(125  μg   mL−1) were observed almost the same before 
and after incubation. The significant bactericidal effects 

Fig. 2 (A) Time killing kinetic curves and (B) intracellular 
components release of Xcv treated with carvone at 0, 31.3, 62.5, 
125, 250, and 500 μg  mL−1 during an incubation period of 54 h. All 
the data are presented as the mean ± SD of independent experiments
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were shown at the concentration of Amp (500 μg  mL−1)/
carvone (125 μg  mL−1). The colonies showed a noticeable 
decrease compared to other treatments from 24  h after 
Xcv culture.

Plasmid DNA damage effect of carvone
To find the mode-of-action of bactericidal activity of 
carvone, the plasmid DNA damage effect was inves-
tigated on Xcv in 4, 8, and 12 h of the exposure time at 
125 μg  mL−1 of carvone. As shown in Fig. 4, the extracted 
plasmid DNA showed the lowest position and a clear 
band in lane 2 for non-carvone treatment, whereas the 
DNA band appeared from a high position in lanes 3–5 for 
carvone treated for 4, 8, and 12 h time respectively. Based 
on the results, carvone exhibited DNA damage reaction 
even before reaching the killing time of Xcv (18 h). Pre-
vious reports have demonstrated that the damaged plas-
mid DNA by compounds converts supercoiled (scDNA) 
to open circular (ocDNA), linear (lnDNA), and further 
nicked forms, and it induced the cell death by the loss of 
metabolic control [36, 37]. Thus, the plasmid DNA dam-
age of Xcv by carvone would be the reason for the bacte-
ricidal activity. The bactericidal effect of carvone (500 μg 
mL-1) and its combination with Amp (Amp 500/Car 125 
μg mL-1) dramatically decreased the bacterial count after 
24 hrs of exposure. In addition, the release of intracellu-
lar components by carvone treatment was confirmed by 
measuring nucleic acids in the supernatants at 260 nm. 
Moreover, the damage of isolated plasmid DNA from 
Xcv in the presence of carvone was also revealed by visu-
alizing the electrophoresis. As a result, carvone exhibited 
antibacterial and bactericidal effects against Xcv to relate 

Fig. 3 Time killing kinetic curves of the mixture of ampicillin 
and carvone. ● control; ○ Amp 500 μg  mL−1; ▼ Amp 500 and Car 
125 μg  mL−1; △ Amp 250 and Car 62.5 μg  mL−1; ■ Amp 125 
and Car 62.5 μg  mL−1; □ Amp 25 and Car 62.5 μg  mL−1; ◆ Amp 
15.6 and Car 46.9 μg  mL−1. The data are presented as the mean ± SD 
of independent experiments

Fig. 4 DNA damage effect of carvone (125 μg  ml−1) on Xcv. Lane 1 for ladder (1 kb), Lane 2 for DNA without carvone, Lane 3–5 for DNA exposed 
to carvone after incubation with 4, 8, and 12 h, respectively
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to DNA damage. It also possessed the selective syner-
gistic potential with β-lactam antibiotics to expect the 
reducing antibiotic use.  
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