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Abstract 

Gesho (Rhamnus prinoides) is a medicinal plant with antioxidant and anti-inflammatory activities commonly used 
in the ethnomedicinal systems of Africa. Using a three-layer neural network, four culture conditions viz., concentra-
tion of agar, duration of light exposure, temperature of culture, and relative humidity were used to calculate the cal-
lus differentiation rate of gesho. With the ability to quickly identify optimal solutions using high-speed computers, 
synthetic neural networks have emerged as a rapid, reliable, and accurate fitting technique. They also have the self-
directed learning capability that is essential for accurate prediction. The network’s final architecture for four selected 
variables and its performance has been confirmed with high correlation coefficient  (R2, 0.9984) between the pre-
dicted and actual outputs and the root-mean-square error of 0.0249, were developed after ten-fold cross valida-
tion as the training function. In vitro research had been conducted using the genetic algorithm’s suggestions 
for the optimal culture conditions. The outcomes demonstrated that the actual gesho differentiation rate was 93.87%, 
which was just 1.86% lesser than the genetic algorithm’s predicted value. The projected induced differentiation rate 
was 87.62%, the actual value was 84.79%, and the predicted value was 2.83% higher than Response Surface Meth-
ods optimisation. The environment for the growth of plant tissue can be accurately and efficiently optimised using 
a genetic algorithm and an artificial neural network. Further biological investigations will presumably utilise this 
technology.
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Introduction
Gesho (Rhamnus prinoides) is a medicinal plant belong-
ing to the family Rhamanceae [3, 11]. The plant occurs 
at an elevation ranging between 1400 to 3200  m along 
waterways, riparian forests, and peripheries of evergreen 
forests in central, southern, and eastern Africa. It is a 
small, dense, thick, East African evergreen shrub, which 
has huge socio-economic value among local communi-
ties in Ethiopia. The plant grows wild but is also widely 
cultivated in Ethiopia and its dried form is available in 
the local markets.

Rhamnus prinoides is a source of fruits, small timber, 
firewood, animal feed, ornaments, dyes, and oils. It is also 
used as a windbreak and live fence [8, 33], and to impart a 
unique bitter taste, aroma and flavour in the popular cus-
tomary fermented Ethiopian beverages, tej and tella [22] 
(Tesfaye and Mulaw, 2017). In South Africa, the plant has 
magical significance. It is used to ward off evil eye from 
homes and crops and is believed to bring good furtune 
while hunting [28]. Ethiopian traditional medicine makes 
use of gesho to treat conditions like arthritis, back pain, 
pneumonia, rheumatism, flu, malaria, diarrhoea, indiges-
tion, ringworm, and weariness [28, 36]. A complex vari-
ety of potentially beneficial biocidal substances, including 
geshoidin, quercetin, emodin, and different anthracene 
derivatives, are present in gesho. Studies indicate that the 
plant possesses antioxidant, anti-inflammatory, antibi-
ofilm, antibacterial, antimalarial, antimycobacterial, and 
wound healing properties [33].

Owing to the pharmaceutical industry’s interest 
in novel phytochemicals and bioactive compounds, 
researchers have investigated the development of in vitro 
culture protocols for medicinal plants. The importance 
of medicinal plant micro propagation in meeting phar-
maceutical demand has grown exponentially [32]. Plant 
micropropagation refers to the process of using explants 
and allowing them to grow as undifferentiated or differ-
entiated cells [6, 7]. One of its potential applications is 
the mass production of pharmaceuticals derived from 
plants in bioreactors, similar to the microbial fermenta-
tion process used to manufacture antibiotics [38]. Mod-
eling approaches are useful for forecasting the growth of 
in vitro plant cultures. Accurate forecasts are difficult due 
to the variety of genetic and environmental influences, 
as well as the dynamic nature of biological processes. 
Furthermore, manipulating tissue growth necessitates 
comprehension and optimization. Modeling approaches 
are an important tool for modeling and evaluating com-
plicated interactions, allowing for precise predictions 
of growth kinetics and dynamics. These models aid 
researchers in identifying optimal culture conditions, 
increasing biomass production, and improving metabo-
lite synthesis. Researchers can achieve effective resource 

usage and desired outcomes in in vitro plant cultivation 
by combining modeling approaches with optimization 
algorithms.

The experimental process of optimisation is often car-
ried out by focusing on one aspect at a time. While one 
factor is changed to determine the optimal response, 
others are maintained at the same level. In terms of their 
time behaviour, biological processes are incomprehensi-
ble. It is well understood that genetic and environmental 
factors play critical roles contributing to their function-
ing [26], these two variables exhibit high correlation. 
Diverse non-deterministic and non-linear biological pro-
cesses are brought on by the variability within and among 
these limiting factors.

Plant tissues and cells cultivated aseptically in a regu-
lated in  vitro environment show similar developmental 
processes. Apart from its use in pharmaceutical, trans-
genic and other biological research, in  vitro plant cul-
ture is typically designed for manipulating tissue growth 
and behaviour to quickly produce huge numbers of 
elite plantlets or for large scale production of beneficial 
metabolites.

As a result, it is critical to use appropriate modelling 
techniques rather than traditional analytical techniques 
to accurately predict and simulate kinetics of in  vitro 
growth, thermodynamics limitations, and conversion 
of energy to mass [17]. A group of methods known as 
response surface methodology (RSM) can be used to 
analyse and improve issues in which multiple explana-
tory factors have an impact on a response. Although this 
method is widely employed in several mixing investiga-
tions, it has only a limited impact on the standardisation 
of micropropagation methods. Through applying the 
principle of slope rotatability, a prerequisite for evalu-
ating the variance of a projected output at a point that 
remains constant with all points equally distant from 
the design center, RSM can be extended to situations 
where the error structures are correlated or heterosce-
dastic. RSM has been applied to the study of plants to 
improve the synthesis of secondary metabolites or enzy-
matic processes. RSM is also used as a substitute statisti-
cal method for in vitro analysis and for the optimisation 
of plant growth media [9, 10]. For accurate evaluations 
of biological processes, neural network technology pro-
vides a practical substitute. In order to process data sets, 
neural network technology uses approximate mathemati-
cal models. This technology employs algorithms to pro-
cess information and make judgments in a manner that 
is similar to the organic network of human neurons. 
Neural networks use activation functions like sigmoid, 
tanh, and ReLU to introduce nonlinearity and approxi-
mate complex relationships. These functions, along with 
weights and biases, form the approximate mathematical 
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models within neural networks. The ReLU activation 
function is specifically employed in this work. It enables 
the network to process data, analyze relationships, and 
make predictions based on learned patterns. Given their 
incredible potential for learning, they are able to perceive 
and simulate complex nonlinear relationships between 
the input and output of a bioprocess [34]. The standard 
modelling tools, however, are ineffective for on-line mon-
itoring due to the characteristics of regenerated plants 
and in vitro cell cultures, as well as the somatic embry-
ogenesis process. ANN can be used to detect somatic 
embryo patterns, evaluate photosynthetic and photo-
metric properties of regenerated plants, evaluate online 
biomass, and control secondary metabolite production. 
[1, 2]. The standard modeling tools, such as traditional 
analytical techniques, are ineffective for online moni-
toring in regenerated plants, in  vitro cell cultures, and 
somatic embryogenesis due to their variations, high vari-
ability, complex and non-linear nature, and the absence 
of dynamic environmental factors. These tools assume 
linearity and steady-state conditions, which do not cap-
ture the dynamics and complexities of these biological 
systems. Alternative methods, like neural network-based 
modeling, are necessary to overcome these limitations 
and provide accurate modeling and monitoring capa-
bilities. In dealing with the non-linear interactions that 
are frequently encountered in cell culture techniques, 
an ANN-based modelling approach has been found to 
be more flexible, effective, and versatile. The approach 
also has the notable benefit of not requiring any prior 
understanding of the relationships between input and 
output signals or how they are organized. Prior training 
is required for developing an artificial neural network 
(ANN) model. During the training process, the neural 
network is exposed to a dataset containing input–output 
pairs, and it learns to approximate the underlying rela-
tionship between the input and output through an itera-
tive optimization process. The neural network adjusts its 
internal parameters, such as weights and biases, based 
on the provided training data to minimize the predic-
tion errors. However, it’s important to note that ANNs 
do not require prior explicit knowledge or understand-
ing of the relationship between the input and output 
variables. Instead, the neural network learns and captures 
the complex patterns and relationships within the train-
ing data, allowing it to generalize and make predictions 
on new, unseen data. So, while prior training is necessary, 
ANNs can discover and model non-linear relationships 
and patterns even without prior explicit knowledge of the 
input–output relationship. ANN is fast gaining recogni-
tion as a preferred method for simulating and forecast-
ing the intricate biological processes involved in in vitro 
plant regeneration. Neural computing offers a practical 

method for assessing in  vitro plant cultures even with 
limited information [12, 15]. In this study, tissue-cultured 
gesho callus were differentiated under different culture 
conditions, including agar concentration, relative humid-
ity, culture temperature, and light duration, all fixed at 
three levels and the non-linearity relationship between 
in  vitro culture conditions and differentiation rate was 
predetermined using a three-layer neural network. The 
ideal culture conditions were then identified by employ-
ing a GA for global optimisation.

Materials and methods
Preparation of explants and callus induction
Young, growing tissues and the most suitable tissues were 
collected from gesho (Rhamnus prinoides) greenhouse-
grown plants and chosen as sources for leaf explants. 
To avoid fungal contamination, the explants were pre-
pared into an appropriate size of 1  cm2 and washed with 
diluted Teepol for 1–3 min and rinsed with water more 
than three times before being treated with 0.01 percent 
bavistin for 1–2 min. Also, the explants underwent sur-
face sterilisation with 0.8% w/v NaOCl for 15  min, a 
water rinse, and 0.1 percent mercuric chloride. After 
that, five rinses with double-distilled water were given to 
the explants. The pH of the callus induction medium was 
adjusted to between 5.6 and 5.8 and autoclaved at 120 °C 
for 20  min under 1  bar of pressure. The callus induc-
tion medium was composed of 30 g/l sucrose, 8 g/L agar 
supplemented with 2  mg/l BAP (6-Benzylaminopurine) 
and 2  mg/l IAA (Indole-3-acetic acid), and it contained 
30 g/l sucrose. Four explants (1  cm2) were placed in petri 
dishes containing 20  mL of MS (Murashige and Skoog 
medium), upper surface down, in an ad axial position on 
the solid callus induction medium, and cultured for 48 h 
in the dark before being exposed to a photoperiod of 16 h 
of light and 8  h of darkness until callus formation was 
evident.

Differentiation induction and computational networks
In a three-level, four-factor central composite design, the 
callus cultures were routinely transferred to differentia-
tion medium (MS + 1.38 mL TDZ + 1.4 mL BAP) and cul-
tivated under varied circumstances.

Design of experiment, Response Surface Methodology 
(RSM) and ANN based modelling
The effect of four independent process parameters 
(agar content, light exposure, culture temperature, and 
humidity) on differentiation was analysed using a Cen-
tre Composite design (CCD) [29]. Design-Expert® soft-
ware was used for generating CCD combinations, RSM 
modelling, and statistical optimisation. In general, the 
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model can be generated by the software as presented in 
the Eq. (1) [25, 30].

Equation (1) represents a mathematical model where 
G is the dependent variable and xi represents the inde-
pendent variable. The equation consists of multiple 
terms, each with a coefficient � . The first term, �0 , rep-
resents the constant or intercept term. The subsequent 
terms involve the multiplication of the independent 
variables xi with their respective coefficients �i , the 
squared independent variables x2i  with coefficients �ii , 
and the interaction between different independent 
variables xi and xj with coefficients �ij . In summary, 
Eq.  (1) is a polynomial equation that accounts for the 
linear, quadratic, and interaction effects of the inde-
pendent variables on the dependent variable G. The λ 
coefficients determine the magnitude and direction of 
the influence of each term on the overall relationship 

(1)G = �0 +

∑

�ixi +
∑

�iix
2
i +

∑

�ijxiXj

between the independent variables and the dependent 
variable. The independent variables are given in Table 1

ANOVA (analysis of variance) was used to assess the 
model’s suitability. The impacts of the independent fac-
tors on the response were then visualized using 3-D 
response surface plots [49].

The ANN model was developed by considering four 
different culture conditions as inputs and the rate of dif-
ferentiation as the output. (Fig. 1). Figure 2 illustrates the 
schematic diagram of NSGAII optimisation process. 

There were three experimental levels used: −  1, 0, 
and + 1. The range and levels of the process parameters 
examined in this study are displayed in Table  1. This 
experiment was set up in as randomized design with the 
factorial arrangement and three replications, each con-
taining four explants for experimental validation in the 
plant tissue culture lab. Table 1 displays the factors and 
their levels for the CCD.

Artificial neural network
By mathematically simulating the network structure of 
connected node cells, an artificial neural network is a 
type of computer programme that mimics how the brain 
learns. The respective layers that make up an artificial 
neural network’s basic structure are the input, output, 
and hidden layers [24]. By varying the weights among 
the layers, the network can calculate complex correla-
tions between the input and output variables. They func-
tion as “black box models” of significant variables whose 
linkages to other process elements are conjectured rather 
than declared or formally demonstrated [44]. Datasets 
for the input and output nodes are used to train an ANN 

Table 1 Process parameter levels that were utilised in the 
experimental design

Independent variables Levels

− 1 0  + 1

Agar concentration (Y1, %) 0.3 0.5 0.9

Light duration (Y2, hours/day) 10 13 16

Culture temperature (Y3, °C) 16 28 40

Relative humidity (Y4, %) 55 70 100

Fig. 1 The graphic illustration of the proposed for ANN method
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model. The neural network was built using the back-
propagation approach, which is frequently used in lit-
erature. By propagating the error backwards through the 
network, the training method calculates the discrepancy 
between the output neurons’ predictions and their actual 
outputs. Each new layer’s weights are altered by the pro-
cedure [21].

The test data for the mentioned independent variables 
can be obtained by selecting specific combinations of 
the levels of each variable that were not used during the 
training phase. In this case, the levels for each independ-
ent variable are denoted as -1, 0, and + 1. To generate 
the test data, combinations of the levels (− 1, 0, + 1) for 
each variable (Y1, Y2, Y3, Y4) are chosen that were not 
included in the training dataset. Inputs that closely match 
the pattern an ANN has learnt can be used to anticipate 
the output. ANNs typically implicitly match the input 
vector (cultural condition) to the output vector, unlike 
regression-based response surface models that demand 
the definition of the models order (rate of differentiation). 
In this investigation, a nonlinear mapping between the 
concentration of the input variables (agar content, light 
exposure, culture temperature, and humidity) and the 
result variable (rate of differentiation) was made using an 
artificial neural network (ANN). The experimental data 
values utilised for the RSM simulation were used to train 
the ANN. To give the neural network an acceptable coef-
ficient of correlation, the learning rate of the network was 
altered.

Genetic algorithm
Charles Darwin’s "survival of the fittest" idea is the foun-
dation of a genetic algorithm, which is used to address 
challenging biological process optimisation issues. Due 

to its effectiveness in resolving fitness functions that 
are discontinuous or non-differentiable, GA is becom-
ing increasingly popular for its genuine optimisation 
techniques [39, 46]. The GA creates individual chromo-
somes at random which form the starting population and 
handle an optimisation problem [16, 18]. The principle 
behind evolution by natural selection is similar in that 
the chromosomes that evolved in later iterations (gen-
erations) had a greater fitness value as compared to their 
progenitors. The three genetic operators of crossover, 
mutation, and selection were used to create new genera-
tions [17, 41].

Using the process of selection, chromosomes with the 
highest fitness values were selected as breeding parents. 
In a process known as crossover, the GA chooses two 
parent solutions (based on their best fitness value) to cre-
ate progeny that largely resembles its parents [19, 20]. To 
promote diversity in the population, the mutation is a 
procedure that is used. The process is carried out until a 
close to optimal solution is found or it satisfies one of the 
termination criteria.

Procedure for Hybrid ANN and GA
Step 1: As the initial population, create a population of 
chromosomes that consists of bit strings of randomly 
generated binary values.

Step 2: In order to determine which input variables will 
be chosen, decode chromosomes (bit strings).

Step 3: To predict the rate of differentiation, run a 
three-layered feedforward ANN model.

Step 4: Consider the ANN prediction accuracy of each 
chromosome as a gauge of its GA fitness.

Step 5: Determine whether the loop should be contin-
ued or terminated.

Fig. 2 The schematic diagram of NSGAII optimisation process
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Step 6: Employing the tournament selection method, 
select which chromosomes should cross across.

Step 7: To define a linear combination of two chromo-
somes, use a crossover arithmetic operator.

Step 8: To add additional genes to the population, use 
the uniform mutation operator. Then, select a random 
slot number for the crossed-over chromosome and flip 
the binary value there.

Step 9: For the next generation, substitute old chromo-
somes with the two best offspring chromosomes.

Step 10: If the termination condition or stopping crite-
rion of the genetic algorithm is not satisfied, the process 
is repeated from step 2.

Results
Optimisation of rate of differentiation through RSM
RSM approach can highlight the importance of optimis-
ing culture conditions in attaining higher rate of differ-
entiation. Four variables were evaluated for their role in 
enhancing the callas differentiation and it was observed 
that four factors namely agar content, light exposure, cul-
ture temperature, and humidity were important in the 
callas differentiation. As shown in Table 2, which displays 
the un-coded values of independent variables, experi-
mental, and RSM projected differentiation, the four 
major design parameters were further optimised.

Using the CCD based RSM analysis, the importance of 
the independent process parameters, namely, agar con-
tent, light exposure, culture temperature, and humidity, 

Table 2 CCD based combinations used for ANN modelling and response from RSM data

Run A: Agar 
concentration

B: Light duration C: Culture 
temperature

D: Relative 
humidity

(Actual value) Rate of 
differentiation

Predicted Value

(Y1, %) (Y2, h/d) (Y3, °C) (Y4, %) (A, %) (P, %)

1 0.9 16 20 80 77.23 83.25

2 0.9 16 36 80 77.15 81.65

3 1.1 13 28 70 79.01 89.15

4 0.5 10 36 60 77.09 78.63

5 0.5 16 20 80 76.98 79.48

6 0.7 13 12 70 76.02 72.96

7 0.9 10 20 80 77.92 81.52

8 0.9 10 36 80 76.42 80.59

9 0.9 10 20 60 78.93 81.45

10 0.7 13 28 70 84.75 79.58

11 0.7 13 28 50 76.03 72.89

12 0.9 10 36 60 78.56 80.63

13 0.9 16 36 60 76.74 76.52

14 0.7 13 28 90 74.56 84.56

15 0.7 7 28 70 78.42 72.89

16 0.7 13 28 70 84.99 81.24

17 0.5 16 36 60 78.32 84.56

18 0.7 13 44 70 76.99 83.56

19 0.5 10 36 80 75.28 79.52

20 0.7 13 28 70 84.53 71.84

21 0.3 13 28 70 78.64 86.56

22 0.7 13 28 70 84.87 78.65

23 0.9 16 20 60 75.95 78.26

24 0.5 16 20 60 76.8 90.56

25 0.7 19 28 70 78.91 74.15

26 0.7 13 28 70 84.15 79.06

27 0.5 10 20 60 77.34 83.85

28 0.7 13 28 70 84.58 63.96

29 0.5 16 36 80 78.59 72.45

30 0.5 10 20 80 76 82.96
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were examined on culture differentiation. Figure 3 shows 
the interaction upshots (3D response surface) of differ-
ent combinations of two selected parameters on culture 
differentiation. The outcome with respect to interaction 
effects for all chosen combinations on the development 

of culture differentiation exhibited an increasing trend up 
to an optimal level, then, it showed a decline in response 
except the optimal point. This optimal value can be sta-
tistically determined by solving the model suggested by 
RSM. The Eq.  (2) depicts the correlation between clean 

Fig. 3 Interactive plots for different combinations of selected Factors
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culture and chosen parameters. Statistical analysis using 
the ANOVA has been provided in the Table  3 for the 
model that correlates with culture differentiation. The 
second order regression equation developed by RSM that 
provides the rate of differentiation is given in Eq. (2):

Here, RMSE and R2 were evaluated for testing the sig-
nificance of the developed model using Eq. (3) and (4)

(2)

Rate of differentiation (%)

= − 92.74 + 66.38
(

Agar concentration
)

+ 3.38
(

Light Duration
)

+ 1.80 (Culture temperature)

+ 3.066
(

Relative Humidity
)

−1.01
(

Agar concentration ∗ Light duration
)

= 0.129(Agar

concentration ∗ Culture temperature)

+− 0.038
(

Agar concentration ∗ Relative humidity
)

+ 0.017(Light duration ∗ Culture temperature)

+ 0.017
(

Light duration ∗ Culture temperature
)

= 0.001(Culture temperature ∗ Relative humidity)

−36.85
(

Agar concentration2
)

− 0.16
(

Light duration2
)

− 0.032
(

Culture temperature2
)

= 0.023
(

Relative humidity2
)

where  Oi and P stand for the observed and predicted 
quantities, respectively; O i and P’i stand for the aver-
age observed and predicted amounts across N samples. 
Finally, the model’s  R2 number, which measures its sig-
nificance, was 98.65%.

Optimisation of induced differentiation by ANN‑GA
An ANN with four input neurons, multiple hidden neu-
rons, and one output neuron makes up the back-propa-
gation algorithm. As depectited in Fig. 4, the modelling 
the reliance of differentiation on independent variables 
was done using the “Tansig” transfer function.

It was noted that the ANN model produced reliable 
forecasts. The data were trained in 100 epoch with a root 
mean square error of 0.0249 and an  R2 value of 0.99849 
(shown in Figs). `

According to the findings, ANN-based training exhibits 
a higher connection with experimentally produced dif-
ferentiation than does training that solely employs RSM 
regression model  (R2 = 0.98). The fitness of this trained 
data was assessed using the GA tool’s fitness evaluation 

(3)RMSE =

√

∑N
i=1 (Oi − Pi)

2

N

(4)R2
=

∑N
i=1

(

Oi − O′

i

)(

Pi − P′

i

)

√

∑N
i=1

(

Oi − O′

i

)2∑N
i=1

(

Pi − P′

i

)2

Table 3 The statistical response from ANOVA analysis for the developed model on differentiation

Source Sum of Squares df Mean Square F‑value p‑value

Model 297.79 14 21.27 247.99  < 0.0001 Significant

A-Agar concentration 0.4374 1 0.4374 5.10 0.0393

B-Light duration 0.0600 1 0.0600 0.6995 0.4161

C-Culture temperature 0.3601 1 0.3601 4.20 0.0584

D-Relative humidity 2.10 1 2.10 24.49 0.0002

AB 5.93 1 5.93 69.13  < 0.0001

AC 0.6889 1 0.6889 8.03 0.0126

AD 0.0961 1 0.0961 1.12 0.3066

BC 2.79 1 2.79 32.52  < 0.0001

BD 4.45 1 4.45 51.91  < 0.0001

CD 0.3540 1 0.3540 4.13 0.0603

A2 59.62 1 59.62 695.14  < 0.0001

B2 62.90 1 62.90 733.37  < 0.0001

C2 115.76 1 115.76 1349.63  < 0.0001

D2 152.36 1 152.36 1776.35  < 0.0001

Residual 1.29 15 0.0858

Lack of Fit 0.8434 10 0.0843 0.9516 0.5594 Not significant

Pure Error 0.4431 5 0.0886

Cor Total 299.08 29
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feature. The uniform cross-over rate of 0.8, mutation rate 
of 0.1, and population size of 10 were the factors selected 
for the GA optimisation. The results of the improvement 
using.

GA are shown in Fig. 5.

Optimum culture conditions for differentiation of gesho 
generated by the ANN‑GA
The fitness of algorithm value over 45 generations came 
close to reaching the maximum anticipated differentia-
tion rate of 93.87%, which could be attained under the 
following culture conditions: 0.8% agar concentration, 
12 h/day light cycle, 28 °C culture temperature, and 75% 
relative humidity (Fig. 6).

Optimal culture conditions validation
The optimal in  vitro culture conditions determined by 
the GA were confirmed by an in  vitro plant tissue cul-
ture experiment. The experiment’s three replicates’ aver-
age differentiation rate was 92.01%, just 1.86% below the 
predicted value, demonstrating the viability and depend-
ability of the culture conditions produced by the genetic 
algorithm.

The ideal culture conditions for differentiation in gesho, 
as determined by the response surface approach of the 

CCD design method, were 0.8% agar concentration, 12 h 
of daylight per day, 28 °C for the culture temperature, and 
75% humidity. With an  R2 of 0.9951, the differentiation 
rate (predicted value) was 93.87%. According to Table 3, 
the real rate of differentiation under these anticipated cir-
cumstances was 87.62%, which was 2.83% less than the 
anticipated estimation. These findings show that in this 
experiment, the neural network method is fitter than the 
response surface method (Table 4, and 5).

The prediction accuracy of the genetic algorithm was 
evaluated by measuring the relative error between the 
ANN-GA predicted data and the actual experimental 
data, which was calculated using the formula below.

where P is the real differentiation rate as determined by 
tissue culture experiments, and P’ is the differentiation 
rate predicted by GA. Differentiation of gesho callus in 
optimised In vitro culture conditions are shown in Fig. 7

Discussion
Biological systems have non-deterministic, non-linear 
developmental patterns that are mainly controlled by 
genetic and environmental factors. These two vital com-
ponents, which resemble plants, cells, or tissues that 

(5)E(% ) =
P′

− P

P
x 100

Fig. 4 Training loss vs validation loss
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are cultivated in vitro under aseptic and regulated envi-
ronmental circumstances, have significant internal and 
exterior inconsistencies that result in unique biological 
growth patterns. In order to alleviate two crucial restric-
tions, time and cost, during tissue culture, there is a 

critical need for modelling systems that may effectively 
drive in  vitro growth kinetics while satisfying the ther-
modynamic limitations of the culture settings. A com-
mon type of ANN utilised in micropropagation studies is 

Rate of differentiation Rate of differentiation

Rate of differentiat ion Rate of differentiation

Rate of differentiation Rate of differentiation
Fig. 5 Effect of rate of differentiation in different concentrations
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the MLP model, which has three basic layers: input, out-
put, and one or more hidden layers [23, 40].

Recently, several aspects of plant science, including 
in vitro propagation, have been evaluated using machine 
learning, one of the most potent computational meth-
odologies, crop improvement [13, 42] plant stress mod-
elling [5, 45] plant distribution [35] recognition of plant 
diseases [37, 47] and precision agriculture [43]. Addition-
ally, the accuracy of ANNs has recently been acknowl-
edged for modelling, prediction, and optimisation of a 
variety of in vitro culture experiments, such as the asep-
tic procedures, in vitro shoot proliferation [2], germina-
tion of seeds [1], caulogenesis [14, 48], anther culture [31, 
51], somatic embryogenesis, and secondary metabolites 

production [16, 40]. Modelled the impacts of light and 
sucrose as well as explored the formulation of culture 
media optimisation, prognostication and optimisation 
of development of the cells in controlled environment, 
direct shoot organogenesis, in vitro rooting, and somatic 
embryogenesis. Both the degree of medium solidifica-
tion and the type of closure used in culture tubes have 
a significant impact on the ability of adventitious shoots 
to regenerate in plant explants, as well as the water con-
tent of the in  vitro developed shoots. This makes the 
combination of ANNs with multi-objective optimisation 
algorithms a precise and trustworthy methodology for 
in vitro culture prediction and optimisation. The ANFIS-
NSGAII model was used in a scientific study to gain a 
useful understanding of how different levels of 2,4-D, 
BAP, sucrose, fructose, and glucose as well as light affect 
chrysanthemum somatic embryogenesis and to gain new 
insights into how to improve chrysanthemum embryo-
genesis conditions [19, 20]. The primary element affect-
ing photomorphogenesis and having a significant impact 
on laboratory protocol repeatability is light especially the 
amount and quality [4, 27].

The ANN-GA model was utilised in the current work 
to gain a valuable understanding of how varied levels 
of culture conditions like agar concentration, relative 
humidity, light duration, and culture temperature affect 
the callus differentiation in the medicinal plant gesho 
for gaining new perceptions into how to increase gesho 
embryonic conditions. According to a study conducted 
by Yun et  al. [50], the biomass of soybean adventitious 
roots increased as a result of fluorescent light irradia-
tion, and significant perturbations in the metabolism 
was also noticed. Particularly, soybean adventitious roots 
grown under fluorescent light irradiation accumulated 
more health-beneficial secondary metabolites than those 
grown under a dark condition, including soyasaponin 
(3.4-fold), isoflavones (3.9-fold), and coumestrol deriva-
tives (1.3-fold). This was due to increased photosynthesis, 
which was shown by increased levels of glucose.

In this research, the RSM and ANN model was 
employed to predict and optimise the culture conditions 
for gesho differentiation in  vitro techniques. The model 
showed a high coefficient of determination between 
observed and projected values during both the training 
and testing phases, indicating its effectiveness in evalu-
ating and predicting culture conditions. The validation 
experiments further confirmed the expected outcomes.

The influence of the light environment on the differ-
entiation, development, and morphogenesis of plant 
cell, tissue, and organ cultures is well-known. By utilis-
ing mathematical modelling and neural network-based 
computing, this research provides a reliable and practi-
cal approach to understanding the complex processes of 

Fig. 6 Fitness plot for the performance of ANN-GA

Table 4 ANN-GA optimal Solutions

Replications ANN‑GA predicted value by 
ANN‑GA(%)

Actual value (%)

1 93.87 91.82

2 93.78

3 90.45

Mean 92.01

Error (%) 1.86

Table 5 ANN-GA Optimal solutions with RSM value

Replications Predicted value by RSM (%) Actual value (%)

1 87.62 82.85

2 86.71

3 84.81

Mean 84.79

Error (%) 2.83
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growth and development in both wild and in vitro envi-
ronments. These findings highlight the potential of these 
modelling techniques in enhancing our understanding 
of biological systems and optimising their in vitro regen-
eration conditions. This could be a simple task that only 
needs access to knowledge and little effort. It has been 
found that ANN-based modelling techniques are more 
flexible, effective, and adaptable in handling the nonlin-
ear interactions commonly observed in cell culture pro-
cedures. The method also has the notable benefit of not 
needing any prior understanding of how input and out-
put signals are organised or correlated. Despite the fact 
that this field of study still needs a lot more attention 
to address a number of unresolved issues, the current 
research shows how to use artificial neural networks’ to 
accurately feign, all the more so under culture different 
conditions, the strategies of large-scale cultivation sys-
tems for a variety of desirable plant species.
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