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Recent progress on drugs discovery study 
for treatment of COVID-19: repurposing existing 
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Abstract 

COVID‑19 has been a major global health concern for the past three years, and currently we are still experienc‑
ing coronavirus patients in the following years. The virus, known as SARS‑CoV‑2, shares a similar genomic identity 
with previous viruses such as SARS‑CoV and MERS‑CoV. To combat the pandemic, modern drugs discovery tech‑
niques such as in silico experiments for docking and virtual screening have been employed to design new drugs 
against COVID‑19. However, the release of new drugs for human use requires two safety assessment steps consisting 
of preclinical and clinical trials. To bypass these steps, scientists are exploring the potential of repurposing existing 
drugs for COVID‑19 treatment. This approach involves evaluating antiviral activity of drugs previously used for treat‑
ing respiratory diseases against other enveloped viruses such as HPV, HSV, and HIV. The aim of this study is to review 
repurposing of existing drugs, traditional medicines, and active secondary metabolites from plant‑based natural 
products that target specific protein enzymes related to SARS‑CoV‑2. The review also analyzes the chemical structure 
and activity relationship between selected active molecules, particularly flavonol groups, as ligands and proteins 
or active sites of SARS‑CoV‑2.
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Introduction
COVID-19, also known as coronavirus disease 2019, is a 
highly infectious illness that is caused by the novel coro-
navirus, which has been officially named severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). This 
disease was first discovered on December 31, 2019, in 
Wuhan, China, as a cluster of pneumonia cases. Later, 
on March 27, 2020, World Health Organization (WHO) 
declared the outbreak a global pandemic, as it had spread 
to numerous countries around the world [1, 3, 5].

An outbreak of SARS was first reported in Guang-
dong, China, in November 2002 [7]. This disease was 
later identified in Hong Kong in late February 2003, 
and it subsequently spread globally to North America, 
Europe, and other parts of Asia [9, 11]. However, phylo-
genetic analysis showed that SARS coronavirus (SARS-
CoV) differed from previously known coronavirus [13]. 
In June 2012, another coronavirus-related respiratory 
illness, the Middle East respiratory syndrome (MERS), 
caused by MERS coronavirus (MERS-CoV), emerged in 
the Middle East, particularly in Saudi Arabia, and was 
spread to humans by dromedary camels [14, 16, 17]. 
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MERS-CoV is phylogenetically related to bat coronavi-
rus (SARS-CoV-2), the virus that causes COVID-19.

The genomic characteristics of SARS-CoV-2 indi-
cate that it is closely related (88% identity) to two bat-
derived SARS-like coronavirus, bat-SL-CoVZC45 and 
bat-SL-CoVZXC21, were detected in Rhinolophus pusil-
lus bats from Zhoushan, eastern China, in 2018 [19, 
21]. Additionally, Zhou et  al. reported that a corona-
virus strain, SARSr-Ra-BatCoV-RaTG13, isolated from 
Rhinolophus affinis bats in Pu’er, China, in 2013, has an 
overall genome identity of 96.2% to SARS-CoV-2n. This 
close phylogenetic relationship to RaTG13 suggests that 
SARS-CoV-2 originated in bats [22].

According to Lam et  al. [18], receptor-binding 
domain (RBD) of SARS-CoV-2 spike (S) protein exhib-
its extremely high sequence similarity to Guangdong 
pangolin (97.4% amino acid similarity). The amino 
acids of this pangolin coronavirus, GX/P2V, are identi-
cal to the five critical residues of RBD, while RaTG13 
has only one identical amino acid to SARS-CoV-2. It is 
worth noting that SARS-CoV-2 rapidly spread among 
human populations. The lack of insertion of the polyba-
sic cleavage sites in the spike protein of pangolin coro-
navirus contributed to this phenomenon.

Lau et  al. [23], stated that the genome backbone of 
SARS-CoV-2 evolved from bat coronavirus, its RBD 
region was likely acquired from pangolin coronavirus, 
causing SARS-CoV-2 to become a recombinant virus. 
Additionally, SARS-CoV-2 RBD has distinct evolu-
tionary characteristics compared to other Sarbecovi-
rus species, particularly in terms of subunit cleavage 
sites. While the genomic characteristics of SARS-CoV 
and MERS-CoV are more distant from SARS-CoV-2, 
with similarities of 79% and 50%, respectively, RBD of 

SARS-CoV-2 within lineage B was found to be closer to 
that of SARS-CoV [21].

However, viruses are known to enhance their infectivity 
by acquiring mutations that allow viruses to evade human 
immune responses, including those triggered by vaccines 
and drugs. The original strain of SARS-CoV-2 underwent 
mutations primarily in its spike protein (S) that resulted 
in the emergence of several variants, such as α, β, γ, δ, 
and Omicron variants (Table  1). The number and loca-
tion of mutations within the spike protein influences 
the characteristics and potential risks of each variant in 
evading infection by circumventing human antibodies 
and immune responses [24]. Recent surge in COVID-
19 cases, known as the third wave, has been attributed 
to the Omicron variant, specifically the B.1.1.529 strain. 
The high reinfection rate and greater transmissibility of 
this variant are believed to be due to the large number of 
mutations in the spike protein. Therefore, addressing the 
nature of the virus and developing effective treatment to 
overcome current and future waves of infections should 
be a top priority.

Structure of coronavirus
The size of the virus ranges from 20 to 300  nm and it 
is capable of infecting and replicating cells. It contains 
genes and proteins enclosed within a lipid layer envelope 
or a non-enveloped one. Specifically, SARS-CoV-2 has a 
diameter ranging from 60 to 140 nm with a spike protein 
size of approximately 9 to 12 nm. Its virion is spherical, 
sometimes pleomorphic, with a diameter of 78  nm and 
resembles a solar corona. Goldsmith et al. and Tshibangu 
et al. stated that the virus contains a helical nucleocapsid 
within an envelope [29, 30].

According to Wang and Liang [31], viruses associ-
ated with acute respiratory infections include influenza, 

Table 1 General information on some major identified SARS‑CoV‑2 variants/strains

Variant/strain name Country origin First identified Mutation sites Refs.

SARS‑CoV‑2 (Hu‑1) China December 2019 Wild type [18, 22, 23]

Alpha (α)
B.1.1.7
20I/501Y.V1

United Kingdom September 2020 N501Y; P681H; 69/70 deletion [2, 24]

Beta (β)
B.1.351
20H/501Y.V2

South Africa October 2020 K417N; E484K; N501Y [24]

Gamma (γ)
P.1
20 J/501Y.V3

Brazil November 2020 K417T; E484K; N501Y [24, 25]

Delta (δ)
B.1.617.2

India December 2020 T19R; L452R; T478K; D614G; P681R; D960N; 157/158 deletion [26, 27]

Omicron (O)
B.1.1.529

Bostwana and South Africa November 2021 N440K; G446S; G339D; E484A; A76V; Q493R; Q498R; G496S; T547K; 
Y505H; N679K; H655Y; N764K; N856K; D796Y; Q954H; S375F; L981F; 
N969K; S371L; L212I; S373P

[28]
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parainfluenza, picornaviruses, coronavirus (CoV), ade-
noviruses, and respiratory syncytial viruses. The human 
coronavirus (HCoV) has a complex structure, with an 
RNA genome inside the nucleocapsid protein, coated 
by spike glycoproteins and an envelope on the outer side 
(Fig.  1). The viral envelope is composed of structural 
membrane containing spike (S), envelope protein (E), and 
membrane lipoprotein (M). The viral lipid bilayer enve-
lope, which is sensitive to desiccation, heat, and amphi-
philes such as soap and detergents, is more susceptible to 
sterilization outside the human cell environment than the 
non-enveloped virus. However, the glycoproteins in the 
viral envelope helps the virus bind to the receptor sites 
on the host membrane to avoid the human immune sys-
tem. Therefore, coronavirus binds to its primary receptor, 
the cellular angiotensin-converting enzyme 2 (ACE2), 
through its spike glycoproteins. Once the spike binds to 
the receptor, the cell and viral membrane fuses directly, 
causing the virion RNA genome inside the capsid to enter 
the host cell or endocytosis [1, 3, 32, 33].

Viruses can spread through the stages of their life cycle, 
which include cellular entry, translation, replication of 
the viral genome, and egress from the host cell to infect 
new cells [34]. While interferon (IFN) plays a crucial role 
in the host defence against viruses, [32, 35], efforts have 
also been focused on disrupting specific stages of the 
virus life cycle to inhibit and prevent viral infection. In 
particular, disrupting the viral envelope has been iden-
tified as a promising approach to impede viral egress 
[36, 37]. The lipid bilayer composition can be disrupted 

through lysis, exocytosis, or direct budding from the 
plasma membrane.

Modes of action of antiviral agents related to virus 
life cycle
In accordance with previous studies, various targets 
have been identified for developing antiviral drugs based 
on the virus life cycle, namely (1) inhibitors of fusion or 
entry, which targets the interaction between the virus and 
the host cell membrane, (2) uncoating inhibitors, a tech-
nique used to acidify the viral interior to weaken electro-
static interaction, (3) nucleic acid synthesis terminators, 
used to block viral enzymes, (4) integrase inhibitors, 
utilized to target the attachment of host cell DNA to the 
viral genome through the replication step, (5) protease 
inhibitors, often combined with reverse transcriptase 
inhibitors, and (6) release inhibitors, used to hinder or 
block the receptor from viral protein attachment [38–41].

Drugs targets for inhibiting viral infections are started 
by blocking the initial step of viral attachment to the 
receptor. This was achieved through receptor blockade 
by using a monoclonal antibody against the major cel-
lular receptor or by employing specific inhibitor com-
pounds [42]. For soluble receptors, blocking can be 
accomplished by disrupting the interaction between the 
glycosylated extracellular domains of the receptor and 
the hydrophobic transmembrane region on the virus. It 
usually blocks viral replication in cell culture form and 
prevents the attachment of the mutant virus to the recep-
tor. This blockade effectively inhibits viral replication in 

Fig. 1 Schematic of human coronavirus. S spike glycoprotein consisting of S1 and S2 parts, M membrane, E envelope protein, N nucleocapsids 
protecting the viral genome
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cell cultures and decrease the affinity of the virus to bind 
to the receptor, making it less virulent and nonviable [42].

McKinlay et al. [42], suggested a mechanism for block-
ing viral entry into host cells by inhibiting the attachment 
of the virus to the host cell receptor. The first step in viral 
infection involves the attachment of the virus to the cellu-
lar receptor on the surface of the host cell, with the ACE2 
receptor contributing to the attachment of coronavirus to 
the host cell, as shown in Fig.  2. The binding pocket of 
the virion capsid protein, containing hydrophobic amino 
acid side chains, interacts with the hydrophobic domains 

of the soluble receptor through van der Waals physical 
interactions. This interaction dissolves the virion capsid 
proteins or viral envelope in the outer space of the host 
cell, releasing the virion RNA genome, which becomes 
damaged by its surrounding conditions. The virion 
genome cannot replicate or maintain its genomic struc-
ture unless inside the host cell. Another mechanism for 
blocking the virus from releasing its viral genome dur-
ing the uncoating process of the virion capsid or viral 
envelope is by providing inhibitor compounds that act 
as chelating agents within a hydrophobic pocket of the 

Fig. 2 Coronavirus life cycle starts from entering a host cell (infection) until the production and release of a new virus. The words in the blue state 
are the steps of viral transformation inside the host cell. The activation process begins when the viral glycoprotein attaches to hACE2 and TMPRSS2 
receptors. The virus fuses into the cell by endocytosis and starts to enter the cell. Following this cellular entry, the virus undergoes an uncoating 
process to release its viral genome. Further, structural protein synthesis is followed by RNA packaging, budding, and assembly to form a mature 
virion. Exocytosis releases a new infectious virion to infect a new cell. The insert box (on the bottom right) illustrates what happens to the host cell 
resulting in further cell death
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virus. This approach fills the empty pocket of the virus, 
preventing extensive conformational shifts that could 
cause the virion to disassemble. Therefore, chelating 
agents, such as a divalent cation, may block the release of 
RNA from the capsid.

Most inhibitors target the glycoprotein of the virion 
capsid or viral envelope, inhibiting viral attachment 
to the receptor. However, positive-stranded viral RNA 
is translated once the virus has attached and entered 
the host cell. The viral genomic RNA is released from 
the viral capsid through an uncoating mechanism, 
often facilitated by a receptor such as ACE2. Inside the 
host cell, viral proteins replicate and produce new ones 
through mRNA synthesis (Fig. 2). The virus strain, host 
cell type, pH, temperature, and multiplicity of infection 
influence this process. Typically, a virus requires five to 
ten hours to replicate in a single cycle [31].

SARS-CoV-2 virus consists of a large membrane gly-
coprotein called the structural protein (S protein), which 
includes several proteins such as membrane, spike, enve-
lope, and nucleocapsid. S protein belongs to the class I 
viral fusion glycoproteins and is responsible for cell entry. 
Among the sixteen non-structural proteins (nsp1-16), 
three play a crucial role in the replication, transcription, 
and host cell recognition processes. These proteins are 
chymotrypsin-like protease (3CLpro), papain-like pro-
tease (PLpro), and RNA-dependent RNA polymerase 
(RdRp) [33, 39, 43, 44]. Cys-proteases and papain are 
protein degrading and processing enzymes, especially 
during the translation process. Chymotrypsin protease 
(3Cpro) contains Cys-proteases with a sulfhydryl group 
that cleaves the glutamine-glycine amide bond. 3CLpro 
is a highly conserved protease and plays a vital role in 
coronavirus replication by overlapping polyproteins pp 
1a (486  kDa) and pp 1ab (790  kDa) in SARS-CoV [31]. 
Both PLpro and 3CLpro are necessary for replication, 
transforming polyproteins into non-structural proteins 
such as RdRp and helicases. 3CLpro and PLpro contain 
11 and 3 cleavage sites, respectively. Therefore, 3CLpro 
is also known as the main protease (Mpro) and an ideal 
target for developing antiviral drugs [45]. 3CLpro is a 
highly conserved protease, and its substrate specificity 
is similar to the 3Cpro of the main picornavirus. Pro-
tease inhibitors can block the proteolytic process of viral 
polyproteins, leading to incorrect viral replication and 
transcription.

Drugs targeting SARS-CoV-2 spike protein can prevent 
membrane fusion between the spike and virus, thereby 
disrupting virus entry into the host cell. The spike pro-
tein also contains SARS-CoV-2 RNA-dependent RNA 
polymerase (RdRp), which recognizes the ACE2 recep-
tor [33, 46]. ACE2 is a type I transmembrane metal-
locarboxypeptidase that plays a crucial role in the 

physiological renin-angiotensin system by hydrolyzing 
vasoconstricting angiotensin II into vasodilating angio-
tensin. During severe COVID-19, ACE2 expression is 
downregulated, leading to inflammation or cytokine 
storm and an increase in interleukins and other stimu-
lating factor proteins. Therefore, modulating ACE2 
expression may be a potential strategy for controlling 
COVID-19 symptoms.

Vaccines for COVID‑19
A vaccination campaign using emergency-approved vac-
cines is underway in many countries. According to WHO 
website, there are current 13 different COVID-19 vac-
cines from four platforms that have been widely released 
and administered worldwide. These vaccines include 
Pfizer/BioNTech Comirnaty (BNT162b2), Moderna 
mRNA-1273, AstraZeneca AZD1222 and Covishield 
from the Serum Institute of India, Johnson & John-
son Ad26.COV2.S and Sinopharm COVID-19 vaccine 
from China etc. Table  2 also shows two versions of the 
AstraZeneca/Oxford COVID-19 vaccine produced by 
AstraZeneca-SKBio (Republic of Korea) and the Serum 
Institute of India as the ChAdOx1-S vaccine as mention 
on WHO website on 15 February 2021 [15]. The Pfizer/
BioNTech COVID-19 (BNT162b2) vaccine is a nucleo-
side-modified mRNA vaccine that utilizes lipid nanopar-
ticles to encode the prefusion SARS-CoV-2 spike protein 
[47]. The Ad26.COV2.S vaccine, an alternative to the 
ChAdOx1S recombinant vaccine produced by the Serum 
Institute of India, is also a recombinant vaccine that uses 
a vector to encode the full-length SARS-CoV-2 from 
incompetent adenovirus serotype 26 (Ad26) [48].

The significant advancement in vaccine develop-
ment has allowed for the production of effective vac-
cines against SARS-CoV-2 and the development of herd 
immunity within the community. However, drugs and 
therapeutic actions are still necessary to manage and 
treat COVID-19 cases. Li et al. (2022), and Rehman et al. 
(2021), reported that majority of the vaccines recently 
developed use novel techniques such as messenger RNA 
(mRNA) to stimulate the human immune system [49, 50]. 
The techniques for applying messenger RNA (mRNA) 
as a recognizing and reactive component of the virus to 
create the immune system of the human body have been 
developed as a significant advancement in public health 
and vaccine development. Instead of containing a weak-
ened or inactive form of the virus, these vaccines rely on 
the immune system of the body to recognize and attack 
the spike protein of the virus. After vaccination, vac-
cine particles interact with immune system cells, which 
deliver the mRNA message to create the spike protein in 
vaccinated cells. The immune system then recognizes the 
spike protein as foreign and produces antibodies for its 
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destruction. This process generates an immune response 
that continues until all spike proteins have been elimi-
nated, enabling the immune system to fight the virus 
upon infection.

The COVAX initiative, under the auspices of WHO, 
has facilitated the development and manufacturing of 
COVID-19 vaccines, aiming to ensure equitable access 
worldwide. In order to meet the demands of the pan-
demic, all recommended drugs and vaccines for SARS-
CoV-2 were assessed based on the Emergency Use Listing 
(EUL) procedure, which ensures safety, efficacy, and qual-
ity standards. The EUL relies on a rigorous evaluation of 
late-phase II and phase III clinical trials, which are inde-
pendently reviewed by WHO experts and teams.

WHO has emphasized that a vaccine on its own will 
not end the pandemic [64]. Despite the progress of the 
vaccination program, numerous cases associated with 
it have been reported, and doubts remain regarding the 
its long-term efficacy. The emergence of new coronavi-
rus strains has become a significant challenge that needs 
to be addressed promptly. Additionally, the preparation 
required for administering two doses of the vaccine and 
booster shots is a significant task that medical and health 
services, pharmaceutical industries, and governments 
must fulfil [65].

Alerts on several medical products have been issued to 
the following release of COVID-19 vaccines to increase 
the public awareness of drugs and vaccine safety. Some 
rare adverse events related to vaccine use have been 
reported to inform individuals in making informed 
decisions about enhancing their immune systems. For 

instance, Sinovac vaccines have been linked to deafness 
and cerebral venous thrombosis [66, 67]. Janssen Phar-
maceutical R&D team has reported that booster shots 
enhance immunity and maintain a safety profile of rela-
tively 93.7% efficacy in the US [68]. However, the vac-
cine has been associated with rare adverse effects such 
as thrombocytopenia [69] and acute myocarditis [70]. 
The AstraZeneca vaccine has also been associated with 
adverse reactions such as thrombosis and blood clots 
[71–73]. Despite this, the positive benefit-risk profile 
of the vaccine and its tremendous potential to prevent 
infections and reduce deaths worldwide have outweighed 
the adverse effects, and it continues to be used in the 
public domain. Based on previous studies, Curevac, 
which uses an unmodified RNA-based vaccine, has low 
efficacy [59], with an efficacy rate of only 47% against 
SARS-CoV-2 [60]. Other modified mRNA-based vac-
cines such as Moderna and Pfizer have demonstrated sig-
nificant efficacy and have been approved for emergency 
use during COVID-19 pandemic. In addition, mRNA 
vaccines are straightforward to manufacture, have a high 
biosafety profile, and are a safer vector than DNA, with 
no chance of infectious viruses [74, 75]. The development 
of modified mRNA-based vaccines has garnered wide-
spread support.

As the public becomes increasingly aware of the safety 
and efficacy of drugs and vaccines, new natural-based 
alternatives are being explored. Despite the lack of spe-
cific drugs to cure COVID-19, recommendations for 
treating the disease have emerged from informal trials, 
including traditional herbal medicine. This has led to a 

Table 2 List of some approved vaccines

Vaccine Vaccine platform Effectivity

SinoVac vaccine (Coronavac) Inactivated virus 50% effective against P.1 in Brazil [24]; 96.8% efficacy 
against COVID‑19 in Indonesia [51]

Covaxin BBV152 (Bharat Biotech‑Indian Council of Medi‑
cal Research)

Inactivated virus 81% interim efficacy in preventing COVID‑19 (SARS‑CoV‑2 
original variant) [52]; 78% effective against the double 
mutant variant [24]; third dose neutralizes antibody 
responses against β and Omicron variants (14.70 
and 18.53 fold, respectively) [53]

ChAdOx1‑S‑/AZD1222 (AstraZeneca/University 
of Oxford)

Viral vector (non‑replicating) 70.4% efficacy against α variant [54]. 60–70% effi‑
cacy against ancestor and B.1.1.7 variants in UK, Brazil 
and South Africa, but did not protect against B.1.351 
variant [55]

Ad26.COV2.S (Janssen Pharmaceutical) Viral vector (non‑replicating) Protects over 80% of Syrian hamster and non‑human pri‑
mate SARS‑CoV‑2 infection models [56]; but 59% effective 
against COVID‑19 hospitalization [57]

SARS‑CoV‑2 rS (Novavax) Protein subunit 95.6% effective against SARS‑CoV‑2 wild type; 85.6% 
and 60% effective against α and β variants [58]

CVnCoV vaccine (Curevac AG) Nucleic acid vaccine (RNA based) Low efficacy [59], up to 47% efficacy against SARS‑CoV‑2 
[60]

mRNA‑1273 (Moderna‑NIAID) Nucleic acid vaccine (RNA based) 94% efficacy in preventing COVID‑19 illness [61]

BNT162b2 (3LNP‑mRNAs) (Pfizer/BioNTech) Nucleic acid vaccine (RNA based) 95% efficacy against COVID‑19 [62, 63]
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renewed interest in repurposing or repositioning drugs, 
including natural products such as medicinal plants and 
some commercial synthetic drugs that have previously 
shown antiviral activity.

Repurposing antiviral agents as a potential way 
of drugs discovery for COVID‑19
Several studies have been working to discover drugs to 
combat coronavirus using various methods. Some of 
these proposed drugs were discovered through in silico 
studies involving bio- and immuno-informatics, while 
others were discovered using conventional organic syn-
thetic chemistry based on the retrosynthetic method [76, 
77]. However, all proposed drugs must undergo preclini-
cal and clinical testing, including a series of safety and 
health considerations, before they can be released com-
mercially. These steps can take over five years to assess 
the safety of a drugs for consumption. Based on the 
emergency and pandemic nature of COVID-19, WHO 
has authorized health sectors and scientists to openly 
communicate their results and clinical trial assessments 
for new drugs to combat the virus.

In light of the health concerns surrounding the use of 
drugs to treat COVID-19 and the time required for their 
clinical assessment, an approach to repurpose or reposi-
tion existing drugs that have previously been recognized 
as effective antiviral was proposed. This approach is 
based on certain criteria, including the similarity of the 
virus type or group, genomic composition, and structure. 
Examples of some drugs that have been repurposed in 
this way are shown in Fig. 3, Table 3.

The phylogenetic tree can group viruses that share sim-
ilar characteristics based on their genomic composition 
and structure. HCoV is a member of the Coronaviridae 
group, an RNA virus that causes respiratory tract infec-
tions. This means that HCoV viruses have close relation-
ships with each other, as shown in a phylogenetic tree 
analysis. SARS-CoV-2, as a member of this group, has 
an 88% similarity in identity to two bat-derived SARS-
like coronavirus [20, 21]. Additionally, the viral structure 
can be used as a critical factor in grouping the virus. For 
example, SARS-CoV-2 has an enveloped viral design, 
similar to herpes simplex virus (HSV), human immu-
nodeficiency virus (HIV), retrovirus, flavivirus, and 
hepatitis B and C virus (HBV/HCV). On the other hand, 
non-enveloped structures are found in human papilloma-
virus (HPV), poliovirus, norovirus, and rhinovirus. Res-
piratory tract infections can be caused by viruses such as 
rhinoviruses, influenza, parainfluenza, respiratory syncy-
tial virus (RSV), enteroviruses, coronavirus, and certain 
strains of adenovirus.

Antiviral agents previously used to treat respiratory 
tract diseases are potential candidates for repurposing 

as drugs for COVID-19. For instance, resveratrol has 
been proven to reduce inflammation and levels of inter-
feron-gamma (IFN-γ) in human RSV A2-strain virus 
infections. This was demonstrated in in  vitro assays 
using 9HTEo and Hep-2 cell lines, as well as in  vivo 
assays using BALB/c nude mice [89, 90]. Therefore, res-
veratrol is a promising candidate for treating COVID-
19 infections.

Baicalin and baicalein from Scutellaria baicalensis 
Georgi have been proposed as potential treatment for 
COVID-19 due to their inhibitory effects on the activity 
of HIV-1 reverse transcriptase, which blocks HIV-1 rep-
lication [94, 97, 98]. Since HIV is also an enveloped virus 
like SARS-CoV-2, it is hypothesized that baicalein may 
also inhibit COVID-19. Su et  al. [103] investigated the 
effects of baicalin and baicalein against SARS-CoV-2 in 
silico study. The results showed that baicalein interacted 
with the two catalytic residues of SARS-CoV-2, acting as 
a shield to prevent further interaction with the substrates 
or receptors of human cells.

The approach of repurposing drugs based on the nature 
similarity of the virus is considered a promising tech-
nique to identify potential treatment for COVID-19. 
This method is viewed as a faster alternative to develop-
ing new drugs since existing medicines that have been 
approved as safe for use are repurposed for COVID-19 
treatment, thereby eliminating the need for additional 
safety assessments. Consequently, this approach saves 
time and expedites drugs release to the public.

The strategy of repurposing drugs is crucial in respond-
ing to the emergence of new variants of SARS-CoV-2, 
which result from natural mutation and evolution of the 
virus. The high levels of viral transmission have led to 
the emergence of virus variants associated with increas-
ing viral transmissibility but not disease severity. Clini-
cally tested drugs and vaccines should also cover variant 
B.1.351, which has been associated with reduced efficacy 
of some previously recommended ones. Therefore, the 
scientific response to the rising number of new SARS-
CoV-2 variants must adapt quickly to develop practical 
antiviral activity against these emerging variants. WHO 
reported that efforts to suppress transmission, protect 
the vulnerable, and save lives in a comprehensive and 
coordinated manner needs to be redoubled in response 
to the welcoming of new variants of SARS-CoV-2 in 
2021. Several new variants of SARS-CoV-2 were identi-
fied after whole-genome sequencing in samples from 
Brazil (SARS-CoV-2 (P1) derived from B.1.1.28 line-
age, the United Kingdom (SARS-CoV-2 VUI 202012/01, 
some listed as SARS-CoV-2 VOC 202012/01 from clus-
ter B.1.1.7 lineage), and South Africa (501Y.V2 variant 
as an N501Y mutation) at the end of 2020 and into the 
following year. Therefore, the acceleration of access to 
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vaccination campaigns worldwide and the development 
of drugs discovery are supported.

Repurposing of existing drugs has led to individuals or 
groups using commercial antiviral agents, such as chlo-
roquine or hydroxychloroquine and ivermectin, without 
medical prescription. Scientific studies have shown that 
these FDA-approved drugs, initially developed as antivi-
ral and antiparasitic agents, have potential in inhibiting 
SARS-CoV-2 in in  vitro and in silico assays [105–107]. 
While the efficacy and risks associated with the use 
of chloroquine and hydroxychloroquine in COVID-
19 treatment have been debated [108–110], they were 

even proposed as chemoprophylaxis in some countries, 
with trials conducted in 2020 [111]. In June 2020, WHO 
announced on their website that hydroxychloroquine 
should be discontinued as it did not reduce mortality in 
hospitalized COVID-19 patients [112–114]. Despite this, 
controversy over the use of hydroxychloroquine remains, 
and some countries continue to use it as a COVID-19 
treatment [104, 111, 115, 116]. It may be a promising 
candidate for further investigation as a treatment for 
SARS-CoV-2 [117]. Ivermectin has also demonstrated 
antiviral activity against SARS-CoV-2 in in vitro studies, 
with an  IC50 of approximately 2 μM [118, 119]. Chaccour 

Fig. 3 Some compounds acting as antiviral agents have similarities in the type, genomic composition, and structure of SARS‑CoV‑2 [78–80, 87, 88]



Page 9 of 48Oktavianawati et al. Applied Biological Chemistry           (2023) 66:89  

Ta
bl

e 
3 

A
nt

iv
ira

l D
ru

gs
 o

r C
om

po
un

ds
 a

ga
in

st
 V

iru
se

s 
ha

ve
 S

im
ila

rit
ie

s 
in

 th
e 

Ty
pe

/G
ro

up
, G

en
om

ic
 C

om
po

si
tio

n,
 a

nd
 S

tr
uc

tu
re

 o
f S

A
RS

‑C
oV

‑2

Vi
ru

se
s

Co
m

po
un

ds
Pl

an
t S

ou
rc

es
A

ss
ay

s
A

ct
iv

iti
es

Re
fs

.

H
um

an
 c

or
on

av
iru

s 
ty

pe

 H
um

an
 c

or
on

av
iru

s 
st

ra
in

s 
O

C
43

 
(H

Co
V‑

O
C

43
)

Te
tr

an
dr

in
e 

(T
ET

)
Fa

ng
ch

in
ol

in
e 

(F
A

N
)

Ce
ph

ar
an

th
in

e 
(C

EP
)

St
ep

ha
ni

a 
te

tr
an

dr
a

In
 v

itr
o:

 in
 M

RC
‑5

 c
el

ls
IC

50
 o

f T
ET

 =
 0

.3
3 

±
 0

.0
3 

μM
; 

FA
N

 =
 1

.0
1 

±
 0

.0
7 

μM
; 

C
EP

 =
 0

.8
3 

±
 0

.0
7 

μM

[9
1]

 H
Co

V‑
O

C
43

M
ER

S‑
Co

V
H

Co
V‑

N
L6

3
M

H
V‑

A
59

Ly
co

rin
e 

(s
ta

nd
ar

d)
Am

ar
yl

lid
ac

ea
e

In
 v

itr
o:

 in
 B

H
K‑

21
, V

er
o 

E6
, L

LC
‑M

K2
, 

D
BT

 c
el

ls
In

 v
iv

o:
 in

 m
ic

e 
ag

ai
ns

t H
Co

V‑
O

C
43

EC
50

 =
 0

.1
5 

– 
1.

63
 μ

M
[7

8]

  C
or

on
av

iru
s 

M
H

V‑
A

59
Es

se
nt

ia
l o

ils
 o

f t
he

 e
th

an
ol

 e
xt

ra
ct

s 
(A

h 
ex

tr
ac

t)
 c

on
ta

in
in

g 
ca

rv
ac

ro
l 

(3
8.

4%
) a

nd
 α

‑p
in

en
e 

(3
0.

9%
)

An
th

em
is 

hy
al

in
e 

(A
h)

In
 v

itr
o 

us
in

g 
qu

an
tit

at
iv

e 
an

al
ys

is
 

by
 e

nz
ym

e‑
lin

ke
d 

im
m

un
os

or
be

nt
 

as
sa

y 
(E

LI
SA

) i
n 

H
eL

a‑
C

EA
C

A
M

1a
 

ce
lls

A
ft

er
 6

 a
nd

 8
 h

 p
os

t i
nf

ec
tio

ns
, 

no
 d

et
ec

te
d 

vi
ru

s 
w

as
 e

va
lu

at
ed

 
w

ith
  T

C
ID

50
 v

al
ue

s 
at

 1
/1

0 
di

lu
tio

n 
of

 A
h 

ex
tr

ac
ts

[7
9]

 H
Co

V‑
22

9E
Sa

ik
os

ap
on

in
  B

2
Bu

pl
eu

ru
m

 sp
p.

, H
et

er
om

or
ph

a 
sp

p.
, 

Sc
ro

ph
ul

ar
ia

 sc
or

od
on

ia
In

 v
itr

o 
us

in
g 

XT
T 

as
sa

y
IC

50
 =

 1
.7

 ±
 0

.1
 μ

m
ol

/L
[9

2,
 9

3]

G
en

om
ic

 s
im

ila
rit

ie
s

 S
A

RS
‑C

oV
 s

tr
ai

ns
 3

9,
84

9
Ba

ic
al

in
Sc

ut
el

la
ria

 b
ai

ca
le

ns
is 

(H
ua

ng
 Q

in
)

In
 v

itr
o 

an
tiv

ira
l s

us
ce

pt
ib

ili
ty

 te
st

‑
in

g 
on

 fR
hK

4 
an

d 
Ve

ro
‑E

6 
ce

ll 
lin

es
EC

50
 in

 fR
hK

4 
an

d 
Ve

ro
‑E

6 
ce

ll 
lin

es
 =

 1
2.

5 
an

d 
10

0 
μg

/m
L 

at
 4

8 
h

[9
4]

 R
ec

om
bi

na
nt

 S
A

RS
‑C

oV
 P

Lp
ro

Pa
py

rifl
av

on
ol

 A
 (p

re
ny

la
te

d 
qu

er
ce

tin
 d

er
iv

at
iv

e)
Br

ou
ss

on
et

ia
 p

ap
yr

ife
ra

 (d
rie

d 
ro

ot
s)

In
 v

itr
o 

us
in

g 
vi

ra
l p

ro
te

as
e 

in
hi

bi
‑

tio
n 

as
sa

y 
on

 S
A

RS
‑C

oV
 b

as
ed

 
on

 th
e 

FR
ET

 m
et

ho
d

IC
50

 =
 3

.7
 μ

M
[8

0]

 M
ER

S‑
Co

V
Re

sv
er

at
ro

l
Vi

tis
 v

in
ife

ra
 (g

ra
pe

), 
Po

ly
go

nu
m

 
cu

sp
id

at
um

 (H
uz

ha
ng

), 
Va

cc
in

iu
m

 
m

ac
ro

ca
rp

on
 (c

ra
nb

er
ry

)

In
 v

itr
o 

us
in

g 
M

TT
 a

ss
ay

, N
RU

 (n
eu

‑
ra

l r
ed

 u
pt

ak
e)

 a
ss

ay
, a

nd
 p

la
qu

e 
re

du
ct

io
n 

as
sa

y 
in

 V
er

o 
E6

 c
el

ls

Re
sv

er
at

ro
l r

ed
uc

ed
 c

el
l d

ea
th

 
in

 a
 ra

ng
e 

co
nc

en
tr

at
io

n 
of

 2
50

–
12

5 
μM

 fo
r 4

8 
h 

af
te

r i
nf

ec
tio

n

[8
1]

 S
A

RS
‑C

oV
 3

C
Lp

ro
Cu

rc
um

in
In

 v
itr

o 
us

in
g 

FR
ET

 m
et

ho
d

IC
50

 4
0 

μM
[9

5]

 S
A

RS
‑C

oV
 3

C
Lp

ro
Sa

vi
ni

n
Ch

am
ac

ey
pa

ris
 o

bt
us

a 
va

r. 
fo

r-
m

os
an

a
In

 v
itr

o 
us

in
g 

FR
ET

 m
et

ho
d

IC
50

 2
5 

μM
Ki

 =
 9

.1
 ±

 2
.4

 μ
M

[9
5]

 S
A

RS
‑C

oV
 3

C
Lp

ro
 a

nd
 P

Lp
ro

Xa
nt

ho
an

ge
lo

l E
An

ge
lic

a 
ke

isk
ei

 (M
iq

.) 
Ko

id
z 

(e
th

a‑
no

lic
 le

af
 e

xt
ra

ct
)

In
 v

itr
o 

us
in

g 
ce

ll‑
fre

e 
ba

se
d 

as
sa

y
IC

50
 o

f 1
1.

4 
an

d 
1.

2 
μM

[8
2]

 S
A

RS
‑C

oV
 P

Lp
ro

Co
um

es
tr

ol
, i

so
ba

va
ch

al
co

ne
, 

an
d 

ps
or

al
id

in
Ps

or
al

ea
 c

or
yl

ifo
lia

 L
. (

et
ha

no
l 

ex
tr

ac
t o

f t
he

 s
ee

ds
)

In
 v

itr
o 

us
in

g 
th

e 
flu

or
og

en
ic

 s
ub

‑
st

ra
te

 U
b‑

A
M

C
IC

50
 o

f 4
.2

; 7
.3

 a
nd

 1
0.

1 
μM

[9
6]

 R
ec

om
bi

na
nt

 S
A

RS
‑C

oV
 3

C
Lp

ro
D

ie
ck

ol
Ec

kl
on

ia
 c

av
a 

(b
ro

w
n 

al
ga

e)
In

 v
itr

o 
us

in
g 

FR
ET

 m
et

ho
d 

(fo
r c

el
l‑

fre
e 

tr
an

sc
le

av
ag

e 
as

sa
y)

 a
nd

 lu
ci

f‑
er

as
e 

ac
tiv

ity
 (f

or
 V

er
o 

ce
ll‑

ba
se

d 
ci

s‑
cl

ea
va

ge
 a

ss
ay

)

IC
50

 o
f t

ra
ns

‑ a
nd

 c
is

‑ c
le

av
ag

e 
in

hi
bi

to
ry

: 2
.7

 a
nd

 6
8.

1 
μM

, r
es

pe
c‑

tiv
el

y

[8
3]

En
ve

lo
pe

d 
vi

ru
se

s

  H
IV

‑1
Ba

ic
al

in
 a

nd
 b

ai
ca

le
in

Sc
ut

el
la

ria
 b

ai
ca

le
ns

is 
G

eo
rg

i
In

 v
itr

o 
us

in
g 

EL
IS

A
 o

n 
fre

sh
 n

or
m

al
 

pe
rip

he
ra

l b
lo

od
 m

on
on

uc
le

ar
 c

el
ls

 
(P

BM
C

)

IC
50

 =
 0

.5
 μ

g/
m

L
[9

7]

  H
IV

‑1
Ba

ic
al

in
Sc

ut
el

la
ria

 b
ai

ca
le

ns
is 

G
eo

rg
i

In
 v

itr
o 

us
in

g 
qu

an
tit

at
iv

e 
co

lo
ri‑

m
et

ric
 a

ss
ay

s
IC

50
 =

 4
 μ

M
[9

8]



Page 10 of 48Oktavianawati et al. Applied Biological Chemistry           (2023) 66:89 

Ta
bl

e 
3 

(c
on

tin
ue

d)

Vi
ru

se
s

Co
m

po
un

ds
Pl

an
t S

ou
rc

es
A

ss
ay

s
A

ct
iv

iti
es

Re
fs

.

 M
ur

in
e 

cy
to

m
eg

al
ov

iru
s 

(M
C

V
)

Bl
ac

k 
se

ed
 o

il 
(B

SO
) o

r h
ab

at
us

‑
sa

ud
ah

N
ig

el
la

 sa
tiv

a
In

 v
iv

o 
us

in
g 

a 
vi

ra
l p

la
qu

e‑
fo

rm
in

g 
as

sa
y 

of
 B

A
LB

/c
 m

ic
e 

sp
le

en
 

an
d 

liv
er

U
nd

et
ec

te
d 

vi
ru

s 
at

 th
e 

ra
tio

 
of

 th
e 

eff
ec

to
r t

o 
ta

rg
et

 c
el

ls
 

w
as

 2
0:

1

[9
9]

 H
SV

‑1
 a

nd
 H

SV
‑2

Et
ha

no
l e

xt
ra

ct
s 

of
 fl

ow
er

 b
ud

s 
of

 E
. 

ca
ry

op
hy

llu
s c

on
ta

in
in

g 
eu

ge
no

l
Eu

ge
ni

a 
ca

ry
op

hy
llu

s (
Sp

re
ng

.) 
Bu

llo
ck

 &
 S

.G
. H

ar
ris

on
In

 v
itr

o 
us

in
g 

pl
aq

ue
 re

du
ct

io
n 

as
sa

y 
on

 g
re

en
 m

on
ke

y 
ki

dn
ey

 
(G

M
K)

ED
50

 a
ga

in
st

 H
SV

‑1
 a

nd
 H

SV
‑2

: 7
2.

8 
an

d 
74

.4
 μ

g/
m

L
[8

4]

 H
SV

‑1
Is

ob
or

ne
ol

Sa
lv

ia
 fr

ut
ic

os
a

In
 v

itr
o 

us
in

g 
vi

ra
l p

la
qu

e 
as

sa
y 

on
 V

er
o 

ce
lls

0.
1%

 is
ob

or
ne

ol
 in

ac
tiv

at
ed

 8
6%

 
of

 th
e 

in
fe

ct
io

us
 v

iru
s 

w
ith

in
 3

0 
m

in
[8

5]

 H
SV

‑1
St

ar
 a

ni
se

 o
il 

(S
A

O
) c

on
ta

in
s 

tr
an

s‑
an

et
ho

le
 (8

0%
), 

eu
ge

no
l, 

b‑
ca

ry
o‑

ph
yl

le
ne

, e
ug

en
ol

Ill
ic

iu
m

 v
er

um
 (s

ta
r a

ni
se

)
In

 v
itr

o 
us

in
g 

pl
aq

ue
 re

du
ct

io
n 

as
sa

y
IC

50
 S

A
O

 =
 1

 ±
 0

.1
 μ

g/
m

L
IC

50
 b

et
a‑

ca
ry

op
hy

l‑
le

ne
 =

 0
.2

5 
±

 0
.0

 μ
g/

m
L

[8
6]

  H
ep

at
iti

s 
B 

Vi
ru

s 
(H

BV
)

Ph
ya

ci
du

si
n 

B 
an

d 
ph

lla
nt

ha
ci

do
id

 
A

1
Ph

yl
la

nt
us

 a
ci

du
s (

st
em

)
In

 v
itr

o 
us

in
g 

th
e 

cy
to

pa
th

ic
 e

nd
‑

po
in

t a
ss

ay
 in

 H
ep

G
2.

2.
2.

15
 c

el
ls

IC
50

 o
f H

Bs
A

g 
is

 1
1.

2 
±

 0
.0

1 
μM

 
by

 P
hy

ac
id

us
in

 B
 a

nd
 H

Be
A

g 
is

 5
7.

1 
±

 0
.0

2 
μM

 b
y 

ph
lla

nt
ha

ci
do

id

[1
00

]

 H
SV

‑1
 (F

 s
tr

ai
n 

AT
CC

 V
R7

33
)

J. 
ox

yc
ed

ru
s b

er
rie

s 
oi

l c
on

ta
in

in
g 

α‑
pi

ne
ne

, β
‑m

yr
ce

ne
Ju

ni
pe

ru
s o

xy
ce

dr
us

 ss
p.

In
 v

itr
o,

 u
si

ng
 v

is
ua

lly
 s

co
rin

g 
of

 th
e 

vi
ru

s‑
in

du
ce

d 
cy

to
pa

th
o‑

ge
ni

c 
eff

ec
t (

C
PE

) f
or

 7
2 

h 
po

st
‑

in
fe

ct
io

n 
on

 V
er

o 
ce

lls

IC
50

: 2
00

 μ
g/

m
L;

 S
I o

f 5
[1

01
]

Re
sp

ira
to

ry
 d

is
ea

se
s

  I
nfl

ue
nz

a 
vi

ru
s 

A
/G

er
m

an
y/

27
, 

st
r. 

W
ey

br
ig

de
 (H

7N
7)

 a
nd

 A
/

G
er

m
an

y/
34

, s
tr.

 R
os

to
ck

 
(H

7N
1)

(‑)
‑t

ha
lim

on
in

e 
(T

hl
)

Th
al

ic
tr

um
 si

m
pl

ex
 L

 (a
er

ia
l p

ar
ts

)
In

 v
itr

o 
in

 c
el

l c
ul

tu
re

s 
of

 c
hi

ck
en

 
em

br
yo

 fi
br

ob
la

st
s

In
hi

bi
t v

ira
l r

ep
ro

du
ct

io
n 

at
 n

on
‑

to
xi

c 
co

nc
en

tr
at

io
n 

0.
1–

6.
4 

μM
 

w
ith

 a
 s

el
ec

tiv
ity

 in
de

x =
 6

40

[8
7]

 In
flu

en
za

 ty
pe

 A
 (A

/
Be

te
zd

a/
63

/1
0/

H
2N

2)
 a

nd
 ty

pe
 B

 
(B

/L
ee

/4
0)

Es
se

nt
ia

l o
il 

fro
m

 fr
ui

ts
 c

on
ta

in
‑

in
g 

pi
ne

ne
, l

im
on

en
e,

 a
 c

om
pl

ex
 

of
 e

th
er

s 
of

 o
ct

an
ol

 a
nd

 h
ex

an
ol

H
er

ac
le

um
 L

 s
pe

ci
es

, s
uc

h 
as

 H
. a

co
-

ni
tif

ol
iu

m
 W

or
on

ow
. H

. a
nt

as
ia

tic
um

 
M

an
de

n.
, e

tc

In
 v

iv
o 

us
in

g 
in

tr
as

an
al

 a
nd

 o
ra

l 
tr

ea
tm

en
ts

 o
n 

m
ic

e
LD

50
 o

f 0
.2

–0
.4

 m
L

[1
02

]

  I
nfl

ue
nz

a 
A

/P
R/

8/
34

 (P
R8

) v
iru

s 
(H

1N
1 

su
bt

yp
e)

C
in

na
m

al
de

hy
de

 (C
A

)
Ci

nn
am

om
i c

or
te

x
In

 v
itr

o 
us

in
g 

pl
aq

ue
 re

du
ct

io
n 

as
sa

y 
on

 M
C

D
K 

ce
lls

In
 v

iv
o 

ba
se

d 
on

 th
er

ap
eu

tic
 e

ffi
‑

ca
cy

 in
 m

ic
e

C
A

 in
hi

bi
ts

 a
ll 

of
 th

e 
vi

ru
s 

gr
ow

th
 

at
 2

00
 μ

M
. A

pp
lic

at
io

n 
of

 C
A

 
in

 th
e 

ai
rw

ay
s 

le
d 

to
 th

e 
si

gn
ifi

ca
nt

 
re

sc
ue

 o
f i

nf
ec

te
d 

m
ic

e

[8
8]



Page 11 of 48Oktavianawati et al. Applied Biological Chemistry           (2023) 66:89  

et  al. conducted randomized clinical trials on the use 
of ivermectin as a COVID-19 treatment [120]. WHO 
(2021c), recommends that ivermectin should only be 
used in COVID-19 treatment based on clinical trials as 
the evidence supporting its efficacy is inconclusive [121]. 
Doxycycline has also been investigated for its ability to 
inhibit SARS-CoV-2 in in  vitro studies, with an  EC50 of 
4.5 ± 2.9 mM when tested on the IHUMI-3 strain in Vero 
E6 cells [122].

The use of some commercial medicines has been 
approved by health and medical ministries to treat 
COVID-19 (Fig. 4). WHO is conducting solidarity thera-
peutic trials in over 30 countries, enrolling nearly 12,000 
patients, to find effective treatment for the disease. How-
ever, after six months of attempting these trials, WHO 
reported in October 2020 that remdesivir, hydroxychlo-
roquine, lopinavir or ritonavir, and IFN regimens showed 
little or no effect on patients hospitalized for 28  days. 
Other drugs, including oseltamivir, azvudine, ribavirin, 
favipiravir, and auranofin, have been recommended off-
label [106, 123–126]. Remdesivir, an adenosine analogue 

that stops RNA synthesis and acts as a false substrate for 
RdRp, is one of the primary drugs used to treat hospital-
ized patients [125, 127, 128]. It is important to note that 
the effectiveness of these drugs in treating COVID-19 is 
still being evaluated.

In December 2021, Pfizer released a new oral drugs for 
COVID-19 called Paxlovid, which contains nirmatrelvir 
(300  mg) and ritonavir (100  mg) [129–132]. Adminis-
tered orally twice daily for five days, Paxlovid has dem-
onstrated a significant reduction in COVID-19-related 
deaths [133]. Nirmatrelvir (PF-07321332) has shown oral 
activity against SARS-CoV-2 in vitro, and its potency was 
demonstrated in phase I clinical trials with a tolerable 
plasma concentration in the cell [134, 135]. The detailed 
computational analysis of PF-07321332 against SARS-
CoV-2 Mpro has been clearly discussed in several stud-
ies [136, 137]. In October 2021, Pfizermectin, new drugs 
for COVID-19 treatment suspected to contain iver-
mectin, was also developed by Pfizer, but the company 
has denied repackaging ivermectin inside this new pill 
and selling it at a higher price than existing commercial 

Fig. 4 Some commercial drugs have been recognized and approved to treat COVID‑19 patients
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ivermectin. It was suspected of containing ivermectin, a 
protease inhibitor proposed to kill parasites. Molnupira-
vir has been shown to successfully target the viral RdRp 
on the Omicron variant [138–140]. In early 2022, WHO 
recommended two new drugs for COVID-19 patients, 
baricitinib and sotrovimab [141], while other monoclonal 
antibodies, such as bebtelovimab and Evusheld (contain-
ing tixagevimab and cilgavimab), have also gained atten-
tion due to their high efficacy against the virus at mild to 
moderate levels [142].

Rupintrivir (AG7008) are other drugs being investi-
gated for its potential to treat COVID-19. It contains 
a lactam ring that mimics Glutamine residues at the 
P1 position and forms a covalent bond with the active-
site cysteine residue of the virus protease [143]. In vitro 
antiviral assays using H1-HeLa and MRC-5 cells have 
shown Rupintrivir to have a potent broad-spectrum anti-
viral activity against 48 HRV serotypes and four related 
picornaviruses [144]. Ramajayam et  al. has proven that 
the fluorophenylalanine group and isoxazoyl moiety in 
rupintrivir may hinder its ability to bind to Arg188 in 
the S2 pocket and hydrophobic residues of SARS-CoV 
3CLpro, respectively [143]. Therefore, its efficacy in 
treating COVID-19 is still being studied in detail. A simi-
lar case has also been observed with amantadine, which 
was previously used to treat influenza. In  vitro studies 
have shown an inhibitory effect of amantadine on SARS-
CoV-2 infected Vero E6 cells with an  IC50 between 83 and 
119  μM [145]. The dosage required for in  vitro efficacy 
is not feasible in vivo due to toxicity concerns. Its thera-
peutic window cannot be offered, suggesting that the oral 
administration of amantadine appears obsolete. Several 
studies reported that amantadine could be administered 
through inhalation, as the infection of human airways 
by SARS-CoV-2 covers a high concentration in the nasal 
epithelium until distal pulmonary epithelium [146].

IFN are signaling proteins produced by host cells 
that have shown therapeutic potential for MERS and 
SARS-CoV [35, 147], making it a proposed treatment 
for COVID-19. The  EC50 of IFN-α and IFN-β treatment 
on infected SARS-CoV-2 Vero cells is reported to be 
1.35 IU/mL and 0.76 IU/mL, respectively [148]. In addi-
tion, glucocorticoids such as ciclesonide, dexamethasone, 
betamethasone, hydrocortisone, fludrocortisone, and tri-
amcinolone are potential candidates for treating inflam-
mation accompanying COVID-19 [149]. Other therapies 
such as convalescent plasma and anti-interleukin-6 (anti-
IL-6) inhibitors have also been explored to combat the 
pandemic.

Investigations have proven that 25-hydrocholesterol, 
a type of oxidized cholesterol products found in various 
human body fluids, has the potential to inhibit COVID-
19 with an  IC50 of 550 nM by blocking membrane fusion 

[150, 151]. In addition, 25-hydrocholesterol is oxidized 
cholesterol products found in human peripheral blood, 
cerebrospinal fluid, colostrum, and milk. Several studies 
are considering 25-hydroxycholesterol and 27-hydroxy-
cholesterol, which are side-chain oxysterols, as potential 
inhibitors of respiratory viruses against COVID-19 [152].

Clinical trials have been conducted using a drugs 
repurposing approach, either with a single-molecule 
therapy or a combination of therapies, to treat COVID-
19. However, one of the studies involving 1206 rand-
omized patients showed no improvement in the recovery 
of mild to moderate COVID-19 patients using a single 
treatment of ivermectin [153]. Combination therapies 
involve the simultaneous repurposing of therapeutic, 
antiviral, immunotherapeutic, and convalescent plasma 
therapies. Remdesivir is popular antiviral drugs that has 
received emergency approval from WHO. A combina-
tion of remdesivir and baricitinib, as immunotherapeutic 
agents, produces better outcomes in hospitalized patients 
with COVID-19 than the use of only remdesivir. The use 
of two antiviral drugs, remdesivir and dexamethasone, 
has resulted in reduced mortality for 30 days. The use of 
combined antiviral and antibiotic therapies has also been 
proven to be more effective and safer for early sympto-
matic patients [154].

The application of repurposed drugs has yielded some 
promising examples of inhibitors for SARS-CoV-2. Sev-
eral studies have identified available drugs agents that 
can inhibit the protein and reproduction cycles of viruses 
[155–157]. In addition, clinical trials conducted on April 
2020 have shown that the combination of natural prod-
ucts, such as honey, and Nigella sativa seeds, improved 
symptoms and reduced mortality without adverse effects 
[158]. The Ayurvedic drugs, AYUSH 64, demonstrated 
improved recovery and reduced hospitalization for mild-
moderate symptomatic patients [159]. The potential of 
these natural compounds as alternative COVID-19 drugs 
and therapeutic agents is described in detail in the fol-
lowing section of this study.

In‑silico study on drugs discovery for COVID‑19
Modern drugs discovery relies on in-silico studies involv-
ing molecular docking and dynamics. This approach uses 
bioinformatics and computational modelling to design 
new lead compounds and enable virtual screening of bio-
active metabolites [160]. However, by enabling prelimi-
nary screening activities, this technology accelerates the 
identification and analysis of bioactive compounds, while 
significantly reducing time and costs associated with lab-
oratory work. Molecular modelling is particularly useful 
for repurposing existing drugs and natural products, as 
it predicts the affinity and binding mode of molecules to 
the active site of a receptor protein.
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Computer modelling enables the efficient screening of 
hundreds and thousands of compounds, in experiments 
conducted for a brief period. Promising compounds or 
drugs identified during the process are further subjected 
to docking studies (Table  4, Fig.  5). In order to under-
stand the mode of action of these compounds or drugs, 
molecular dynamics (MD) simulations were used to 
model their interaction with the active site of the virus 
[161–163]. However, through artificial neural network 
analysis, medicines are classified based on their primary 
role in SARS-CoV-2 infection, specifically in viral replica-
tion and immune response. This approach differentiates 
between antiviral agents that prevent virus replication 
and those modulating immunity to combat the virus 

without overreacting. Once a potential antiviral candi-
date is identified, further assays using human and non-
human cell lines are necessary.

Viral entry is prevented by targeting the host recep-
tor, ACE2 and other proteins parts of coronavirus, such 
as spike glycoproteins (including nsp1-16, RdRp) and 
proteases (Mpro and PLpro), and has been explored as 
a potential strategy [33, 157, 179–181]. In-silico investi-
gations provide valuable parameters, including RMSD, 
docking scores, and binding affinities, to assess the effec-
tiveness of antiviral agents.

A notable example of applying the in-silico approach 
for drugs discovery is the study conducted by Elinger 
et  al. [182]. They successfully generated a small set of 

Table 4 Antiviral drugs/compounds that have been assessed using in silico approach against SARS‑CoV‑2 proteins

Compounds Antiviral activities Molecular docking tools Refs.

40 triterpenoids, flavonol glycosides, antho‑
cyanidins

SARS‑CoV‑2 Mpro (pdb id: 6LU7), RBD (pdb 
id: 6M0J), RdRp (YP_009725307.1), human 
trans‑membrane serine protease 2 TMPRSS2 
(NP_001128571.1)

AutoDock Vina [164]

51 alkaloids, terpenoids, polyphenols, peptides SARS‑CoV‑2 Mpro (pdb id: 6LU7) AutoDock 4.2.0 [165]

19 hydrolyzable tannins SARS‑CoV‑2 Mpro (pdb id: 6Y84) Molecular Operating Environment (MOE 09) [166]

24 natural plant‑based compounds, 22 antivi‑
ral drugs, 16 anti‑malarial drugs

SARS‑CoV‑2 Mpro (pdb id: 6LU7) Virtual screening followed with SP and XP 
docking modes using GLIDE module
MD simulations using GROMACS‑2019

[167]

Four tropane alkaloids from Schizanthus por-
rigens

SARS‑CoV‑2 PLpro (pdb id: 6WX4) Autodock Vina
Molecular dynamic simulations using NAMD 
v.2.14

[168]

21 flavonoids SARS‑CoV‑2 Mpro (pdb id: 6YNQ) AutoDock Vina and Swiss dock
Molecular dynamic simulations using CABS 
Flex 2.0

[169]

66 active flavonoids were selected from 2030 
natural compounds

SARS‑CoV‑2 Mpro (pdb id: 6LU7) GLIDE module [170]

80 flavonoids SARS‑CoV‑2 Mpro (pdb id: 6LU7) Molegro Virtual Docker 7 [171]

23 flavonoids and 25 indole chalcones SARS‑CoV‑2 Mpro (pdb id: 6YB7), RdRp (pdb 
id: 6M71), spike protein (pdb id: 6LZG)

AutoDock Vina v.1.1.2 [172]

458 flavonoids SARS‑CoV‑2 Mpro (pdb id: 6LU7), RdRp (pdb 
id: 6M71), spike protein (pdb id: 6VW1)

AutoDock 4.1 [173]

12 triterpenoids isolated from Calendula 
officinalis L

SARS‑CoV‑2 Mpro (pdb id: 6LU7) MOE 2019 Suite
Molecular dynamic simulation using 
GROMACS‑2019

[174]

14 limonoids and terpenoids SARS‑CoV‑2 RBD (pdb id: 6M0J) AutoDock 4.2
Molecular dynamic simulation using Des‑
mond MD System

[175]

218 coumarins SARS‑CoV‑2 Mpro (pdb id: 6LU7), viral methyl‑
transferase (nsp16/10 complex, pdb id: 6W4H), 
RBD (pdb id: 6M0J), human ACE2 (pdb id: 
6VW1)

AutoDock Vina [176]

78 secoiridoids SARS‑CoV‑2 Mpro (pdb id: 6LU7), and S protein 
(6LZG)

AutoDock Vina
Molecular dynamic simulation using Des‑
mond MD System

[177]

6 phenyl propanoids SARS‑CoV‑2 Mpro (pdb id: 6Y2F); PLpro (pdb 
id: 6WX4); RdRp (pdb id: 6M71)

Genetic optimization of ligand docking (GOLD 
v5.2.2)
Groningen machine for chemical simulations 
(GROMACS v5.15)

[178]
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Fig. 5 Interesting compounds with higher activities against SARS‑CoV‑2 proteins in terms of lower binding affinity or Docking score in recent 
papers [34, 164, 165, 186–199]
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related drugs that exhibited significant activity in terms 
of  IC50. A primary screening assay [183] of 5632 com-
pounds was tested for their ability to inhibit SARS-CoV-2 
in human epithelial colorectal adenocarcinoma cells 
(Caco-2) [184]. After the procedure, 271 compounds 
were selected based on achieving more than 75% inhibi-
tion cut-off, as determined by quantifying cell viability 
readouts. Subsequently, 184 compounds were further 
chosen based on their clinical status. Among these, 64 
compounds demonstrated an  IC50 value of less than 
20  μM, while 19 exhibited an  IC50 value of less than 
1  μM.. This study highlighted six of the 64 compounds, 
namely camostat, nafamostat, lopinavir, mefloquine, 
papaverine, and cetylpyridium. However, 90% of those 
confirmed compounds have not been reported as SARS-
CoV-2 antiviral agents in in  vitro cell assays [182, 185]. 
The names and structures of those compounds were not 
disclosed in the present study.

The molecular docking-based virtual screening 
approach using AutoDock Vina was employed to iden-
tify potential inhibitors of 3CLpro of SARS-CoV-2 [200]. 
The top four compounds were selected from a pool of 
2000 compounds in the ZINC database, based on their 
low free energy binding adherence to the Lipinski rule 
of five, and functional molecular interactions with the 
target protein. Similarly, Barage et al. utilized AutoDock 
Tool 1.5.6 to retrieve 3277 compounds from the ZINC 
database and generate 10 top compounds with the low-
est binding energy against RdRp (PDB ID: 6NUR) and 
Nsp15 (PDB ID: 20ZK). MD simulations performed with 
GROMACS tools, was used to identify three compounds 
with the highest affinity to interact with RdRp and Nsp15 
namely alectinib, naldemedine, and ergotamine [201].

Potential components of Ayurvedic medicinal plants 
have been assessed for their repurposing possibility as 
anti-COVID-19. After screening selected compounds 
from twelve medicinal plants, molecular docking and 
dynamic simulations showed that curcumin, gingerol, 
and quercetin were potential candidates [202]. In another 
study, fluoro-substituted heterocyclic ring systems were 
added to quercetin-based derivatives, which were then 
screened by in silico experiments against SARS-CoV 
3CLpro (PDB ID: 6LU7) using Autodock 4.2 software. 
The compounds L4 (5-fluoro-2H-1,2,3-triazol-4-yl), L8 
(2-fluoro-4H-1,3-oxazin-4-yl), and L14 (3-fluoropiperi-
din-4-yl) showed promising results, with IC values of 
0.330, 0.456, and 0.50 uM, respectively. Additionally, a 
study on marine natural product-based drugs-like small 
molecules screened 14,492 compounds from the MNP 
library, of which 7471 compounds fulfilled Lipinski rule 
of five. After conducting the evaluation process through 
ADMET descriptor, 2033 compounds were selected for 
further analysis. Docking analysis and molecular dynamic 

simulations of 14 compounds led to the identification of 
six hits of phenyl propanoid compounds, including fas-
ciospongiside A, epolactoena, constanolactone B, con-
stanolatone F, debromo araplysillin I, and maniloside A as 
potential anti-COVID-19 agents [178].

The Korea Chemical Bank Drugs Repurposing (KCB-
DR) database, consisting of 1,865 compounds, was used 
to propose potential therapeutic agents for COVID-19. 
GOLD virtual screening identified 149 binders based on 
their Goldscore and Chemscore. MD simulations were 
then employed to analyze the binding modes and funda-
mental interactions, thereby revealing seven top drugs. 
Based on the binding free energy approaches, ceftaroline 
fosamil and telaprevir emerged as potential drugs against 
SARS-CoV-2 with telaprevir raising safety concerns due 
to its side effects. In order to address this, a substructure 
search in the PubChem database led to the identifica-
tion of 11 potential derivatives of telaprevir exhibiting 
desirable pharmacokinetic properties, particularly lower 
hepatotoxicity [203]. However, in another study, the 
molecular interactions and stabilities of 3,639 drugs from 
the SuperDRUG2 database were analyzed using PyRx 
and GROMACS v5.1.5. It was observed that colchicine 
emerged as the top binding compound against SARS-
CoV-2 Mpro [204].

Sharma and Kaur investigated the potential of jense-
none, a key component of eucalyptus oil, as an inhibi-
tor for COVID-19 infection [205]. The in-silico study 
revealed that jensenone formed a complex structure with 
the main viral proteinase/chymotrypsin-like protein-
ase (Mpro) through hydrophobic, hydrogen bonds, and 
strong ionic interactions. Paul et  al. explored synthetic 
molecules, peptidomimetic, and small molecules inhibi-
tors targeting viral proteinases to assess its potentials as 
anti-SARS-CoV Mpro agents through computational 
approaches [206]. Another study by J. K. R. da Silva et al. 
[207], investigated the potential of 171 essential oil com-
ponents in treating SARS-CoV-2 using molecular dock-
ing analysis. The findings showed that (E)-β-farnesene 
exhibited the best normalized docking score, while (E,E)-
α-farnesene, (E)-β-farnesene, and (E,E)-farnesol were 
identified as the best docking ligands. Unfortunately, 
the docking energies were relatively weak, limiting their 
applicability to coronavirus interactions.

The Searching off-lAbel drugs aNd NEtwoRk (SAve-
RUNNER) is an interesting approach for repurposing 
existing drugs to treat COVID-19. This method evaluates 
the interaction between drugs and target protein based 
on their location and position in the same network neigh-
bourhoods. Recent study utilized 14 COVID-19-related 
diseases to generate 282 repurposing drugs of 1875 FDA-
approved drugs from DrugBank v5.1.6. Ruxolitinib has 
the potential to inhibite JAK and H1-antihistamines that 
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play a vital role in controlling immune responses [208]. 
Asides from SAveRUNNER, other in-silico approaches 
for identifying potential repurposing drugs include net-
work module separation and the RWR algorithm. Both 
approaches highlight the disease module of H1N1 flu and 
SARS-CoV-2 infection [209]. The development of net-
work-based mechanisms involves multimodal technology 
using artificial intelligence, network diffusion, and prox-
imity algorithms. [210], stated that 76 of the 77 drugs 
achieved viral effects through indirect viral protein bind-
ing targets by perturbing the host subcellular network. 
Molecular docking through computational approaches 
was used to observe the interaction patterns of bind-
ing viral proteins to host targets. Indeed, network-based 
perturbations is induced by altering the virus ability to 
enter the cell or replicate within the cell. This advanced 
approach of in-silico method for drugs repurposing is 
beneficial in developing a faster and cheaper strategy for 
drugs discovery schemes.

However, computer modelling is not the only approach 
for determining drugs as reliable antiviral agents, even 
when it shows a strong binding mode to the active sites 
of the virus. Vatansever et al. [211] stated that calculated 
binding energy does not necessarily correlate strongly 
with the actual  IC50 values. Computer modelling is the 
only approach used to obtain detailed information in 
relation to predicting the mode of antiviral action. The 
next crucial step is to conduct in vitro and in vivo assays 
in preclinical trials. These assessments help to identify a 
small number of drugs or compounds for further evalu-
ation in clinical trials. As public awareness of health and 
safety increases and the challenges posed by viral infec-
tions persist, there is a growing need for alternative, 
nature-based medications. This alternative treatment can 
complement existing approaches and offer potential solu-
tions for viral infections that are difficult to cure or pre-
sent challenges during treatment.

Natural products for treatment of viral infection
Medicinal plants encompass all plants or herbs whose 
components exhibit biological activities. These bioactive 
compounds, when extracted from medicinal plants, can 
be considered as lead compounds. In recent times, there 
has been a growing interest in novel natural approaches 
to treating viral infections, driven by increased public 
awareness and concern for safety and health issues in 
comparison to synthetic drugs. The utilization of natu-
ral products as remedies for various infectious diseases 
often stems from the fields of ethnobotany, phytochem-
istry, and local wisdom, giving rise to ethnopharmacol-
ogy. However, it is important to note that in many cases, 
there are insufficient or even lack of scientific evidences 

to substantiate the health-related information or knowl-
edge associated with these natural remedies.

Discovery of alternative drugs for treating viral respira-
tory diseases such as COVID-19 has led to repurposing 
of natural products with new pharmacological proper-
ties. Medicinal plants from the Lamiaceae, Cupressaceae, 
and Zingiberaceae families, as well as isolated natu-
ral products such as ritonavir, chloroquine phosphate, 
arbidol, and ribavirin, have shown potential antiviral 
activities against some viruses [212]. These natural prod-
ucts have also been found to be beneficial in preventing 
and relieving the symptoms of COVID-19. Other natural 
products compounds, such as vitamin D (calcitriol), vita-
min C (ascorbic acid), lactoferrin, quercetin, resveratrol, 
hanfangchin A (tetrandrine), glycyrrhizin, artemisinin, 
colchicine, and berberine, are current under clinical tri-
als for treatment of COVID-19 [213]. In addition, Panyod 
et al. [5] stated that the use of immunomodulator foods 
and herbs containing large amounts of vitamins C and 
D, flavonoids, and essential oils, helps strengthen the 
immune system and acts as air disinfectants or sanitiz-
ers to prevent aerosol transmission of the virus. The use 
of rich and bulky spices found in tropical lands, such as 
cinnamon, cloves, mint, lemon, and balm, also offers pos-
sibilities for discovering bioactive natural molecules suit-
able against viruses [214–219].

Several food sources have been found to play a role in 
the immunomodulatory system by reducing inflamma-
tion. For example, the fruit extract of Embelia schimperi 
(Myrsinaceae), which contains benzoquinones, has been 
proven to exhibit potent HCV-PR (hepatitis C virus pro-
tease) activity [220]. Pomegranate peel extract (PPE), 
which contains polyphenols, has also been found to have 
immunomodulatory effects [221–223]. In addition, Ali 
et al. [224], and Wen et al. [95], reported that among 221 
phytocompounds, some diterpenoids, sesquiterpenoids, 
triterpenoids, and lignoids were potent inhibitors against 
SARS-CoV on Vero E6 cells. Other possible sources of 
natural products active compounds in treating human 
diseases include endophytes and medicinal plants. [105], 
stated some molecules obtained from medicinal plants 
that have been claimed to be effective against SARS-
CoV-2 in virtual assays or clinically applied, although 
there is no scientific proof.

Traditional herbal medicines
Traditional herbal remedies are widely used as comple-
mentary or alternative medicines in many countries, 
particularly in the context of eastern medicine. These 
remedies consist of traditional medicinal preparations 
derived from single or combined medicinal plants. 
Despite the lack of comprehensive studies, these thera-
pies have been employed for centuries in treatment of 
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various ailments. Traditional Chinese Medicine (TCM), 
which boasts a history of over 2000  years, and Ayur-
veda are two prominent herbal remedies enjoying trust 
and popularity not only within their countries of origin, 
China and India respectively, but also in other parts of 
the world.

In a study conducted by Yang et al. [227], various TCM 
herb formulae and extracts were identified for their 
potential in treating SARS-CoV infections, along with 
TCM-derived compounds exhibiting anti-HCoV activi-
ties. Notably, the Yin Qiao San formula demonstrated 
positive therapeutic effects against upper respiratory 
tract infections, while Ma Xin Gan Shi Tang exhibited 
anti-SARS-CoV activity. Several TCM compounds were 
found to possess antiviral properties, particularly against 
SARS-CoV, MERS, and SARS-CoV-2. These include 
plant-derived phenolic compounds from Isatis indig-
otica root extract, litchi seed extract, herbacetin, rhoifo-
lin, pectolinarin, quercetin, epigallocatechin gallate, and 
gallocatechin gallate. Glycyrrhizin from Glycyrrhizae 
radix, water extract of Houttuynia cordata, and emodin 
derived from Rheum and Polygonum genera also exhib-
ited antiviral activity (Fig.  6). Yi et  al. [228], conducted 
study on 121 Chinese herbal medicines and reported that 
tetra-O-galloyl-β-D-glucose and luteolin were two active 
constituents effective against the wild type of SARS-
CoV. Another review reported that TCM is obtained 
from a single preparation rather than the combination of 

medicinal plants or Chinese medical formulas. Xi et  al. 
[229], specifically identified components of TCM herbs 
as potential agents against antiviral pneumonia, while An 
et al. [225] listed various TCM treatment along with their 
initial symptoms, outcomes, and effects on antiviral dis-
eases. It is important to note that the evidence support-
ing TCM treatment relies on clinical evidence obtained 
from their practical use.

TCM is believed to treat COVID-19 by inhibiting the 
replication and transcription of SARS-CoV-2 through 
various mechanisms such as blocking the viral functions 
of RdRp, 3CLpro, spike protein, and PLpron. Addition-
ally, it can hinder the binding of the virus to host cells by 
acting on ACE2 and TMPRSS2. TCM also has the poten-
tial to reduce cytokine production, prevent immune sys-
tem impairment, and abnormal blood clotting following 
SARS-CoV-2 post-infection.

Shuanghuanglian is a popular traditional Chinese pat-
ent medicine that is formulated from the extraction of 
three Chinese herbal medicines, namely Lonicera japon-
ica Thunb, Scutellaria baicalensis Georgi, and Forsythia 
suspense (Thunb.) Vahlv. The key constituents of this 
medicine are chlorogenic acid, phillyrin, and baicalin. 
Despite being a traditional medicine, Shuanghuanglian 
has undergone scientific investigations in China to assess 
its antiviral activity. Su et al. [45] reported that the inhibi-
tory effect of Shuanghuanglian on SARS-CoV-2 3CLpro 
is primarily attributed to its significant components, 

Fig. 6 Some parts of medicinal plants are used as traditional herbal therapies to alleviate the symptoms of respiratory diseases, 
and the effectiveness of some of these remedies has been scientifically proven. However, there are other herbal remedies that have not been 
listed in international monographs [225, 226]. All pictures were obtained from the Google search engine and were not recognized as the author’s 
ownership or copyright
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baicalin and baicalein (an aglycone of baicalin). The  IC50 
value for this inhibition was found to be only 0.94  μM. 
However, it should be noted that these two compounds 
exhibited less than 50% inhibition activity against SARS-
CoV-2 PLpro at a concentration of 50 μM.

The potent inhibitory activity of baicalein against 
SARS-CoV-2 3CLpro can be attributed to its structural 
features, including three phenolic hydroxyl groups, a car-
bonyl group, and a free phenyl ring. These features allow 
baicalein to form multiple hydrogen bonds and hydro-
phobic interactions with amino acid residues, both in the 
main and side chains of the viral active sites. While both 
baicalein and baicalin demonstrated significant inhibi-
tion, antiviral activity of Shuanghuanglian was found to 
be limited in Vero E6 cells. Su et  al. [45], reported that 
this could be attributed to the low permeability of the cell 
membrane to the components of the preparation.

Ni et al. [230], reported a case in which a combination 
of Shuanghuanglian and Western medicine was used to 
treat three family members suffering from COVID-19, 
resulting in a positive therapeutic effect. However, the use 
of this method needs to be approached with caution due 
to the need for early treatment and potential errors, such 
as combining antibiotics and antiviral drugs. In addition 
to health concerns, some TCM herbs contain nephro-
toxins and mutagens, such as aristolochic acids found in 
Aristolochia and related plants [231]. The regulation of 
these herbs varies among nations, China, Taiwan, and the 
US are some countries that have unregulated their usage.

Pudilan Xiaoyan Oral Liquid (PDL), another TCM 
preparation, has been the subject of study for disease 
enrichment analyses. It has shown promising potential 
in treating asthma and chronic obstructive pulmonary 
disease, with similar significance levels to COVID-19 
(p = 2.4E−03 and p = 2.45E−03, respectively). PDL con-
tains four herbs, including Indigowoad Root (Isatis indig-
otica), Bunge Corydalis (Corydalis Bungeana), Mongolian 
Dandelion (Taraxacum Mongolicum), and Scutellaria 
Amoena (Scutellaria Baicalensis) [232]. Interestingly, 
there is also a commercially available oral liquid in the 
United States known as Respiratory Detox Shot (RDS), 
which is a food supplement containing ingredients com-
monly used in TCM. These ingredients include Panax 
ginseng, Lonicera japonica, Forsythia suspensa, Glycyr-
rhiza uralensis, Scrophularia ningpoensis, etc. The effect 
of RDS on SARS-CoV-2 was investigated, resulting in an 
 IC50 value at a 1:40 dilution [233].

Ayurveda, an ancient traditional medicine system 
dating back to the Vedic period (1500 to 500 BCE), 
has emerged as a potential remedy for mitigating the 
severity of COVID-19. Care [234], reported that the 
Ayurvedic approach, focuses on both preventive and 
curative aspects, tailored to different stages of the 

disease. Maurya et  al. [235], have virtually screened 
natural products from Ayurveda to identify compounds 
capable of modulating the immune system and block-
ing the entry of SARS-CoV-2. Three plants of critical 
significance in Ayurvedic medicine, especially in Rasay-
ana therapy, are Whitania somnifera, Tinospora cordi-
folia, and Asparagus racemosus. These plants contain 
active steroid compounds such as ashwagandhonolides, 
whitacoagin, withaferin, and withanone, which have 
shown potential against various proteins associated 
with SARS-CoV-2, including spike glycoprotein (RBD), 
RdRp, and Mpro [236]. Ayush-64, an Ayurvedic formu-
lation used clinically for its anti-malarial, anti-inflam-
matory, and antipyretic properties, has demonstrated 
favourable binding energy to Mpro, with values of 
approximately − 8.4, − 7.5, and − 7.4 kcal/mol, corre-
sponding to molecules akuammicine N-Oxide (from 
Alstonia scholaris), akuammiginone, and echitaminic 
acid, respectively [237]. Nimbin and curcumin, active 
compounds found in Ayurvedic formulations, have 
exhibited higher binding affinity than nafamostat, a 
synthetic protease inhibitor [235]. Figure 7 shows some 
of the active compounds found in traditional Ayurve-
dic medicines that have demonstrated efficacy against 
SARS-CoV-2 in in vitro assays.

In Romania, the native flora, including medicinal plants 
such as dandelion, daisy, and fat grass [238], was utilized 
as part of traditional medicine during current pandemic 
[225, 239]. These plants are rich in flavonoids, saponins, 
tannins, sterols, fatty acids, coumarin, and vitamins. 
Moreover, the Fritillaria species, known for their phar-
macological effects on the respiratory system, possess 
antitussive, expectorant, and antiasthmatic properties. 
This genus has been included in the Ayurvedic (Fritil-
laria roylei), Korean (four species), and Chinese Phar-
macopeia (ten species known as Bei Mu in Chinese), and 
are also widely used in Tibetan, Mongolian, Miao, Lisu, 
Tujia, Kazakh, Uighur, Jingpo and De’ang traditional 
medicine [240]. Other herbal products, Sumac, extracted 
from the Rhus genus, has demonstrated interactions with 
viral envelopes and host cell surfaces, exhibiting diverse 
antiviral activities against influenza A and B, HSV, and 
HIV. According to Korkmaz [241], it has been suggested 
as a potential treatment for COVID-19 infection.

Traditional medicines in the form of Jamu have been 
produced in Indonesia [242–244]. Popular Jamu formu-
lations include wedhang jahe, jamu kunyit asam, jamu 
teulawak, and jamu beras kencur, which typically contain 
rhizomes from the ginger family (Zingiberaceae) such as 
Zingiber officinale and Curcuma longa. These formula-
tions may also include additional ingredients like Cin-
namomum verum bark, Citrus aurantifolia fruit, and 
starch fillers.
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Fig. 7 Chemical structures of active components inside traditional medicines that have been tested by in vitro and in silico analysis against proteins 
of SARS‑CoV and SARS‑CoV‑2 [94, 228, 235–237, 247–253]
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Although the use of Jamu is not officially recom-
mended in treatment of COVID-19 patients, it has 
become a popular alternative among Indonesians as an 
immunostimulatory agents to prevent symptoms and 
promote speedy recovery from post-infection symp-
toms [245]. Another example is the application of vir-
gin coconut oil (VCO) in the local communities as a 
therapeutic adjuvant to overcome inflammation caused 
by COVID-19. While no scientific evidence has been 
presented, clinical trials have been conducted in four 
hospitals in Yogyakarta caring for hospitalized COVID-
19 patients [246]. It is important to note that traditional 
remedies should not be used as a substitute for medi-
cal treatment for COVID-19 and their effectiveness 
remains unproven.

According to the Committee on Herbal Medicinal 
Plant Products (EMEA/HMPC/892618/201), consum-
ing the extract of Eucalyptus globulus Labill, in the 
form of dried leaves up to four times a day, is helpful 
in managing respiratory diseases such as bronchitis and 
rhinitis. This is because it contains active components 
such as 1,8-cineol and phenolic compounds. The Brit-
ish Herbal Pharmacopeia recommends the use of garlic 
products that contain sulfuric compounds, including 
allicin and mercaptan, amino acids, peptides, terpe-
nes, minerals, and flavone glucosides to treat COVID-
19, as it has traditionally been used to manage colds 
and whooping cough. However, it is important to note 
that Traditional Herbal Medicine Products (THMP) in 
Europe are not considered a treatment for COVID-19 
as it is a severe, life-threatening illness [226].

The utilization of medicinal plant extracts mentioned 
earlier has gained widespread popularity worldwide as 
a recommendation to combat COVID-19, serving as an 
alternative to drugs provided by WHO and the Minis-
try of Health in each country. Zhang et  al. [254], con-
ducted in silico screening of Chinese herbal medicine 
and identified 13 active compounds effective against 
SARS-CoV-2. This method of analysis is beneficial in 
expediting drugs discovery process based on ethnobo-
tanical reasoning. Exploring traditional medicine and 
ethnopharmacology presents a potential alternative for 
drugs discovery in combating COVID-19 pandemic. 
However, it is crucial to exercise caution regarding 
the preparation, dosage, and individual health consid-
erations associated with traditional treatment prior 
to their application. Therefore, conducting a detailed 
investigation into the extraction of active compounds 
from traditional herbal medicines would prove advan-
tageous as it focuses on the specific or known com-
bination of active molecules responsible for their 
bioactivity, eliminating unnecessary or unsafe compo-
nents that may be consumed.

Polyphenol‑based secondary metabolites
Polyphenols are a prominent group of naturally occur-
ring bioactive compounds found in plants that contain 
at least one substituted phenol ring or several hydroxyl 
groups on aromatic ring compounds. This group com-
prises four classes, namely phenolic acids, flavonoids, 
stilbenes, and lignans. The flavonoid class includes sev-
eral derivatives such as chalcones, flavones, flavanones, 
flavonols, isoflavones, anthocyanins, and flavan-3-ols. 
Polyphenols are known for their broad antiviral activi-
ties against various viruses, including influenza A virus 
(H1N1), HBV/HCV, HSV, HIV, and Epstein-Barr virus 
(EBV) [255]. Table  5 shows some phenolic compounds 
that have been explored as antiviral agents, particularly 
against SARS-CoV-2. In silico and in  vitro approaches 
have been used to study subsites of the virus, including 
proteins and enzymes related to SARS-CoV-2 and cell 
receptors in the human body.

Polyphenolic compounds can also act as antioxidants 
due to their hydroxyl groups, which react with radicals 
and oxidizing compounds. Resveratrol, a biflavonoid 
compound with the IUPAC name 3,5,4-trihydroxy-trans-
stilbene, is a potent antioxidant that scavenges for reac-
tive oxygen species, such as  O2

− and  OH−, and lipid 
hydroperoxyl free radicals. Although it has poor oral bio-
availability and water miscibility, resveratrol is rapidly 
metabolized in the body. Abba et al. [282] have stated the 
role of resveratrol and its action mechanisms in combat-
ing viral infections in human and animal cells. Therefore, 
resveratrol is presumed to have potential therapeutic 
benefits in treating COVID-19 by enhancing the immu-
nity of infected patients. Quercetin is another popu-
lar phenolic compound that has been combined with 
N-acetylcysteine in the formulation of Quercinex to be 
directly administered to the deep lung tissue through a 
nebulizer to treat respiratory problems and multifocal 
pneumonia in COVID-19 patients [283]. Rutin, another 
phenolic compound, has been studied for its in-silico 
binding affinity to interact with the main protease of 
SARS-CoV-2 in the three-dimensional structures of PDB 
IDs 6LU7 ([170] and 6YNQ [169].

The polyphenols present in ethanol PPE have exhib-
ited positive in  vitro activity in reducing the interac-
tion between SARS-CoV-2 spike glycoprotein and 
human ACE2, along with the activity of SARS-CoV-2 
Mpro. ACE2 and TMPRSS2 gene expression levels were 
reduced by 30 and 70%, respectively, by applying PPE at 
0.04 mg/mL on human kidney-2 cells infected by SARS-
CoV-2 Spike pseudotyped lentivirus. Furthermore, PPE 
displayed the inhibition of Mpro activity by relatively 80% 
when used at 0.2 mg/mL [223]. It has also been evaluated 
in three commercial forms, namely pomegranate juice, a 
concentrated liquid extract, and 93% PP powder extract, 
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to demonstrate its anti-influenza activity against PR8 
(H1N1), X31 (H3N2), and H5N1 [221].

Dietary intake of polyphenols at high concentrations 
also regulates ACE2 expression and function, by acting as 
an antioxidant. Calceolarioside B is an active compound 
found in Akebia trifoliata fruit, which has been suggested 
as a potential dietary treatment for COVID-19 patients 
due to its various health benefits, including antimicro-
bial and anti-inflammatory effects [284]. This caffeic acid 
derivative is also present in other plants such as Staunto-
nia hexaphylla (leaves), Scutellaria galericulata L. (aerial 
parts), Forsythiae Fructus (fruit), and Mimulus guttatus 
(seeds) [285–288]. Figure  8 shows that active phenolic 
compounds, such as quercetin and vitamin C, have a syn-
ergistic effect as adjuncts in treating COVID-19 [289].

Based on this reasoning, it becomes evident that 
exploring the antioxidant potential of natural phenolic 
extracts, as well as other forms such as food-based 
extracts and polyphenol-containing functional foods 
or nutraceuticals [290–292], can be valuable in man-
aging severe COVID-19 cases with inflammatory con-
ditions like cytokine storm. Further discussion about 
the correlation between the activities of polyphenolic 
compounds, especially those with flavonoid structures, 
against the Mpro of SARS-CoV-2 has been elaborated in 
subchapter 8.

Alkaloid‑based secondary metabolites
Alkaloids are a class of organic nitrogenous base com-
pounds that occur naturally in plants, microorganisms, 

Fig. 8 Structures of some phenolics which have been tested for SARS‑CoV‑2‑related in vitro activities [194, 249, 250, 256–259, 262, 263]
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and animals. Their basicity depends on the form of nitro-
gen they contain, which can be primary, secondary, or 
tertiary amines. Alkaloids are categorized based on the 
amino acids that make up their nitrogen content and 
the structure of their alkaloid skeleton. These secondary 
metabolites have been found to exhibit a diverse range 
of biological and pharmacological activities, including 
antimicrobial, antiparasitic, antiasthma, analgesic, anti-
hyperglycemic, anticancer, psychotropic, and stimulant 
properties. Some alkaloids have been identified as poten-
tial antiviral agents against SARS-CoV-2 through both in 
silico and in vitro assays, as outlined in Fig. 9, Table 6.

In 1818, quinine was discovered and isolated from 
Chincona bark, which prompted the exploration of other 
plant alkaloids due to their bioactivities [304]. Recent 
studies found that quinine exhibited promising activ-
ity against SARS-CoV-2 with an effective concentration 
of EC90 at 38.8  mM [305]. In Northern Chile, Schizan-
thus porrigens Graham, herbaceous species, contains 
a tropane-derived alkaloid called Schizanthine Z that 
actively binds to PLpro with docking affinity − 7.5 kcal/
mol [168]. Another promising bis-benzylisoquinoline 
alkaloid, cepharanthine, showed strong activity against 
SARS-CoV-2 by blocking host Ca + channels and inhibit-
ing virus fusion and entry [306]. Additionally, Cryptolepis 
sanguinolenta, a plant found in West Africa, contains 
antipathogenic-based alkaloids that could be a promis-
ing candidate for SARS-CoV-2 inhibitors [307]. Focus 
has also been directed to marine products in the search 
for secondary metabolite contents, particularly alkaloids. 
Some marine organisms such as sponges from Crypto-
tethya crypta, Dysidea avara, Crambe crambe, a cyano-
bacterium from Nostoc ellipsosporum, and starfishes 

from Fromia monilis and Celerina heffernani, produce a 
polycyclic guanidine alkaloid skeleton in their secondary 
metabolites, which act as antiviral agents [190].

The study conducted by Quimque et al. [308] focused 
on examining 97 antiviral secondary metabolites from 
fungi. They utilized computational modelling to screen 
these metabolites and identified Quinadoline B as the 
top-scoring compound, predicted to exhibit high bind-
ing affinity to various proteins associated with SARS-
CoV-2, including PLpro, 3CLpro, RdRp, non-structural 
protein 15 (nsp15), and the spike binding domain to 
GRP78. Additionally, the ADMET value analysis indi-
cated that quinadoline B is a favourable compound with 
high absorptive probability in the gastrointestinal tract 
and low capacity for crossing the blood–brain barrier.

Chowdhury [300] conducted a molecular docking 
study of five secondary metabolites from Tinospora cor-
difolia (Willd.) Hook.f. & Thomson (Menispermaceae) 
and found that berberine showed the best binding affin-
ity of −  7.3  kcal/mol to 3CLpro of SARS-CoV-2, lead-
ing to an inhibition constant of 4.4  μM. Berberine has 
previously been shown to have antiviral activity against 
influenza, with a comparable IC50 to the standard drugs 
oseltamivir [309]. Garg and Roy [302] identified the 
four best molecules out of twenty antiviral alkaloids for 
potential scrutiny using Lipinski’s rule and docking study 
based on maximum negative binding energy with Mpro 
of SARS-CoV-2. Thalimonine, emetine, sophaline D, and 
tomatidine exhibited binding energies of −  8.39  kcal/
mol, − 10.17 kcal/mol, − 8.79 kcal/mol, and − 9.58 kcal/
mol, respectively. Thalimonine and sophaline D were 
recommended for further in  vitro studies based on fil-
ters, parameters, and mechanisms of virtual bioactivity 

Fig. 9 Some alkaloid structures which have been tested by in vitro and in vivo assays against SARS‑CoV‑2 proteins [293–296, 298, 305]
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against Mpro of COVID-19. Various alkaloids derived 
from plants have been shown to have potent antiviral 
activity against various viruses, including coronavirus, as 
listed by Majnooni et al. [305] and Topcu et al. [304].

Terpenoid and its derivatives
Terpenoids are a diverse group of natural products that 
are derived from isoprene (1,3-butadiene) units. They are 
formed by combining carbon skeletons from other ace-
tate and shikimate pathways such as steroidal saponins, 
cardioactive glycosides, and phytosterols. Terpenoids 
have many essential applications in the fields of medicine, 
cosmetics, and food industries. This group of secondary 
metabolites exhibits biological activities, including anti-
tumor, anti-inflammatory, antibacterial, antiviral, antima-
larial, and antidiabetic activities [310]. Some terpenoids 
have also been studied for their potential bioactivity 
against SARS-CoV-2 and illustrated in Fig. 10, Table 7.

Tetraterpenes, particularly astaxanthin from 
the carotenoid class, have been extensively dis-
cussed for their potential as an adjunctive supple-
ment in COVID-19 [314]. Triterpene glycosides, such 
as saikosaponins A, B, C, and D, which can be iso-
lated from Heteromorpha spp., Bupleurum spp., and 
Scrophularia scorodonia, have demonstrated anti-
viral activity against HCoV-22E9 [93]. Another sapo-
nin, 3-beta-O-(alpha-L-rhamnopyranosyl-(1- > 2)
alpha-L-arabino pyranosyl)olean-12-ene-28-O-(alpha-
L-rhamnopyranosyl-(1- > 4)-beta-D-glucopyrano-
syl-(1- > 6)-beta-D-glucopyranosyl) ester, isolated from 
leaves and stems of Oreopanax guatemalensis [315], 
exhibited the highest binding energy to interact with 
SARS-CoV-2 S-RBD compared to other terpenes using 
computer-based molecular simulation [316]. Li et  al. 
[296] reported that extracts from Artemisia annua, Lyco-
ris radiate, Pyrrosia lingua, and Lindera agregata were 
practical for anti-SARS-CoV screening analysis. The 
aqueous extract of Houttuynia cordata showed inhibition 
of viral 3CL protease and blockade activity of viral RNA-
dependent RNA polymerase in SARS-CoV [317].

Glycyrrhizin, also known as glycyrrhizic acid, is a type 
of terpenoid saponin that is commonly extracted from 
the roots (Glycyrrhizae radix rhizoma) of glycyrrhiza 
plants, including Glycyrrhiza glabra L. and licorice root 
[251, 328]. The primary compound of glycyrrhizin is a 
triterpene glycoside, with its aglycone being 18b-glycyr-
rhetinic acid [329]. Due to its mode of action and char-
acteristics, glycyrrhizin has the potential to be utilized as 
an anti-SARS-CoV-2 agents [251, 330]. In a case report 
of a non-hospitalized COVID-19 patient who took diam-
monium glycyrrhizinate, Ding et  al. [331] stated that 
immune regulation against cytokine storm had improved, 
and inflammation was reduced.

Derivatives of glycyrrhizin, including the amide form, 
have been shown to exhibit higher anti-SARS-CoV activ-
ity than glycyrrhizin itself. This is due to the addition of 
amino acid residues on the glycoside part, while preserv-
ing the free -COOH function in C30, which appears to 
be crucial for the anti-SARS-CoV effect [332]. In  vitro 
experiments on antiviral activity of aqueous licorice root 
extract containing glycyrrhizin against SARS-CoV-2 in 
Vero E6 cells have demonstrated that glycyrrhizin blocks 
SARS-CoV-2 replication by inhibiting Mpro, [252].

Terpenoids, specifically monoterpenes and sesquit-
erpenes, are highly active compounds that may inter-
act more rapidly with the primary site of infection in 
COVID-19 patients when delivered via aerosol delivery 
systems such as nebulizers and inhalers. This form of 
drugs delivery is preferred over oral administration as 
it allows for direct entry of the terpenoids through the 
respiratory tract, which increases their bioavailability 
[255]. The aerosol form of terpenoids contains essential 
oils, which are volatile oils obtained from different parts 
of plants including leaves, fruit, flowers, bark, and roots 
using various extraction methods. Essential oils are clas-
sified as terpenoids because they predominantly contain 
monoterpenes and sesquiterpenes, rather than deriva-
tives of phenyl, propanoid, and aromatic compounds.

According to Javed et  al. [333], carvacrol, a phenolic 
monoterpene found in thyme and oregano, has dem-
onstrated therapeutic properties against various viral 
diseases such as HSV type 1, bovine diarrhea virus, res-
piratory syncytial virus, and murine norovirus in  vitro. 
It was proposed that carvacrol could also have potential 
mechanisms of action against SARS-CoV-2, the virus 
responsible for COVID-19. Specifically, carvacrol may 
interfere with ACE2 receptors in host cells, leading to 
protective effects against inflammation, and potentially 
hinder the virus’s interaction with viral proteases during 
infection.

Essential oils derived from medicinal plants and their 
food matrices contain volatile compounds that can be 
quickly released, making them highly therapeutically 
potent compared to the original plants or herbs [334]. 
These essential oils can easily enter the body through 
inhalation and reach the bloodstream due to their high 
volatility. However, it is important to assess the duration 
of essential oil diffusion to ensure that it is safe to inhale 
and maintain indoor air quality [335].

Boukhatem (2020) conducted a literature review of 
published study articles and reported antiviral activities 
of essential oils and isolated compounds. The potential 
of essential oils from aromatic plants as antiviral com-
pounds against coronavirus have also been explored [3, 
207, 336]. Adorjan and Buchbauer [337], as well as Ojah 
[338], have listed essential oils with antiviral activities 
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against human-targeting viruses. Using essential oils as a 
therapeutic antiviral intervention is a safe alternative due 
to their natural extract origin. Essential oils directly act 
on enveloped viruses, such as HSV type-1 and type-2, by 
binding to viral envelopes and glycoproteins. The plaque 
development assay supported this statement and showed 
that essential oils reduced viral load significantly during 
contact with virions before the adsorption process or 
during the pre-treatment step, but not when used before 
HSV-1 and HSV-2 adsorption and attachment [339, 340]. 
Time-of-addition experiments concluded that essential 
oils blocked virus adsorption [341]. Thymoquinone and 
black seed fixed oil were also found to be positively active 
against avian influenza virus (H9N2) and MCMV infec-
tion model 36. Pelargonium sidoides, extracted herbal 
products, has been licensed and marketed for patients 
with acute bronchitis, reducing rhinovirus infection and 
interfering with the reproduction of multiple respiratory 
viruses [163–165].

Essential oils are edible, but their potential toxicity 
requires caution when ingesting orally. The non-polar 
properties of essential oils make them easily permeable 
through skin membranes, leading to whole-body heal-
ing. As a result, essential oils can activate specific brain 
regions, influencing the hypothalamus and providing 
pain relief, mood enhancement, and improved cognitive 
function [334]. Due to concerns about their bioavailabil-
ity, essential oils are recommended for topical application 
to the skin. Their lipophilic nature enables them to easily 
penetrate the skin and disrupt the virion envelope, inhib-
iting host cell attachment. Several essential oils with viru-
cidal activity, such as lemongrass (Cymbopogon citratus) 

[342], lemon balm (Melissa officinalis) [343], peppermint 
[341], dwarf lavender cotton (Santolina insularis) [339], 
ginger (Zingiber officinale), thyme (Thymus vulgaris), 
hyssop (Hyssopus officinalis), and sandalwood (Santalum 
album) [340], have been identified. Table  7 highlights 
some potential essential oils and common terpenoids 
with activity against SARS-CoV-2.

The efficacy of natural plant essential oils in reducing 
virus titers  (TCID50) against non-enveloped viruses at 
different temperatures and times was found to be insig-
nificant. Several previous studies have investigated the 
impact of essential oils on non-enveloped viruses, such as 
norovirus, rotavirus, adenovirus, and HPV. For instance, 
Kovac et al. [344] examined the effect of Hyssopus offic-
inalis and Thymus mastichina essential oils against 
murine norovirus (MNV-1) and human adenovirus sero-
type 2 (HAdV-2). Garozzo et al. [345] investigated Mela-
leuca alternifolia essential oil (tea tree oil, TTO) against 
polio type 1, ECHO 9, and Coxsackie B1. While Cermelli 
et  al. Evaluated eucalyptus oil against adenovirus. In all 
of these [344, 346], essential oils were unable to mask 
non-enveloped viruses, indicating that they may not be a 
viable option for reducing foodborne viruses in the food 
industry. Conversely, essential oils have shown signifi-
cant virucidal activity against enveloped viruses due to 
their ability to disrupt the virus’s enveloped proteins and 
interaction with host cells. Jackwood et al. [347] reported 
that QR448(a), a blend of botanical oleoresins and essen-
tial oils developed by Quigley Pharma, Inc., exhibited 
virucidal effects against avian infectious bronchitis virus 
(IBV) in Vero E6 cells, embryonated eggs, and chickens 
by reacting before virus attachment and entry.

Fig. 10 Chemical structures of terpenoids with their bioactivities against SARS‑CoV‑2 proteins [95, 101, 311–313]
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Antiviral mechanism of essential oils may be use-
ful in inhibiting SARS-CoV-2 when the virus has struc-
tural similarities to other viruses. One such virus is HSV, 
an enveloped virus similar to SARS-CoV-2. Eugenol, 
extracted from Eugenia caryophyllus (Spreng.) Bullock & 
S.G. Harrison, was found to inhibit the replication of HSV 
standard strains [84] in HSV-1 and HSV-2 viruses [348] 
and delay the development of herpetic keratitis in HSV-
1-infected mice. However, due to its stability concerns, 
eugenol is better suited for topical treatment rather than 
internal use. Eugenol in Syzygium aromaticum extract 
has also been evaluated for its ability to inhibit the rep-
lication of hepatitis C virus [220]. Another essential oil 
component, isoborneol from Salvia fruticosa, has dual 
viricidal activity against HSV-1, and inhibits virus repli-
cation and viral glycosylation at a concentration of 0.06%. 
Inactivation of the virus by isoborneol may lead to the 
interaction of the alcoholic moiety of isoborneol and the 
lipid in the virus envelope. Clove (S. aromaticum L.) has 
been reviewed as a potential therapeutic agents for anti-
COVID-19 due to its essential oil content, with eugenol 
being a major component [349]. Clove extract has been 
shown to inhibit HCV replication [220] and exhibit 
chemopreventive activity [350]. This dried flower bud 
contains approximately 11–20% of the essential oil, while 
its dried leaves comprise less than 5% of the oil, with 
eugenol being a major component (70–90%) [350–353]. 
Eugenine, an isolated compound from Syzygum aromati-
cum extract, also exhibited anti-HSV potential activity 
[354]. Manuka oil was found to inactivate HSV before 
entering the cell, and its virucidal activity is believed to 
be due to the interference of β-triketones and other ter-
penes in adsorption and entry into host cells [337].

In an evaluation of coronavirus inhibition in HeLa-
CEACAM1a cells, ethanol extracts of Nigella sativa, 
Anthemis hyalina, and peel of Citrus sinensis, which were 
presumed to contain essential oil compounds, were. Ula-
sli et  al. [79] reported that A. hyaline extract molecules 
have the potential to treat CoV infections. Additionally, 
Salem and Hossain [99] noted that BSO from N. sativa 
exhibited a remarkable antiviral effect against MCMV 
infection.

According to Tkachenko’s [102], essential oil extracted 
from the fruit and roots of Heracleum L. species (Api-
aceae) demonstrated a toxicity LD50 of 0.2–0.4  mL 
against both Influenza Types A and B. The main constitu-
ents of these essential oils were found to be octyl acetate 
and octyl isobutyrate in the seeds, while the fruits con-
tained monoterpenes such as pinene and limonene, as 
well as complexes of ethers of octyl and hexyl alcohols. 
The roots, on the other hand, were found to contain 
pinene, ocimene, and sesquiterpene derivatives. Hayashi 
et  al. [88] reported that cinnamaldehyde, the primary 

constituent in Cinnamomi cortex (Cinnamomum cas-
sia Blume), was able to reduce virus yields in the lungs 
during an infection with lethal influenza virus-induced 
pneumonia in the airways of mice.

CBD is a compound belonging to the class of cannabi-
noids and is typically found in Cannabis sativa. CBD has 
a unique chemical structure consisting of terpenes and 
phenols, which is commonly referred to as a terpenophe-
nolic compound. Recent study by Anil et al. and Raj et al. 
[257, 311] suggests that CBD, along with other terpenoid 
and phenolic compounds, may possess potential activ-
ity against SARS-CoV-2. CBD has been detected in the 
blood plasma of healthy patients at concentrations in 
the nanomolar range when using approved CBD drugs. 
Conversely, CBD metabolite, 7-hydroxy-cannabidiol 
(7-OH-CBD), was found to be in the micromolar range. 
A study conducted on A549 human lung carcinoma cells 
expressing exogenous human ACE-2 receptor (A549-
ACE2 cells) showed that CBD inhibited the replication 
of SARS-CoV-2 with an  EC50 of 1.24, while 7-OH-CBD 
was 3.6  μM. Additionally, oral administration of CBD 
with a high-fat meal has been shown to increase the 
presence of 7-OH-CBD in the blood, which could effec-
tively inhibit SARS-CoV-2 infection. Nguyen et al. [355] 
also found that CBD therapy resulted in a lower rate 
of testing positive for COVID-19 in patients. Further-
more, Chatow et  al. [356] reported that CBD exhibited 
a synergistic effect on HCoV-229E-infected human lung 
fibroblasts when combined with the NT-VRL-1 terpene 
formulation. Current, CBD is available as a mouth spray 
under the licensed name Nabiximols, which is intended 
to reduce and relieve respiratory disease-related pain.

A study by Amparo et  al. [357] on molecular docking 
of certain terpenoids and essential oils against SARS-
CoV-2 showed satisfactory results. AutoDock Vina was 
used to investigate some compounds and the results 
revealed that (E)-α-atlantone, 14-hydroxy-α-muurolene, 
allo-aromadendrene epoxide, amorpha-4,9-dien-2-ol, 
aristolochene, azulenol, germacrene A, guaia-6,9-di-
ene, hedycaryol, humulene epoxide II, α-amorphene, 
α-cadinene, α-calacorene, and α-muurolene have the 
highest binding energy values for PLpro, 3CLpro, S pro-
tein, and RdRp, respectively. Similarly, plant secondary 
metabolites such as bismahanine, eriodictyol-7-O-ruti-
noside, glycyrrhizic acid, and hypericin showed the high-
est binding energy against S protein, RdRp, TMPRSS2, 
and Mpro, respectively.

Antiviral activity of plant secondary metabolites against 
SARS-CoV-2 has been discussed, along with the vari-
ous drugs discovery approaches that can be employed. 
Polyphenols, alkaloids, and terpenoids are some of the 
secondary metabolite classes that can serve as antiviral 
agents. Additionally, Machado et  al. [358] and Pisoschi 
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et  al. [359] have suggested other secondary metabolites 
such as polysaccharides, lipids, vitamins, and animal-
derived compounds for the modulation of early inflam-
matory responses in COVID-19 patients.

Structure–activity relationship (SAR)
SAR is a theoretical concept that links chemical mole-
cules structure or structural-related properties to its bio-
logical activity or target properties. This model enables 
the modification of a moleculular structure to alter its 
bioactivity. Essentially, molecules with identical chemi-
cal properties that interact and bind with targets simi-
larly will have similar activities. Therefore, SAR approach 
involves identifying the properties of molecules, such as 
geometric and electronic properties, solubility, and cer-
tain chemical groups, to predict its physicochemical and 
biological properties in targeting biological targets. SAR 
model reduces costs, time, and concerns related to toxic-
ity bioassays.

Earlier studies by Mehaney et  al. and Mengist et  al. 
[366, 367] have discussed the detailed mechanism for 
designing inhibitors for SARS-CoV-2. Ye et al.[199] have 
also proposed a mechanism for inhibiting SARS-CoV-2 
Mpro. The focus of this study is on the impact of flavonol 
structures on the binding affinities of Mpro to SARS-
CoV-2, with Fig. 11 providing illustrations of three forms 
of flavonols with varying hydroxy substituents in the B 
ring skeleton of flavonol and glycosides.

Quercetin derivatives, with mono- or di-substituents 
of the glycoside, exhibited high activity against Mpro. 
Quercetin-3-O-glucuronide 9, quercetin-3-O-rutinoside 
(rutin) 12, and quercetin-3,5-digalactoside 11 had bind-
ing affinities to Mpro of -9.4 kcal/mol, −  9.16 kcal/mol, 
and − 9.6 kcal/mol, respectively, which were higher than 
quercetin 2 (− 8.47 kcal/mol). This suggests that the pres-
ence of glycoside as a substituent on the quercetin skel-
eton is important for increasing binding affinity to Mpro. 
Most glycoside compounds have higher bioavailability in 
the body than aglycon [164]. However, isoquercitrin or 
isoquercetin 9, a monosubstituted quercetin glycoside, 
showed less binding energy than quercetin. The pres-
ence of glucose as the glycoside did not improve binding 
access to Mpro. Similar to quercetin, myricetin deriva-
tives in a glycoside form also showed high binding affinity 
to Mpro compared to the lead compound, myricetin 3. 
Myricetin-3-O-rhamnoside (myricitrin) 13 and myrice-
tin-3-O-rutinoside 14 are two examples of this. However, 
myricetin itself did not show a good binding affinity to 
Mpro, and was not ranked highly in previously reported 
study, with a binding energy of − 7.311 kcal/mol [164].

Myricetin derivatives have also been tested for their 
binding energy against the RdRp of SARS-CoV-2, 
and it has been found that myricetin-3-O-rutinoside 

(− 9.5 kcal/mol) has a lower binding energy compared 
to myricetin (−  8.4  kcal/mol). Myricetin has shown 
promising activity against Mpro in  vitro, with an  IC50 
of 3.684 μM [262]. Therefore, it is expected that myrice-
tin derivatives would exhibit better bioactivity against 
Mpro of SARS-CoV-2 based on in  vitro and in  vivo 
analysis.

Kaempferol 1, quercetin 2, and myricetin 3 are known 
structurally similar flavonols, differing only by the pres-
ence of hydroxy substituents at positions 3′ and 5′. Based 
on in silico analysis of their binding energy with Mpro, 
their relative binding energy values are comparable. The 
number of hydroxyl substituents on the B ring does not 
significantly affect their binding activity against Mpro, 
as they show similar binding activity values of around 
−  8.4 to −  8.5  kcal/mol, with critical energy data from 
other literature ranging from −  7.307  kcal/mol [362] to 
− 9.5 kcal/mol [164]. Quercetin 2 has been identified as 
crucial molecules [155] in the prophylaxis and treatment 
of COVID-19 patients due to its anti-inflammatory activ-
ity against cytokine storm during severe inflammation. 
Meanwhile, kaempferol derivatives, such as rhamnoside 
4 and glucuronide 5 glycosides, exhibit higher binding 
affinities to Mpro (− 8.8 and − 9.1 kcal/mol, respectively) 
than the lead compound kaempferol (−  8.58  kcal/mol). 
The presence of two di-rhamnosides in the kaempferol 
skeleton at positions 3 and 7, as kaempferitrin 7, shows 
lower binding affinity to Mpro compared to kaempferol.

Based on the previous discussion, the optimal position 
for the hydroxy group on the B ring of the flavonol skel-
eton is on the para-substituted benzene ring, as shown 
in Fig. 12. The meta-position of the hydroxyl substituent 
does not significantly impact the binding energy, espe-
cially when comparing kaempferol 1, quercetin 2, and 
myricetin 3. When a glycosylated hydroxyl position is 
present on carbon number 3, compounds 4, 5, 6, 9, 10, 
12–15 exhibit better binding affinity against Mpro than 
the original compounds or aglycon (1, 2, 3). An inter-
esting observation is that compounds 7 and 11 have 
di-glycosides in their flavonol skeleton, but at different 
positions. While kaempferitrin 7 has two sugar moieties 
at positions 3 and 7, which reduces its binding energy 
against Mpro compared to the aglycon, kaempferol, 
quercetin-3,5-digalactoside 11 comprises two sugar moi-
eties at positions 3 and 5, enabling it to bind better to the 
active site of Mpro than its aglycon, quercetin 2. The type 
of sugar presented as glycosides in molecules is presumed 
to influence molecules bioactivity against Mpro, with 
glucuronic acid, rhamnose, and rutinose enhancing and 
facilitating the binding affinity against Mpro, while glu-
cose does not. This SAR between flavonol derivatives and 
Mpro may serve as the foundation for the development of 
a novel drugs compound against Mpro of SARS-CoV-2.
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Fig. 11 Correlation of flavonol‑based derivatives with their in‑silico bioactivities with Mpro of SARS‑CoV‑2. All docking scores data presented here 
were obtained from different references, which will be influenced by their own use on (1) docking program, (2) docking algorithm, and (3) system 
set‑up. Refs.: *[164]; **[281]; ***[265]; ****[262]; *****[360]; ******[361]; *******[362]; ********[363]; *********[364]; **********[365]
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Current challenges against COVID‑19
New variants of SARS-CoV-2 have emerged through 
mutations that increase their transmissibility, sever-
ity, and mortality. In the future, significant attention 
and funding will be given to the study of drugs, with 
a shift towards vaccine redesign when repurposing 
drugs is not enough. However, an effective vaccine can-
not entirely prevent future mutant attacks, and not all 
vaccines are suitable for worldwide application due to 
factors such as environment, geography, and genetic 
diversity. Each SARS-CoV-2 variant has unique char-
acteristics and infection roles, and current antibodies 
may not always be effective in neutralizing these vari-
ants. Therefore, specific vaccines are needed to enhance 
human immunity against each variant. The effective-
ness of vaccines, such as NVX-CoV2373, varies across 
different regions and variants. In the UK, it showed 
95.6% effectiveness against the original strain of SARS-
CoV-2, but its efficacy in South Africa was 60%, and it 
was only 49.4% effective against the beta variant. Addi-
tionally, vaccine effectiveness diminishes over time, 
with up to a 50% reduction in efficacy observed after 
ten weeks of a booster dose [2].

After COVID-19 pandemic subsides, a major chal-
lenge that remains is increasing immunity to prevent 
unexpected virus mutations, thereby leading to ques-
tions, such as Should people receive annual vaccinations 
to prevent unexpected mutants? Further investigation on 
vaccine production is ongoing, but the long-term impact 
of immunization on the human body must also be inves-
tigated. Concerns have been raised about the potential 
carcinogenic effects of vaccination, which may not be 
detected quickly. Identifying adverse events after vacci-
nation is important, especially for children, who have a 
longer expected future than older individuals. In some 
countries, vaccinations are mandatory for children over 
eight years old to improve their immunity. Therefore, it 
is important to track the progress in the muscular, car-
diovascular, respiratory, and reproductive systems. In the 
coming years, study on COVID-19 will provide valuable 
scientific insights into preventing future unexpected viral 
infections.

Regarding the development of natural products into 
antiviral drugs, there are some considerations about what 
kind of challenges and problems researchers facing now-
adays. Firstly, the complexity of natural products leads to 

Fig. 12 SAR of flavonol against Mpro of SARS‑CoV‑2 based on in silico data from previous studies as shown on Fig. 11 [164, 262, 265, 278, 281, 317, 
363, 368]
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time consuming and labour-intensive problems due to 
the long way of isolation, characterization and synthesis 
process [4, 6]. Secondly, standardization on the manufac-
ture of the isolate or compound from natural products is 
difficult to be applied since a broad variation on bioac-
tivity potency from different sources and batches [8]. In 
addition, formula stability and safety on the use of natural 
product extracts require specific strategies on the pres-
ervation of its efficacy and safety assessments which also 
to avoid any occurred resistances [10, 12]. The limited 
sources of natural products are also being an ethical and 
ecological concerns nowadays. Therefore, interdiscipli-
nary collaborations among researchers in chemistry, biol-
ogy, pharmacy, and medicine are required to commit in 
addressing the various scientific, regulatory and ethical 
challenges that arise.
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