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Abstract 

Colorectal cancer (CRC) presents a formidable challenge, characterized by a steadily increasing incidence. Current 
approaches to manage CRC, including chemotherapy and targeted therapies, are burdened with significant limita-
tions such as resistance development, adverse events, and high costs. Hence, there is an urgent demand for a more 
promising alternative. Autocrine motility factor (AMF), known for its role in promoting cancer cell motility, exhibits 
a unique ability to selectively impede the growth of cancer cells. In our study, we have elucidated the specific inhibi-
tory effect of AMF derived from DU145 prostate cancer cells (D-AMF) on the proliferation of CRC cells. D-AMF effec-
tively downregulated the expression of glucose-6-phosphate dehydrogenase (G6PD) at both the mRNA and protein 
levels, resulting in a concurrent increase in the generation of reactive oxygen species (ROS). Notably, the combina-
tion of D-AMF and curcumin proved highly effective in eliminating curcumin-resistant CRC cells. Therefore, the use 
of D-AMF in conjunction with curcumin holds promise as an alternative treatment approach for CRC.
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Introduction
Glucose-6-phosphate isomerase (GPI) plays a dual role 
in cellular processes. In its dimeric form, GPI acts as an 
enzyme, facilitating the conversion of glucose-6-phos-
phate to fructose-6-phosphate, a critical step in glycoly-
sis. However, when existing as a monomer, GPI assumes 
the functions of AMF and neuroleukin [1]. Cancer cells 
employ the secretion of AMF to boost their motility 
and proliferation through autocrine mechanisms, while 
also promoting angiogenesis and metastasis via both 

autocrine and paracrine pathways. AMF triggers the acti-
vation of PI3K/AKT and/or MAPK/ERK signaling path-
ways and is internalized into the endoplasmic reticulum 
through an AMF receptor (AMFR)-mediated, dynamin-
dependent, cholesterol-sensitive raft pathway [2]. Clini-
cally, elevated levels of AMF and AMFR hold prognostic 
significance in various cancers, including gastric cancer, 
non-small cell lung cancer, melanoma, and colorectal 
cancer [3]. In addition to its oncogenic effects, AMF has 
been found to selectively induce apoptosis in cancer cells 
in an AMF type-dependent manner, possibly involving 
interactions between different AMF types [4–6]. There-
fore, AMF has the potential to operate as either a signal 
for cell death or as a factor promoting cell survival dur-
ing the competition among cancer cells, which may not 
effectively differentiate between self and non-self AMF 
molecules. Cell competition, positioned as a downstream 
process within developmental signaling pathways, plays 
a pivotal role in assessing cellular fitness and selectively 
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eliminating less fit cells [7]. Considering the close asso-
ciation between cell competition and cancer progression 
[8], it is plausible to consider that AMF might function as 
a secreted signal capable of instigating cell competition, 
thereby influencing the destiny of cancer cells. Curcumin, 
derived from the rhizomes of Curcuma longa L., pos-
sesses a wide range of valuable properties, encompass-
ing anti-cancer, anti-inflammatory, antimicrobial, and 
antioxidant effects. Its ability to influence numerous bio-
logical pathways pertinent to cell proliferation, survival, 
and metastasis has demonstrated its efficacy against a 
variety of cancer cell lines [9]. Recent advancements in 
curcumin derivatives have significantly enhanced their 
historically limited bioavailability and absorption [10]. 
Furthermore, there is a growing interest in the syner-
gistic effects of curcumin when combined with estab-
lished cancer drugs in clinical settings [11]. Expanding 
upon previous research that has illuminated the varying 
effects of AMFs sourced from different cancer cell lines 
on distinct cancer cell types [4–6], our study reinforced 
the unique ability of D-AMF to significantly suppress the 
proliferation of HT29 and SW620 CRC cells. This effect 
was accompanied by a downregulation of G6PD expres-
sion, an increase in ROS production, and the near-com-
plete eradication of curcumin-surviving CRC cells. These 
findings underscore the potential of D-AMF as a valuable 
component in combination therapy, offering a promising, 
effective, and cost-efficient strategy to enhance thera-
peutic efficacy and counteract resistance development in 
CRC treatment.

Results and discussion
In this study, the AMFs used were cloned from various 
cancer cell lines, including AsPC-1 pancreatic cancer 
cells (AS-AMF, Genbank: MW664917), DU145 pros-
tate cancer cells (D-AMF, Genbank: MW664916), HeLa 
cervical cancer cells (H-AMF, Genbank: KY379509), 
HepG2 liver cancer cells (HG-AMF, Genbank: 
MW664918), HT29 colon cancer cells (HT-AMF, Gen-
bank: MW843569), MCF-7 breast cancer cells (M-AMF, 
Genbank: MW664919), SKOV3 ovarian cancer cells (SK-
AMF, Genbank: MW664910), and A549 lung cancer cells 
(A-AMF, Genbank: BC004982) (Fig.  1a). We examined 
the influence of these distinct AMFs on the proliferation 
of two CRC cell lines: the highly adherent HT29 and the 
metastatic SW620 cells. At a concentration of 2 µg/mL, 
D-AMF exhibited a significantly greater inhibitory effect 
on both CRC cell lines compared to other AMFs. Fur-
thermore, D-AMF displayed a dose-dependent growth 
inhibition pattern (Fig. 1b). In a clonogenic assay, the use 
of 4 µg/mL D-AMF resulted in a significant 68% reduc-
tion in HT29 cell growth and an even more pronounced 
73% reduction in SW620 cell growth compared to 

untreated control cells (Fig. 1c, d). Building on our previ-
ous research findings [6], we investigated the impact of 
D-AMF on the expression levels of G6PD mRNA in CRC 
cells. G6PD, a crucial enzyme within the pentose phos-
phate pathway (PPP), is responsible for generating ribose 
and NADPH. It plays a critical role in regulating various 
aspects of cancer cell behavior, including survival, migra-
tion, angiogenesis, proliferation, and metastasis. Elevated 
activity of this enzyme has been consistently observed in 
a wide range of tumor types [12], which may explain the 
increased resistance of cancer cells to anticancer drugs 
inducing oxidative stress [13]. Consequently, inhibiting 
G6PD has been documented to enhance the susceptibil-
ity of cancer cells to anticancer drugs that induce oxida-
tive stress [14]. In this context, it became evident that 
D-AMF significantly suppressed the mRNA expression 
of the target gene in CRC cells (Fig.  2a). These findings 
were further supported by Western blot analysis (Fig. 2b). 
These findings suggest the existence of a common mech-
anism driving the potent actions of AMF against specific 
cancer cell targets. Glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), a pivotal enzyme responsible for 
converting NAD + to NADH within the glycolytic path-
way, is considered a housekeeping enzyme and a stand-
ard internal reference in Western blotting experiments. 
However, its overexpression has been associated with 
the development of various cancers, including CRC. 
This has led to an increased interest in the exploration 
of GAPDH inhibitors [15]. It was observed that D-AMF 
did not affect the expression of GAPDH (Fig.  2b), sug-
gesting that D-AMF specifically impacts the PPP with-
out interfering with glycolysis. In light of the observed 
downregulation of G6PD, we conducted an assessment 
of ROS production after an 8-h treatment with D-AMF. 
The results demonstrated a significant time-dependent 
increase in ROS levels in CRC cells, while untreated 
control cells exhibited no such changes. This elevation 
in ROS levels was visually confirmed through confo-
cal fluorescence microscopy images (Fig.  2c). Inhibiting 
G6PD is a promising avenue to address chemotherapy 
resistance. Several compounds, including dehydroepian-
drosterone, 6-aminonicotinamide, polygonin, and poly-
datin, have been identified as potential G6PD inhibitors. 
However, their efficacy remains uncertain [12, 14]. The 
discovery of D-AMF-induced G6PD downregulation 
and increased ROS levels holds great potential for miti-
gating drug resistance. Furthermore, the AMF-induced 
ROS pathway provides an intriguing avenue for exploring 
the fundamental mechanisms of cell competition, given 
the pivotal role of ROS in influencing cellular fate [16]. 
In our combination studies, it was observed that D-AMF 
exhibited the capability to enhance the efficacy of various 
natural compounds against CRC cells (Fig.  3). Notably, 
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Fig. 1  Assessment of the influence of AMF on CRC cell growth. a  Comparative analysis of AMF sequences revealing altered amino acid positions.  
b  Proliferation effects of AMFs and D-AMF on CRC cells.  c  Colony formation in CRC cells treated with D-AMF.  d  Comparative analysis of colony 
growth in CRC cells treated with D-AMF
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Fig. 2  Impact of AMF on CRC cell expression. a  Influence of D-AMF on G6PD mRNA Expression.  b  Impact of D-AMF on G6PD and GAPDH protein 
expression.  c  Generation of ROS in CRC cells induced by D-AMF. Values are the mean ± SEM. Statistical differences were tested using one-way 
ANOVA analysis. *p < 0.05, **p < 0.01

Fig. 3  Effect of natural compounds in conjunction with 0.5 µg/mL D-AMF on CRC cell proliferation
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resveratrol, octyl gallate, glycyrrhetinic acid, and cur-
cumin showed promising results. Interestingly, polydatin, 
a recognized G6PD inhibitor [14], appeared to have mini-
mal effect when used alone to inhibit CRC cell growth. 
Moreover, the combined application of D-AMF and poly-
datin did not surpass the effect of D-AMF alone. Our 
choice of curcumin was based on its well-established his-
tory of diverse biological benefits, practical applications, 
and improved bioavailability [9, 10]. In clonogenic assays, 
the combination of D-AMF and curcumin outperformed 
curcumin alone against CRC cells (Fig. 4a). Individually, 5 
µM curcumin reduced growth by 33% and 45% in SW620 
and HT29 cells, respectively, compared to untreated 
controls. Co-administering 2 µg/mL D-AMF with 5 µM 
curcumin resulted in growth reductions of 78% and 73% 
in SW620 and HT29 cells, respectively, compared to 
curcumin-only treatment. Co-administering 2  µg/mL 
D-AMF with 10 µM curcumin nearly completely sup-
pressed colony development, highlighting the exceptional 
synergy between D-AMF and curcumin against CRC 
cells (Fig.  4b). This synergy was further underscored in 
a stress tolerance assay, which revealed an accelerated 
rate of cell death when D-AMF and curcumin were com-
bined (Fig. 4c). Particularly, under highly stressful condi-
tions, it became evident that the metastatic SW620 cells 
exhibited significantly reduced tolerance compared to 
the highly adherent HT29 cells. The co-administration 
of D-AMF and curcumin resulted in the near elimination 
of SW620 cells. In the time-dependent ROS production 
assay, curcumin was observed to increase ROS produc-
tion, indicating its dual pro-oxidative and anti-oxidative 
properties (Fig.  4d). Notably, significant synergy was 
observed with D-AMF at concentrations of 2 and 4 µg/
mL, particularly in SW620 cells, although this synergy 
was less pronounced in HT29 cells. This suggests that the 
enhanced growth inhibition may not rely solely on ROS 
production. It is plausible to suggest that the elevated 
ROS levels induced by D-AMF play a role in sensitizing 
cells to the process of curcumin-induced apoptosis and 
autophagy [17], ultimately leading to the near-total eradi-
cation of CRC cells.

In our pursuit of novel approaches to CRC treatment, 
we investigated the individual and combined effects 
of human-derived AMF and plant-derived curcumin 
on CRC cell proliferation. Notably, AMF was found to 
downregulate G6PD, and curcumin exhibited synergistic 
effects with D-AMF against CRC cells. Moreover, consid-
ering the potential of AMF, even in its aggressive form, to 
be internalized by CRC cells through binding to AMFR 
while possibly escaping detection as a self-molecule, the 
combination of AMF and curcumin biotherapy offers a 
promising alternative for the treatment of drug-resistant 
CRC.

Materials and methods
Cell growth assay, clonogenic assay, and cell stress 
tolerance assay
HT29 and SW620 cells were procured from the Korea 
Cell Line Bank (Korea) and cultured in DMEM supple-
mented with 10% FBS and antibiotics (penicillin/strep-
tomycin) at 37 ℃ in a 5% CO2 humidified incubator. To 
assess cell growth, the MTT assay was employed. For 
clonogenic assays, cells were seeded in 12-well cul-
ture plates at a density of 2000 cells/mL and treated 
with AMF and/or curcumin for 7 days. The resulting 
colonies were stained with a 1.25% crystal violet solu-
tion and then extracted with 10% acetic acid for meas-
urement at 600  nm. In the cell stress tolerance assay, 
cells reaching 100% confluency were subjected to new 
medium with or without AMF and/or curcumin for an 
additional 3 days. After incubation, cells were rinsed 
with tap water and subsequently stained with a crystal 
violet solution.

Quantitative PCR
RNA was extracted using the RNeasy Mini Kit (Qiagen, 
Germany) and then reverse-transcribed with the Super-
Script III cDNA Synthesis Kit (Invitrogen, USA). Quan-
titative PCR was conducted using the Bio-Rad SYBR 
Green Supermix (Bio-Rad, USA) with specific primers 
for two target genes: G6PD (forward: 5ʹ-AAA​CGG​TCG​
TAC​ACT​TCG​GG-3ʹ, reverse: 5ʹ-GGT​AGT​GGT​CGA​
TGC​GGT​AG-3ʹ) and β-actin (forward: 5ʹ-CAT​GTA​
CGT​TGC​TAT​CCA​GGC-3ʹ, reverse: 5ʹ-CTC​CTT​AAT​
GTC​ACG​CAC​GAT-3ʹ).

AMF Cloning
AMF cDNA clones and AMF proteins were prepared 
following the established procedure described in prior 
works [4–6].

Western blot analysis
Protein samples (20  µg per lane) were separated by 
SDS-PAGE and then transferred to a PVDF membrane 
for subsequent immunoblotting and chemilumines-
cence detection. G6PD, GAPDH, and β-actin antibod-
ies were sourced from Santa Cruz Biotech (Santa Cruz, 
USA).

ROS assay
Cells (3 × 104 cells per well on an 8-well chamber slide) 
were incubated overnight and then exposed to AMF 
and/or curcumin for 24  h. Following treatment, they 
were washed with DMEM and incubated for 30 min at 
37 ℃ with 500 µL of 10 µM H2DCFDA in DMEM for 
fluorescence microscopy (Olympus FV3000, Japan). 
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Additionally, cells (1 × 104 cells per well on a 96-well 
plate) were cultured overnight and treated with AMF 
and/or curcumin for 8  h. Subsequently, H2DCFDA 
was introduced into the cells, and time-dependent 

fluorescence was measured over a 24-h period using 
a BioTek Cytation 7 Cell Imaging Multi-Mode Reader 
(Agilent Co., USA).

Fig. 4  Evaluation of the synergistic impact of D-AMF and curcumin on CRC cell growth.  a  Colony formation in CRC cells treated with D-AMF 
and curcumin.  b  Comparative analysis of colony growth in CRC Cells treated with D-AMF and curcumin.  c  Combined effects of D-AMF 
and curcumin on CRC cells at 100% confluency.  d  Generation of ROS in CRC cells induced by D-AMF and curcumin. Values are the mean ± SEM. 
Statistical differences were tested using one-way ANOVA analysis. *p < 0.05, **p < 0.01
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Abbreviations
AMF	� Autocrine motility factor
G6PD	� Glucose-6-phosphate dehydrogenase
GAPDH	� Glyceraldehyde-3-phosphate dehydrogenase
GPI	� Glucose-6-phosphate isomerase
PPP	�  Pentose phosphate pathway
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