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Monitoring of soil EC for the prediction 
of soil nutrient regime under different soil water 
and organic matter contents
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Abstract 

Smart farms and precision agriculture require automatic monitoring and supply of water and nutrients for crops, 
but sensors to monitor plant available nutrients in soil are not available. Soil electrical conductivity (EC) is related 
to nutrients in soil solution, which can be affected by soil organic matter, soil texture, temperature, and water con‑
tent. Therefore, the objective of this study is to evaluate factors influencing soil EC sensor values by monitoring EC 
under different soil organic matter and water contents. Ten soil samples with various sand and clay contents, EC, pH, 
and organic matter contents were selected and saturated with water. Volumetric water content and EC of the soil 
were monitored while drying the soil. Humic acid and manure were added to soils in order to evaluate the effect 
of organic matter on soil EC. Soil EC values linearly increased with increasing water content at 10–25% which is favora‑
ble water content for plant growth. The EC increased when organic matter was added to soils, which was related 
to ions released from the organic matter. Soil EC calibration factor for soil water content increased when EC 
of the soil was high and organic matter was added. The sensor EC values in sandy loam and loam soils was related 
to the ion contents in pore water, and exchangeable ions in soil, respectively. Sensor EC values were highly correlated 
with organic matter and K contents in soil and can be used as an indicator for plant available nutrients in soil. There‑
fore, the sensor EC at optimal soil water content for plant growth can be used to monitor changes in plant available 
nutrients in soil.
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Introduction
Precision supply of essential water and nutrients is 
important for crops because excess nutrients can reduce 
crop yields and residual nutrients can positively or nega-
tively affect yields in the following year [53]. Importance 
of effectively managing soil nutrients and water to sus-
tain and optimize agricultural productivity in changing 
environmental conditions is emerging due to imbalances 

in nutrients and water caused by recent climate changes 
[31]. Therefore, soil nutrient and water management are 
important to maintain the sustainability of agricultural 
land.

Smart farms reduce costs and improve crop produc-
tivity by monitoring and controlling the agricultural 
environment through integration of automation tech-
nologies such as networks and mobile devices [37]. 
Automatic soil water management system using infor-
mation and communications technology (ICT) helps 
in saving water by supplying desired amount of water 
required by the crops [1]. In addition, the ICT-based 
water management system contributes to the improve-
ment of crop productivity and quality [16]. Especially, 
in outdoor smart farms, it is necessary to control the 
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supply of nutrients according to crop growth while 
monitoring nutrients in real time using sensors [50]. 
Although there are various sensors for monitoring 
agricultural environment such as  CO2, light intensity, 
temperature, humidity, and soil water content, sensors 
for monitoring nutrient availability in soil are still not 
fully developed [5]. Therefore, it is difficult to supply 
nutrients while monitoring soil nutrient levels, which is 
obstacle to precision agriculture in open field.

Soil EC is affected by soil salinity, clay and water con-
tent, and adding nutrients to the soil increases the soil 
EC [17, 26]. Heiniger et  al. [27] found that EC meas-
urements of soil extracts could be used to predict soil 
nutrient content and are highly correlated with soil 
properties such as water content, cation exchange 
capacity (CEC), and soluble salts  (R2 ranging from 0.51 
to 0.75). In addition, nutrients such as N and K directly 
affect the EC of extracted soil solutions [40]. Therefore, 
nutrient content can be predicted by monitoring soil 
EC, but soil EC is highly influenced by soil water, soil 
texture, and organic matter [29]. In particular, the water 
content has significant effects on soil EC [22]. Increas-
ing soil water content increased soil EC [14]. When the 
water content in soil was high, the soil EC increased as 
a result of the increased solubility of ions in soil [4].

Organic matter is important for plant growth along 
with nutrients in the soil because it is decomposed 
into smaller molecules and mineralized elements are 
absorbed by plants [41]. Organic matter can increase 
the soil EC due to the nutrients and salts included in 
organic matter [24]. However, the effect of soil organic 
matter on EC was not fully understood. To predict soil 
nutrients through soil EC monitoring using sensor, 
various soil characteristics including soil texture and 
organic matter affecting EC should be considered.

In this study, we hypothesized that organic mat-
ter increases EC of the soil by releasing nutrients and 
affects EC by adsorption of ions. Conducting correla-
tion analyses between EC and organic matter can offer 
insights into setting nutrient supply corresponding to 
EC values monitored by sensors for soils with differ-
ent characteristics [46, 51]. Based on the relationship 
of soil organic matter and EC, the sensor EC values 
should be calibrated. Calibration of EC based on these 
correlations can enhance the accuracy of nutrient sup-
ply recommendations and improve the efficiency of soil 
management practices [39, 51]. Therefore, the objec-
tives of this study were to monitor nutrients using EC 
sensors in soils with different clay and sand composi-
tion, water content and organic matter content and 
evaluate the effect of water content and organic matter 
on soil EC in different soils.

Materials and methods
Soil characterization
Soils with different characteristics were collected from 
different agricultural lands in Korea, dried at room tem-
perature, and sieved to a particle size of less than 2 mm 
using a stainless-steel sieve. The sand, silt and clay con-
tent of the soil was determined by Stoke’s law [23]. Soil 
pH and EC were measured using pH and EC meter after 
extracting 5 g of soil with 25 mL of deionized water for 
30  min. The Walkley–Black method was used to deter-
mine the amount of soil organic matter [52]. Two grams 
of soil and 20 mL of 1 M  NH4CH3COOH solution at pH 
7 were shaken for 30  min and filtered through 0.45  μm 
syringe filter. Filtered solution was acidified and elements 
were analyzed using inductively coupled plasma opti-
cal emission spectroscopy (ICP-OES, Perkin Elmer, Avio 
500). The soil CEC was calculated with Ca, Mg, K, and 
Na [47]. Ammonium  (NH4

+) and nitrate  (NO3
−) in the 

soil were measured using the indophenol-blue method 
and the vanadium (III) reduction method, respectively, 
after extracting 5 g soil with 25 mL of 2 M KCl solution 
[19, 20]. For  NH4

+ analysis, 0.125 mL EDTA, 2 mL phe-
nol/nitroprusside (PNP), and 1  mL NaOH/hypochlorite 
were mixed with 1  mL of the extract. The mixture was 
incubated at 37 °C for 20 min and absorbance of the solu-
tion was measured at 630 nm using a UV–VIS spectrom-
eter (Orion AquaMate 7000, Thermo-Fisher Scientific, 
USA) [20]. For  NO3

− analysis, 20  µL of soil extract was 
mixed with 1  mL of the reagent prepared by dissolving 
0.4 g of  VCl3 in 50 mL of 1 M HCl and mixing with 0.2 g 
of sulfanilamide and 0.01  g of N-(1-Naphthyl)-ethylen-
diamine-dihydrochloride (NEDD) in 400  mL of de-ion-
ized water. Absorbance of the solution was measured at 
540 nm using a UV–VIS spectrometer after 18 h at 25 °C 
to determine soil  NO3

− concentration [19]. Table 1 shows 
the physicochemical properties of soils used.

Soil EC and water content monitoring
Air dried soil (1.5 L) was packed in a 2.2 L square con-
tainer. For organic matter treatment, 40  g of com-
post manure were added to silty clay loam soil, 30  g of 
humic acid were added to loam soil, and 50 g of compost 
manure were added to sandy loam soil. Soils after adding 
organic matter were also characterized to evaluate effect 
of organic matter on sensor EC (Table  1). To monitor 
EC and water content, an EC sensor (Teros 12, METER 
Group, USA) was placed in soil to a depth of about 10 cm 
in an incubator at 20  °C. The Teros 12 sensor measures 
EC, volumetric water content, and temperature in soil at 
the same time. Water (900 mL) was added to the soil for 
saturation and the EC and water content were monitored 
until the soil water content evaporated to be less than 
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10% (v/v). Soil EC sensors were connected to ZL6 logger 
(METER Group, USA) and soil bulk EC (mS/cm), tem-
perature (°C) and volumetric soil water content  (m3/m3) 
were recorded every 15  min. Soils with added organic 
matter (manure and humic acid) were also monitored for 
soil EC and water content in the same manner.

Analysis of ion contents in soil pore water
Rhizon sampler (Rhizosphere Research Products, Neth-
erlands) was inserted into the soil to a depth of about 
10 cm and pressure was applied to collect pore water in 
the soil at 25% water content. The pH and EC of the pore 
water were measured and element contents in the pore 
water were analyzed using ICP-OES after filtration using 
0.45 μm syringe filter. Ammonium and  NO3

− contents of 
the pore water were also analyzed using the indophenol-
blue method and the vanadium (III) reduction method, 
respectively. Soil samples were taken after monitoring 
EC, dried, and mixed with 1 M  NH4CH3COOH solution 

(pH 7) at a soil to solution ratio of 1:10 for 30 min. The 
solution was filtered through 0.45  μm syringe filter and 
exchangeable ion concentrations in the soil were ana-
lyzed using ICP-OES. Soluble  NH4

+ and  NO3
− in the 

soil before drying were extracted with de-ionized water 
and analyzed using a UV–vis spectrometer following the 
indophenol-blue method and the vanadium (III) reduc-
tion method, respectively.

Statistical analysis
Analyses were conducted in triplicate and presented as 
mean and standard deviation. The correlation among 
sensor EC, soil organic matter (SOM), EC calibration 
factor for water content, soil clay and sand contents, pH, 
and exchangeable elements was analyzed using Xlstat 
(Addinsoft). Principal component analysis (PCA) was 
conducted to evaluate relationship among the parameters 
including sensor EC values and SOM contents (Xlstat, 
Addinsoft). For PCA, soil sensor EC values were selected 

Table 1 Physicochemical properties of soil samples used for EC monitoring

Samples Texture Sand (%) Clay (%) Silt (%) pH EC (dS/cm) OM (g/kg) CEC  (cmolc/kg)

without OM with OM without OM with OM without OM with OM

SiCL Silt clay loam 13.5 33.3 53.2 5.66 0.071 0.76 0.09 0.13 9.6 14.9

L‑1 Loam 33.6 18.6 47.7 5.87 0.068 1.59 0.25 0.34 7.5 8.4

L‑2 Loam 46.4 19.0 34.7 6.62 0.147 3.22 0.06 0.22 9.8 10.9

L‑3 Loam 42.1 23.0 34.9 6.58 0.055 1.06 0.13 0.19 9.2 9.5

L‑4 Loam 54.5 16.2 29.3 6.35 0.066 0.90 0.21 0.22 6.7 7.5

L‑5 Loam 32.2 17.4 50.4 4.95 0.076 3.16 0.30 0.32 11.0 12.9

SL‑1 Sandy loam 65.8 16.2 17.9 7.24 0.058 0.51 0.15 0.16 16.2 22.2

SL‑2 Sandy loam 72.0 13.4 14.6 5.46 0.147 0.57 0.13 0.21 11.9 18.4

SL‑3 Sandy loam 66.9 14.0 19.1 7.63 0.138 1.22 0.29 0.33 6.4 9.7

SL‑4 Sandy loam 60.8 13.2 26.1 6.50 0.054 0.86 0.11 0.16 7.8 10.0

Table 2 Calibration factor of soil EC for soil water content without and with added organic matter

Samples Soil texture No treatment Added organic matter

Calibration 
factor

Intercept Correlation 
coefficient

Calibration 
factor

Intercept Correlation 
coefficient

SiCL Silt clay loam 0.81 − 0.06 0.97 2.00 − 0.17 0.99

L‑1 Loam 0.63 − 0.01 0.99 1.10 − 0.07 0.99

L‑2 Loam 1.32 − 0.02 0.99 2.08 − 0.16 0.99

L‑3 Loam 0.57 − 0.02 0.99 1.61 − 0.14 0.99

L‑4 Loam 0.77 − 0.04 0.99 2.40 − 0.17 0.99

L‑5 Loam 1.56 − 0.12 0.99 1.48 − 0.13 0.99

SL‑1 Sandy loam 0.75 − 0.04 0.99 2.91 − 0.22 0.99

SL‑2 Sandy loam 0.74 − 0.03 0.99 2.41 − 0.18 0.99

SL‑3 Sandy loam 0.72 − 0.02 0.98 3.92 − 0.12 0.99

SL‑4 Sandy loam 0.57 − 0.00 0.99 2.09 − 0.18 0.99
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at water content of 30.9%, 22.5% and 17.0% v/v for silt 
clay loam, loam and sandy loam soils, respectively.

Results and discussion
Response of soil EC sensor in relation to soil water content
Soil EC showed a linear correlation with water content 
at water content of 10–25% for loam and sandy loam 
soils and at water content of 10–40% for silty clay loam 
soil (Table 2). The water content range having linear rela-
tionship with EC was suitable water content for plant 
growth [11]. The linear correlation between soil water 
content and EC in the range of soil water content appro-
priate for plant growth indicates that soil EC can be used 

for nutrient monitoring regardless of soil moisture con-
tent by calibrating EC values for soil water content. Soil 
EC can be calibrated for desired water content because 
it is linearly proportional to water content. Other stud-
ies also reported that soil EC linearly increased with soil 
water content [14, 25, 54]. Sensor EC value decreased 
with decreasing water content in soil because the mobile 
fractions of ions decreased [18, 55]. In addition, water 
containing ions is a conductor of electricity and water 
content was closely related to EC [33]. Sudduth et al. [48] 
also reported that EC could be explained by water con-
tent and bulk density of soil. However, at higher water 
content, the relationship between EC and water content 

Fig. 1 Correlation of sensor EC with soil properties and ion contents of sandy loam (a) and loam (b) (PW. pore water, W. water soluble ion, Ex. 
exchangeable ion)
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was not linear, which was also reported by Rusydi [44]. 
When soil water is more than optimum water content, 
the relationship becomes nonlinear, wherein further 
increase of water content does not linearly raise EC due 
to saturation and mobility constraints [44].

Soil EC is related to soil texture, water content, organic 
matter, etc., and varies with soil properties [30]. There-
fore, it is necessary to calculate the calibration factor 
considering the soil properties and apply it to calibrate 
the EC sensor value against soil water content. Sensor EC 
values were plotted against soil water contents and the 
slope of linear regression was defined as calibration fac-
tor. Higher calibration factor indicates that EC changes 
more with water content variation. Calibration factor 
derived from the slope of the linear relationship between 
soil EC and water content serves as a valuable metric 
[39]. This coefficient aids in predicting soil EC based on 
water content variations, which in turn can offer insights 
into nutrient contents and other essential soil properties 
[21]. Calibration factor for each soil was calculated in the 
range of available water content of each soil and the cor-
relation coefficient was to be higher than 0.97 (Table 2). 
In comparison to the soil without organic matter, the cali-
bration factor was higher when organic matter was added 

to the soil (Table  2). The increased calibration factor is 
because of adding organic matter to the soil and increases 
in exchangeable ions and nutrients (Table 3). Soil organic 
matter increased nutrient contents and finally increased 
soil EC [2, 28, 49]. When the ion contents of the soil are 
high, more dispersal occurs with the higher  water con-
tent, which might be attributed to higher calibration fac-
tor with organic matter [42]. In addition, since sensitivity 
of the EC sensor increases as the water content increases, 
the calibration factor can be higher when organic matter 
and water are added to the soil [12]. Therefore, higher the 
soil nutrient content, the greater increase in soil EC by 
water content.

Changes in soil ion contents by addition of organic matter
The concentration of exchangeable ions such as K, and 
Ca in the soil increased when organic matter was added 
in the soil because of dissolution of minerals containing 
K and exchangeable Ca by organic acids (Table  3). Ini-
tially manure compost was added as organic matter, but 
it increased EC and humic acid was added as organic 
matter for loam soil to avoid effect of salts released from 
added organic matter. However, both organic matters 
increased available nutrient concentrations increasing 

Fig. 2 Biplots of PC1 and PC2 for sensor EC monitoring values by soil characteristics and ion content and organic matter treatment (OM. organic 
matter added soil, PW. pore water, Ex. exchangeable ion)
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soil EC. Adding organic matter to the soil increased 
the content of N, C and S etc., which were included in 
manure compost and humic acid  [3,  15, 38]. In addition, 
Bader et al. [7] reported that K concentration was signifi-
cantly increased by the amount of organic matter. This is 
because some soil minerals that contain K are dissolved 
by organic acids (humic and fulvic) as a result of the 
decomposition of organic fertilizer [6]. Exchangeable Ca 
content was also related to soil organic carbon because 
Ca protects soil organic carbon from microbial degrada-
tion [45]. As a result, while monitoring soil EC with sen-
sors, it is important to consider organic matter which 
influence the ion contents in the soil.

The sensor EC value of sandy loam soil was highly cor-
related with the ion content in pore water, and the sen-
sor EC value of loam soil was highly correlated with 
exchangeable ions (Fig.  1). Generally, loam soil has a 
higher adsorption capacity than sandy soil because it has 
a higher clay content than sandy loam [35]. Since sandy 
loam has a low water and ion holding capacity, the sen-
sor EC value was highly correlated with ion content of 
the pore water (Fig. 1a, [10]). In addition, loam soil has a 

higher ion holding capacity than sandy loam, so the sen-
sor EC value showed significant correlation with  NO3

− 
and Na which are soluble in water and with exchangeable 
cations that are relatively less soluble in water (Fig.  1b, 
[56]).

The pH of the pore water and the sensor EC value were 
negatively correlated (Fig. 1a). Luce et al. [36] explained 
that the negative correlation between soil EC and pH was 
associated with microbial mineralization and nitrification 
processes in the soil. 

Relationship between sensor EC values and soil properties
PCA was performed to evaluate the relationship 
between sensor EC values and soil properties with soil 
samples before and after adding organic matter. PCA is 
used to identify the variables that are related to asso-
ciations among samples [13]. The PC1, PC2, PC3 and 
PC4 accounted for 28.3%, 23.2%, 15.5% and 11.3% of 
the total variation, respectively (Table 4). The four PCs 
explained more than 78% of cumulative variance. The 
first PC showed positive correlations with sand content, 
pore water pH, and exchangeable Ca and P. The sec-
ond PC was correlated with sensor EC, soil EC, CEC, 
pore water Ca, K, and P, and exchangeable Na, P and S, 
which were parameters contributing EC. The third PC 
was correlated with clay, CEC and exchangeable Mg, 
which were related to adsorption of cations.

The sensor EC monitoring values showed a high cor-
relation with the contents of  NO3

−, K, S and Ca in the 
pore water (Fig. 2). Since pore water exists between soil 
particles, ion content in pore water reflects plant avail-
able nutrients which increases EC [9, 43]. Nitrate is water 
soluble and increasing the mobility of ions increased the 
EC [8]. In addition, increased mobility of adsorbed K 
increased EC [34]. Since soil nutrients such as N and K 
are closely related to EC, which can be monitored using 
soil EC sensor.

The close correlation between sensor EC and SOM 
was found because increased organic matter in the 
soil increased the ion contents and finally increased 
the soil EC (Fig.  2). In particular, samples with addi-
tional organic matter were clearly separated from 
samples without added organic matter. Samples with 
added organic matter were distributed along soluble 
and exchangeable nutrients on PC1 and PC2 (Fig.  2). 
Soils with different texture were also well differentiated 
indicating that texture and organic matter affect avail-
able nutrients and sensor EC. Since the soil sensor EC 
values are related to the soluble ion contents in sandy 
loam and the exchangeable ion contents in loam soil, 
soil texture should be considered in the interpretation 
of sensor EC for the prediction of nutrient levels in soil. 

Table 4 Factor loadings based on correlations matrix and total 
variance explained by the principal components (OM.: added 
organic matter, PW.: pore water, Ex.: exchangeable ion)

The bold value indicates a loading > 0.5

PC1 PC2 PC3 PC4

Sensor EC − 0.290 0.628 0.326 0.450

Sand 0.702 0.283 − 0.543 ‑0.163

Clay − 0.377 − 0.262 0.708 0.294

Silt − 0.777 ‑0.266 0.421 0.092

soil pH 0.456 0.351 − 0.061 − 0.365

soil EC − 0.559 0.559 − 0.028 − 0.291

SOM − 0.426 0.451 − 0.437 0.032

CEC 0.459 0.534 0.628 − 0.266

PW. pH 0.815 − 0.248 0.058 − 0.259

PW. EC 0.398 0.480 − 0.305 − 0.069

PW.  NO3
− − 0.683 0.066 − 0.005 − 0.355

PW. Ca − 0.337 0.744 − 0.165 − 0.360

PW. K − 0.077 0.568 − 0.428 0.657
PW. P 0.369 0.654 − 0.202 0.507
PW. S − 0.740 0.325 − 0.178 − 0.478

Ex. Ca 0.582 0.440 0.495 − 0.391

Ex. K − 0.637 0.359 − 0.316 0.264

Ex. Mg 0.038 0.404 0.808 0.108

Ex. Na 0.037 0.676 0.429 0.310

Ex. P 0.699 0.595 0.111 0.103

Ex. S − 0.618 0.579 0.130 − 0.421

Variability (%) 28.307 23.223 15.517 11.319

Cumulative (%) 28.307 51.530 67.047 78.365
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In addition, soil sensor EC values are highly correlated 
with N, K and SOM, which are important for plant 
growth. Therefore, when monitoring nutrient levels in 
soil using EC sensor, organic matter and soil texture 
need to be considered. If organic matter and water con-
tent are considered, the sensor EC can be used as an 
indicator of the nutrients available to plants in the soil. 
Conclusively, at optimal soil water content for plant 
growth, EC can be used to monitor changes in plant-
available nutrients in the soil.
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