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Abstract 

Chrysanthemum morifolium is classified within the Asteraceae botanical family and serves as a phytomedicine in many 
countries. The objective of this study was to quantitatively analyze twelve phenolic compounds through HPLC/
UV and to assess the antioxidant abilities using the DPPH and  ABTS+ assays in the leaves and flowers of six cultivars 
of C. morifolium: ‘Geumsu’, ‘Ilonka’, ‘Silvia’, ‘Pompadour’, ‘Yes Holic’, and ‘Ford’. The results indicated that the leaves 
of ‘Geumsu’ and ‘Ford’, as well as the ‘Pompadour’ flowers contained high levels of phenolic compounds and exhibited 
strong antioxidant abilities. Additionally, a relationship between the phenolic compounds and antioxidant activities 
was observed. These findings provide foundational knowledge about C. morifolium cultivars, which are promising 
natural sources that can offer health benefits.

Keywords Antioxidant, C. morifolium, Cultivar, High-performance liquid chromatography, Phenolic compounds, 
Quantitative analysis

Introduction
Oxidation constitutes a significant process in food, 
chemicals, and living systems; however, a by-product 
is the production of free radicals, particularly reactive 
oxygen species (ROS) [1]. Furthermore, substantial 
quantities of ROS are generated within humans through 
natural physiological processes, external environmental 

interactions, and dietary habits, which may be harmful 
[2]. These ROS contributions extend to processes such as 
food spoilage, degradation of chemical materials, and the 
onset of over a hundred human disorders [3, 4]. However, 
the utilization of antioxidant substances can counteract 
the oxidation process. These compounds, even at low 
concentrations, substantially delay or entirely prevent the 
oxidation of easily susceptible substrates [5]. Recently, the 
isolation, characterization, and widespread application of 
natural compounds endowed with antioxidant properties 
have been demonstrated in various medical contexts [6]. 
Numerous methods are employed to evaluate the efficacy 
of natural antioxidants, encompassing assays, such as 
the ferric reducing antioxidant power assay [7], the 
β-carotene/linoleic acid assay [8], the Rancimat method 
[9], inhibition of low-density lipoprotein oxidation 
[10], the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay 
[11], etc. This assortment of methods is necessitated 
by the intricate nature of the analyzed substrates, often 
presenting as complex mixtures comprising numerous 
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compounds with diverse functional groups, polarities, 
and chemical behaviors [12].

Phenolic is the most encountered natural antioxidant 
compound in plants [13]. They possess one or more 
hydroxyl groups in their structure, allowing for their 
structural classification into two major classes: phenolic 
acids and flavonoids [14]. Additionally, phenolic 
compounds are applied in growth regulation, hormonal 
activity, pH regulation, antimicrobial effects, metabolism, 
and the induction of dormant periods [15].

Chrysanthemum morifolium, commonly known 
as chrysanthemum or florist’s chrysanthemum, is a 
perennial flowering plant belonging to the Asteraceae 
(Compositae) family [16, 17]. It is a well-known herbal 
medicine, which is used as a dietary supplement or 
health tea in numerous Asian countries, including China, 
Thailand, Japan, and Korea [18, 19]. C. morifolium is 
believed to possess therapeutic properties for treating 
conditions, such as headache, influenza, hepatic 
ailments, inflammation, arteriosclerosis, hypertension, 
hyperuricemia, diabetes alleviation, and eye diseases [20–
22]. Furthermore, it has exhibited a range of significant 
biological characteristics, including antioxidant, 
antimutagenic, anticancer, anti-inflammatory, antitumor, 
antibacterial, and antiviral activities [23–25]. These 
pharmacological attributes are primarily ascribed to its 
active compounds, which encompass alkanes, phenolic 
acids, flavonoids, terpenoids, unsaturated fatty acids, and 
polysaccharides [26, 27]. Presently, diverse cultivars and 
varieties of C. morifolium have been selectively developed 
for horticultural applications [28]; consequently, the 
composition of biological compounds and associated 
activities may undergo modification through plant 
breeding or hybridization processes.

Therefore, this study was conducted to assess the 
antioxidant capacity using the DPPH and  ABTS+ 
(2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic 
acid) assays, as well as to analyze the content of 
phenolic compounds through high-performance liquid 
chromatography (HPLC) in different cultivars of C. 
morifolium.

Materials and methods
Plant materials
Six cultivars of C. morifolium (Table  1, Fig.  1) were 
grown by Prof. Jinhee Lim, Sejong University, Republic 
of Korea, in September 2022. The leaves and flowers of 
these cultivars were freshly harvested between December 
2022 and January 2023 (16-week-old) and dried. Then, 
they were cut into small pieces prior to extraction. All 
specimens (S1–S12) were deposited at the herbarium of 
the Department of Bio-Industry Resources Engineering, 
Sejong University, Seoul, Republic of Korea.

Instruments and reagents
HPLC analysis was conducted using an HPLC 
instrument comprising a Waters Alliance e2695 
Separations Module (Waters Corporation, Milford, 
MA, USA) and a Waters 2489 UV/Vis Detector (Miami, 
CA, USA). The configuration encompassed a pump 
and an auto-sampler, integrated with a YMC Pack 
Pro C18 column (4.6 × 250  mm, 5  µm). HPLC-grade 
solvents were procured from J. T. Baker (Philipsburg, 
Pennsylvania, USA). This selection included water, 
acetonitrile, and methanol (MeOH). Furthermore, 
acetic acid was acquired from Samchun Chemicals 
(Pyeongtaek, Republic of Korea). In the context of the 
assays, both an Epoch microplate spectrophotometer by 
BioTek (Winooski, VT, USA), and a microplate reader 
were utilized. The determination of radical scavenging 
activity involved the application of DPPH and  ABTS+, 
while potassium persulfate was obtained from Sigma 
(MA, USA). Additionally, a collection of 12 standard 
compounds (Fig.  2) was sourced from the Natural 
Product Institute of Science and Technology (www. nist. 
re. kr), Anseong, Korea, which encompassed chlorogenic 
acid (purity: 98.96%) (1), schaftoside (purity: 97.02%) (2), 
isoschaftoside (purity: 97.15%) (3), luteoloside (purity: 
97.73%) (4), isochlorogenic acid B (purity: 92.58%) (5), 
isochlorogenic acid A (purity: 98.72%) (6), cosmosiin 
(purity: 99.52%) (7), isochlorogenic acid C (purity: 
96.93%) (8), linarin (purity: 99.28%) (9), luteolin (purity: 
97.22%) (10), apigenin (purity: 98.71%) (11), and acacetin 
(purity: 98.68%) (12).

Sample extraction and preparation
A quantity of 5  g of dried samples was subjected to 
extraction using ethanol (EtOH) in a reflux extractor 

Table 1 List of six examined C. morifolium cultivars

Plant part Cultivar name Sample No

Leaf ’Geumsu’ S1

‘Ilonka’ S2

‘Silvia’ S3

‘Pompadour’ S4

‘Yes Holic’ S5

‘Ford’ S6

Flower ‘Geumsu’ S7

‘Ilonka’ S8

‘Silvia’ S9

‘Pompadour’ S10

‘Yes Holic’ S11

‘Ford’ S12

http://www.nist.re.kr
http://www.nist.re.kr
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over a period of 3  h. This extraction process was 
replicated 3  times [29]. Following the utilization of a 
rotary evaporator, the resulting dehydrated extracts 
were gathered, and the extraction yield was calculated 
(Table  2). Each extract (10  mg) was precisely measured 
and diluted with 1 mL EtOH and distilled water to form 
a stock for the DPPH and  ABTS+ assays, respectively. 
After filtering through a 0.45  µm membrane filter, 
sequential dilutions were performed on the stocks to 
plot a calibration curve for each sample. HPLC analysis 
preparation involved the extract being dissolved in 
MeOH, appropriately diluted, and formulated. After 
dissolution by ultra-sonication, the solution was 
filtered using a 0.45  μm polyvinylidene fluoride (PVDF) 
membrane filter to prepare the test solution. A total of 
12 standard compounds were precisely weighed at 2 mg 
and dissolved in 1 mL of MeOH to create stock solutions 
(2000 ppm) for each standard. After complete dissolution 
by ultra-sonication, the solutions were filtered using a 
0.45 μm PVDF membrane filter.

DPPH radical scavenging activity
The DPPH radical-scavenging assay commenced by 
creating a functional solution with a concentration 
of 0.2  mM DPPH. Here, the original DPPH stock 
solution was diluted using 95% EtOH. Next, a mixture 
was prepared by combining 10  µL of the test solution 
with 200  µL of the DPPH working solution in each 
well of a 96-well plate. This combination was repeated 
3  times to ensure accuracy. Then, the solutions 
were mixed thoroughly using a microplate shaker 
and placed in darkness to incubate for a duration of 

30  min. Subsequently, the absorbance was measured 
at a wavelength of 514  nm. The calculation of the 
DPPH radical-scavenging rate played a pivotal role in 
constructing the calibration curves. Ascorbic acid was 
employed as the standard and used as a reference.

ABTS+ radical scavenging activity
The  ABTS+ radical-scavenging assay was performed 
by diluting the  ABTS+ solution with water to create 
the  ABTS+ working solution. Subsequently, each test 
solution (10 µL) was combined with the  ABTS+ working 
solution (200  µL) and added to each well of a 96-well 
plate, with the reaction being replicated 3  times for 
accuracy. The solutions were mixed thoroughly on a 
microplate shaker and incubated for 30 min in the dark 
before the absorbance was measured at 734  nm. The 
 ABTS+ radical-scavenging rate calculation was used 
to construct the calibration curves. Ascorbic acid was 
employed as the standard for the purpose of comparison.

HPLC condition
Quantitative analysis of the extracts was conducted using 
a reverse-phase HPLC system, employing a YMC Pack-
Pro C18 column (25 cm × 4.6 mm, 5 μm), and a gradient 
elution. The mobile phase was composed of 0.25% acetic 
acid in water (A) and acetonitrile (B), and the elution 
conditions were 10% B from 0 to 5 min, 20% B at 10 min, 
25% B at 20 min, 30% B at 30 min, 40% B at 35 min, and 
100% B at 40  min, which was maintained until 45  min. 
The column temperature was retained at 30  °C, with an 
injection volume of 10 μL, a flow rate of 1.0 mL/min, and 
wavelength monitoring set to 356 nm.

Fig. 1 Plant materials of six cultivars ‘Geumsu’ (A), ‘Ilonka’ (B), ‘Silvia’ (C), ‘Pampadour’ (D), ‘Yes Holic’ (E), and ‘Ford’ (F)
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Calibration curves
The calibration curve was generated by plotting the 
concentrations of the standard solution against their 
corresponding peak areas. The evaluation of linearity in 

this curve relied upon the coefficient of determination 
(r2), following which, the calibration curve was used 
to compute the concentrations of the standards in the 
samples. The calibration equations were established 

1      5   6

8  

Compound R1 R2 R3 R4 R5

2 Ara OH Glc H H

3 Glc OH Ara H H

4 H O-Glc H OH H

7 H O-Glc H H H

9 H O-Rut H H CH3

10 H OH H OH H

11 H OH H H H

12 H OH H H CH3

Fig. 2 Chemical structures of chlorogenic acid (1), schaftoside (2), isoschaftoside (3), luteoloside (4), isochlorogenic acid B (5), isochlorogenic acid 
A (6), cosmosiin (7), isochlorogenic acid C (8), linarin (9), luteolin (10), apigenin (11), and acacetin (12)
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using peak area (Y), concentration (X, mg/mL), and the 
mean value ± standard deviation (n = 3).

Statistical analysis
All statistical analyses were performed using the software 
Minitab 16.0. Significant differences between the results 
were calculated by using anova analysis (ANOVA) 
and multiple comparisons of the Tukey test, with a 
significance level of p < 0.05.

Results and discussion
DPPH is a chemical compound that is frequently 
employed in laboratory experiments to evaluate the 
antioxidant activity of various substances [30]. It is a 
stable free radical that is characterized by a deep purple 
color and possesses an unpaired electron, which renders 
it highly reactive. Antioxidants reduce DPPH by donating 
an electron, thereby causing a color change to yellow, 
which can be measured using spectrophotometry [31]. 
The extent of this color change is directly proportional to 
the antioxidant activity of the tested compound.

According to the DPPH assay, all the samples exhibited 
lower antioxidant activities compared to ascorbic acid 
(Table  3). Among the 12 samples (S1–S12) that were 
examined, S10  (IC50 = 1.2  mg/mL) showed the highest 
antioxidant capacity, while the lowest was observed in 
sample S2  (IC50 = 7.1  mg/mL). When comparing the 
radical scavenging activities between the leaf and flower 
samples from the same cultivar, there were no significant 
differences in the abilities between the leaves and flowers 
among four cultivars: ‘Geumsu’, ‘Ilonka’, ‘Yes Holic’, and 
‘Ford’. However, it is noteworthy that the antioxidant 
ability of the ‘Silvia’ and ‘Pompadour’ flowers was higher 
than that of their corresponding leaves. Among the leaf 
samples, S6  (IC50 = 2.0  mg/mL) displayed the highest 

antioxidant capacity, followed by S1  (IC50 = 2.5  mg/
mL), S5  (IC50 = 3.0  mg/mL), S3  (IC50 = 3.8  mg/mL), 
and S4  (IC50 = 5.9  mg/mL), with the lowest observed in 
S2  (IC50 = 7.1  mg/mL). Conversely, among the flower 
samples, S10  (IC50 = 1.2  mg/mL) exhibited the highest 
antioxidant capacity, followed by S12  (IC50 = 2.5  mg/
mL), S7  (IC50 = 2.6  mg/mL), S9  (IC50 = 2.6  mg/mL), and 
S11  (IC50 = 3.8  mg/mL), with the lowest observed in S8 
 (IC50 = 7.0 mg/mL). Therefore, overall Ford exhibited the 
highest antioxidant ability in both its leaves and flowers, 
whereas Ilonka displayed the weakest ability among the 
tested cultivars.

ABTS+, like DPPH, is commonly used in laboratory 
experiments to assess antioxidant activity [32]. When 
 ABTS+ is in its oxidized form, it becomes a stable radical 
cation with a blue–green color due to unpaired electrons. 
Antioxidants added to a solution with  ABTS+ donate 
electrons to the radical, reducing it, which causes the 
color to change from blue–green to colorless [33]. The 
results of the antioxidant capacity assessment of S1–S12, 
by the  ABTS+ assay (Table  4), closely mirrored those 
obtained by the DPPH assay. Specifically, the highest 
antioxidant capacity was observed in S10  (IC50 = 1.1 mg/
mL), while the lowest was noted in S2  (IC50 = 8.9  mg/
mL). Similarly, when assessing the antioxidant 
capacity in the leaf samples, S6  (IC50 = 2.1  mg/mL) 
demonstrated the highest antioxidant capacity, followed 
by S1  (IC50 = 2.7  mg/mL), S5  (IC50 = 3.1  mg/mL), S3 
 (IC50 = 4.1 mg/mL), and S4  (IC50 = 5.7 mg/mL), with the 
lowest capacity observed in S2  (IC50 = 8.9 mg/mL).

Analysis of the flower samples by both the DPPH and 
 ABTS+ assays revealed that S10  (IC50 = 1.1  mg/mL) 
exhibited the highest antioxidant capacity. Conversely, 
S11  (IC50 = 3.9  mg/mL) and S8  (IC50 = 6.1  mg/mL) 
displayed comparatively lower antioxidant capacities 
than the other samples. However, there was a slight 
difference between the two assays. Particularly, in 
the DPPH assay, which showed that S12 had a higher 
antioxidant capacity compared to S7 and S9, whereas the 
 ABTS+ assay indicated that S9  (IC50 = 2.0  mg/mL) had 
a higher antioxidant capacity than S12  (IC50 = 2.2  mg/
mL) and S7  (IC50 = 3.3  mg/mL). This disparity can be 
attributed to various factors, including differences in 
wavelength, the number of unpaired electrons, and 
the sensitivity of the assays. Moreover, the DPPH assay 
contains some drawbacks. One notable characteristic of 
this assay is its lack of specificity in the assessment of free 
radical scavenging, as it quantifies scavenged free radicals 
originating from a spectrum of compounds, thereby 
encompassing both the phenolic and non-phenolic 
constituents, such as ascorbic acid [34].

Additionally, comparisons within the same cultivar 
exhibited that the flower samples of ‘Ilonka’, ‘Silvia’, and 

Table 2 Extraction yield from 12 samples

Sample No Dry sample (g) Extract (g) Yield (%)

S1 5 1.2 24

S2 5 1.6 32

S3 5 1.5 30

S4 5 1.5 30

S5 5 1.2 24

S6 5 1.3 26

S7 5 1.1 22

S8 5 1.6 32

S9 5 1.6 32

S10 5 1.7 34

S11 5 1.3 26

S12 5 1.2 24
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‘Pompadour’ provided better antioxidant capacities, 
whereas ‘Geumsu’, ‘Yes Holic’, and ‘Ford’ displayed 
higher antioxidant capacities in their leaf samples. 
Nevertheless, both the DPPH and  ABTS+ assays 
demonstrated that Ford consistently produced the 
highest antioxidant capacity among the six cultivars in 

both its flowers and leaves, while ‘Ilonka’ consistently 
exhibited the lowest antioxidant capacity.

According to previous research on the antioxidant 
activity of five fractions (hexane, chloroform, ethyl 
acetate, butanol, and water) of broccoli MeOH extract, 
the results indicate that the butanol fraction exhibited 

Table 3 DPPH radical scavenging activity of S1 – S12

AA represents ascorbic acid, which was the positive control
a–f Different letters in the same column indicate significant statistical differences (p < 0.05)

Sample Concentration (mg/mL) DPPH

Scavenging activity (%) IC50 (mg/mL)

S1 1.25 28.97 ± 2.67 2.5 ± 0.2de

2.5 50.13 ± 5.31

5.0 88.73 ± 0.74

S2 2.5 22.66 ± 1.57 7.1 ± 0.2a

5.0 36.11 ± 2.03

10.0 67.46 ± 0.90

S3 1.25 20.14 ± 2.74 3.8 ± 0.1c

2.5 35.66 ± 1.69

5.0 63.02 ± 1.41

S4 2.5 27.70 ± 0.62 5.9 ± 0.2b

5.0 43.59 ± 2.67

10.0 77.68 ± 3.61

S5 1.25 25.22 ± 3.38 3.0 ± 0.1d

2.5 46.04 ± 2.27

5.0 74.45 ± 3.11

S6 1.25 36.60 ± 1.47 2.0 ± 0.1e

2.5 60.88 ± 2.09

5.0 90.58 ± 0.80

S7 1.25 26.49 ± 1.49 2.6 ± 0.1d

2.5 52.16 ± 0.46

5.0 83.47 ± 1.05

S8 2.5 21.42 ± 2.69 7.0 ± 0.4a

5.0 35.70 ± 3.47

10.0 69.30 ± 1.56

S9 1.25 26.19 ± 3.05 2.6 ± 0.3d

2.5 52.69 ± 6.40

5.0 86.43 ± 1.82

S10 0.5 25.71 ± 2.74 1.2 ± 0.1f

1.0 42.47 ± 1.17

2.0 80.23 ± 1.50

S11 1.25 20.52 ± 2.93 3.8 ± 0.2c

2.5 35.36 ± 2.65

5.0 62.83 ± 1.05

S12 1.25 32.43 ± 0.96 2.5 ± 0.1de

2.5 47.43 ± 3.46

5.0 89.18 ± 0.11

AA 0.14 ± 0.0



Page 7 of 13Doan et al. Applied Biological Chemistry           (2024) 67:17  

the highest DPPH  (EC50 = 0.524  mg/mL) and  ABTS+ 
 (EC50 = 0.180  mg/mL) radical scavenging activities 
[35]. Compared to the results of the present study, the 
antioxidant activities of C. morifolium were significantly 
stronger than broccoli.

Phenolic compounds are renowned for their 
antioxidative attributes and exhibit a spectrum of 

biological activities, which can provide potential 
advantages for human health [36]. They can help protect 
cells and tissues from oxidative stress by neutralizing 
harmful free radicals, which can damage DNA, proteins, 
and lipids. Moreover, the intake of dietary sources 
abundant in phenolic compounds has been associated 
with a range of health advantages, including a diminished 

Table 4 ABTS+ radical scavenging activity of S1–S12

a AA represents ascorbic acid, which was the positive control
a–k Different letters in the same column indicate significant statistical differences (p < 0.05)

Sample Concentration (mg/mL) ABTS+

Scavenging activity (%) IC50 (mg/mL)

S1 1.25 27.85 ± 0.55 2.7 ± 0.1 h

2.5 49.32 ± 0.44

5.0 82.47 ± 0.56

S2 2.5 20.67 ± 0.27 8.9 ± 0.1a

5.0 34.06 ± 0.91

10.0 54.32 ± 0.44

S3 1.25 23.14 ± 0.42 4.1 ± 0.1d

2.5 36.13 ± 0.60

5.0 58.43 ± 0.46

S4 2.5 27.85 ± 0.15 5.7 ± 0.1c

5.0 47.01 ± 0.80

10.0 76.90 ± 0.59

S5 1.25 25.48 ± 0.80 3.1 ± 0.1 g

2.5 42.91 ± 0.97

5.0 73.06 ± 0.36

S6 1.25 35.59 ± 0.27 2.1 ± 0.1j

2.5 60.23 ± 0.50

5.0 93.19 ± 0.44

S7 1.25 22.37 ± 0.20 3.3 ± 0.1f

2.5 42.44 ± 1.04

5.0 70.52 ± 1.10

S8 2.5 24.11 ± 0.78 6.1 ± 0.1b

5.0 45.21 ± 0.89

10.0 74.76 ± 0.50

S9 1.25 37.03 ± 1.13 2.0 ± 0.1j

2.5 61.47 ± 0.61

5.0 92.65 ± 0.15

S10 0.5 27.55 ± 0.38 1.1 ± 0.1 k

1.0 47.41 ± 1.16

2.0 76.96 ± 1.02

S11 1.25 22.40 ± 0.80 3.9 ± 0.1e

2.5 36.56 ± 0.93

5.0 60.77 ± 0.83

S12 1.25 33.42 ± 0.21 2.2 ± 0.1i

2.5 57.26 ± 0.50

5.0 91.05 ± 0.45

AA a 0.11 ± 0.0
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susceptibility to chronic ailments, such as cardiovascular 
diseases, malignancies, and neurodegenerative 
conditions. These compounds may also possess anti-
inflammatory and antimicrobial effects [37, 38].

Quantitative analysis of the content of 12 phenolic 
compounds was conducted using HPLC/UV. Among 
these compounds, isoschaftoside was found in trace 
amounts in four samples (S1, S2, S4, and S6), and was 
undetectable in the remaining samples. Consequently, 
only 11 phenolic compounds were quantified. The HPLC 
chromatogram for all the standard compounds can be 
seen in Fig. 3. The retention times, calibration equations, 
and correlation factors for the 11 quantified phenolic 
compounds are presented in Table  5. In general, these 
compounds exhibited distinct separation with retention 
times ranging from 11.35 to 41.26 min. The coefficient of 
determination (r2) exceeded 0.9990 for all compounds, 
thereby demonstrating the excellent linearity of the used 
quantification method. Additionally, the quantification 
of the contents of the individual compounds in the 
samples was calculated by the calibration equation, with 
Y representing a specific peak area and X denoting the 
compound concentration (Table 6). The chromatograms 
for all 12 cultivar samples are provided in Fig. 4.

Overall, only a few of the twelve investigated 
compounds were detected in all the samples. Among 
the twelve compounds, only six were present in all 
samples. These compounds are chlorogenic acid, 
luteoloside, isochlorogenic acid B, isochlorogenic 
acid A, isochlorogenic acid C, apigenin, and acacetin. 
Many previous research studies have reported that 
the principal phenolic constituents in C. morifolium 
include chlorogenic acid, 3-O-caffeoylquinic acid, 
4-O-caffeoylquinic acid, 3,4-di-O-caffeoylquinic 
acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-
caffeoylquinic acid, caffeic acid, luteolin, luteolin-7-
O-glucopyranoside, apigenin, apigenin-7-O-glucoside, 

acacetin-7-O-rutinoside, and acacetin [17–19]. Another 
study also indicated that C. morifolium flowers showed 
the presence of many flavonoids, such as acacetin, 
apigenin, chrysin, eriodictyol, luteolin, quercetin, 
quercitrin, isoquercitrin, hyperoside, catechin, and 
isocatechin [39].

Among the twelve samples analyzed, the highest 
total phenolic compound content was found in S10 
(270.61  mg/g extract), whereas the lowest content 
was detected in S2 (12.90  mg/g extract). In the leaves 
and flowers samples, S1 and S10 had the highest total 
phenolic compound content, while the lowest were 
in S2 and S8. These results are similar to the results 
regarding the antioxidant activities mentioned above. 
It can be seen that the higher the total phenolic 
compound content, the higher the antioxidant activity. 
However, there are some differences in the results 
regarding the content of the plant compounds with 
antioxidant capacities. Specifically, S1 showed a 

10

9

11

12

7 851

2
3

6
4

Fig. 3 HPLC chromatogram of standard compounds 1–12. chlorogenic acid (1), schaftoside (2), isoschaftoside (3), luteoloside (4), isochlorogenic 
acid B (5), isochlorogenic acid A (6), cosmosiin (7), isochlorogenic acid C (8), linarin (9), luteolin (10), apigenin (11), and acacetin (12)

Table 5 Calibration curve equations for compounds 1–12 

a Y = peak area, X = concentration of the standard (µg/mL)
b r2 = coefficient of determination for five calibration data points (n = 3)

Compound tR Calibration equation a Correlation factor, 
r2 b

1 11.35 Y = 8915.4X–4769.5 0.9999

2 14.43 Y = 16839X–4521.8 0.9999

4 18.06 Y = 4242.2X–44429 0.9999

5 19.03 Y = 4688X–6077.2 1.0000

6 20.12 Y = 7554.9X—148153 0.9996

7 21.59 Y = 12983X + 27818 1.0000

8 21.77 Y = 9367.5X—49947 0.9999

9 30.05 Y = 7254.3X—25314 0.9999

10 32.30 Y = 29378X—91446 1.0000

11 38.00 Y = 31246X + 17635 0.9999

12 41.26 Y = 21932X + 55315 0.9990
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higher total phenolic compound content compared 
to S6, while S9 also had a higher content of phenolic 
compounds compared to S7, yet S7 had a higher 
content compared to S12. However, this does not match 
previous antioxidant activity results, which can be 
explained as follows: firstly, the antioxidant activity of 
phenolic compounds can vary significantly depending 
on the presence and number of hydroxyl groups 
contained in a compound. Some phenolic compounds 
may have strong antioxidant properties, while others 
may have weaker or even pro-oxidant effects [36]. 
Another reason is that, in this paper, we only examined 
the content of 12 phenolic compounds. Additionally, 
there are many other plant compounds that were not 
investigated in this study, and these compounds could 
also contribute to the antioxidant capacity.

In a recent investigation, it was documented 
that dandelion (Taraxacum mongolicum Hand.-
Mazz.) exhibited a capacity to enhance the exercise 
performance of mice afflicted with liver dysfunctions 
[40]. The predominant constituents identified in 
dandelion included luteolin, rutin, isoquercitrin, 
myricitrin, chlorogenic acid, gallic acid, caffeic 
acid, p-coumaric acid, protocatechuic acid, and 
isochlorogenic acid A. These constituents are quite 
similar to the compounds presented in the six C. 
morifolium cultivars; therefore, it can be expected 
that in addition to the antioxidant activities, C. 
morifolium may also have medicinal properties similar 
to dandelions, or other important medicinal properties.
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