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Abstract 

Six compounds were isolated from Penicillium sp. SG-W3, a marine-derived fungus, and their inhibitory activities 
against target enzymes relating to neurological diseases were evaluated. Compound 1 (pannorin) was a potent 
and selective monoamine oxidase (MAO)-A inhibitor with a 50% inhibitory concentration (IC50) of 1.734 μM 
and a selectivity index (SI) of > 23.07 versus MAO-B, and it showed an efficient antioxidant activity. All compounds 
showed weak inhibitory activities against acetylcholinesterase, butyrylcholinesterase, and β-secretase. The inhibi‑
tion constant (Ki) of 1 for MAO-A was 1.049 ± 0.030 μM with competitive inhibition. Molecular docking simulation 
predicted that compound 1 forms hydrogen bonds with MAO-A, and binds more tightly to MAO-A than to MAO-B 
(− 25.02 and − 24.06 kcal/mol, respectively). These results suggest that compound 1 is a selective, reversible, and com‑
petitive MAO-A inhibitor that can be a therapeutic candidate for treating neurological diseases.

Keywords  Penicillium sp. SG-W3, Pannorin, Monoamine oxidase, Enzyme kinetics, Reversible competitive inhibitor, 
Molecular docking and dynamics

Introduction
Alzheimer’s disease (AD) is a major concerned-neu-
rodegenerative disease, leading cause of dementia [1]. 
Recently, more than 50 million people have been affected 
by AD, and it is expected to double every 20 years owing 

to industrialization and aging of the population [1]. The 
most typical symptoms of AD are memory, intellectual, 
speech, movement, and space–time disorders [2, 3]. 
Despite the increasing number of patients with AD, no 
effective drugs are available to treat AD [3]. However, 
its pathogenesis remains unclear. Several studies have 
shown that monoamine oxidase (MAO) level increase, 
acetylcholine (ACh) level reduction, neuro-inflamma-
tion, β-amyloid (Aβ) accumulation, and tau phosphoryla-
tion play important roles in AD etiology [1, 4]. Oxidative 
deamination of various amines catalyzed by MAO (EC 
1.4.3.4) has been reported to be a source of reactive oxy-
gen species (ROS) and a cause of various diseases [4]. 
Moreover, Aβ accumulation in the brain also causes AD, 
due to abnormal amyloid precursor protein (APP) lysis 
by β-secretase (BACE1) and neurofibromins tangling by 
tau hyperphosphorylation [5].

Parkinson’s disease (PD), along with AD, are major 
neurological diseases. Many studies have suggested that 
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the degeneration of dopaminergic neurons, specially, 
in the nigrostriatal pathway causes PD, due to oxidative 
stress [6, 7]. Dopamine metabolism involves in ROS for-
mation in the brain as a major process. In general, dopa-
mine levels are mostly regulated by MAO-A, locating 
in catecholaminergic neurons. Furthermore, increased 
levels of MAO-B, a major enzyme involved in dopamine 
catabolism inside glial cells, lead to neuronal degenera-
tion [8, 9].

Therefore, dopamine degradation by MAO-B produces 
ROS, which causes oxidative stress and PD. Addition-
ally, increased MAO-B activity correlates with cognitive 
impairment in patients with AD [10, 11].

MAOs are located in the mitochondrial outer mem-
brane in two isoforms, i.e., MAO-A and MAO-B, cata-
lyzing the oxidative deamination of neurotransmitters, 
such as monoamines [12, 13]. In addition, MAOs are 
also associated with Aβ accumulation in the brain of AD 
patients [14]. MAO inhibitors, moclobemide and clor-
gyline inhibit MAO-A, whereas lazabemide, pargyline, 
selegiline, and rasagiline inhibit MAO-B [15]. Among 
them, MAO-A inhibitors have been used to treat anxiety 
and depression, and MAO-B inhibitors have been used to 
treat PD; study to find new MAO inhibitors as neurologi-
cal disorder treatments is ongoing [16, 17].

ACh, one of neurotransmitters in the brain, has impor-
tant functions in both central and peripheral nervous 
systems. Cholinesterases (ChEs) include acetylcholinest-
erase (AChE) and butyrylcholinesterase (BChE), which 
commonly decompose ACh into choline and acetyl coen-
zyme A [18, 22]. AChE catalyzes ACh, whereas BChE 
catalyzes both ACh and butyrylcholine (BCh), but has 
a higher preference for BCh than ACh. These ChEs are 
involved in serine hydrolysis in the body and regulate 
ACh levels in the glial cells, the hippocampus, and the 
temporal nerve cortex [17, 19, 20]. Several studies have 
reported that AChE and BChE inhibitors that increase 
ACh levels in the brain as treatment candidates for AD 
[21, 22]. FDA-approved ChE inhibitors such as donepezil, 
galantamine, and rivastigmine elevate ACh levels and 
alleviate AD symptoms [20, 23, 24].

In the healthy brain, neuronal APPs are typically 
digested by α- and γ-secretase enzymes with three 
domains such as cell, cell membrane, and extracellular 
space. The normal Aβ fragments are soluble polypeptides 
produced through this digestive reaction and can be recy-
cled in cells. However, Aβ fragments produced by BACE1 
and γ-secretase are not recycled and can cause AD 
through accumulation in brain neurons. Until recently, 
many studies have focused on BACE1 inhibitors, how-
ever, there has been no success in drug approval, while 
several monoclonal antibodies as Aβ aggregation inhibi-
tors like aducanumab [25] and lecanemab [26] have been 

developed. Nevertheless, BACE1 inhibitor development 
remains worthwhile. In addition, multi-target inhibitors 
that improve cognitive function by simultaneously inhib-
iting MAOs, ChEs, and BACE1 to increase monoamine 
and acetylcholine levels and decrease Aβ plaque forma-
tion have been developed to treat AD [17, 27].

Marine and freshwater fungi have distinct metabolite 
profiles [28]. Marine fungi have garnered interest owing 
to the secondary metabolites produced, which often have 
distinct structural features and interesting biological and 
pharmacological characteristics [29]. Marine Penicillium 
species produce various secondary metabolites with anti-
viral, anti-bacterial, anti-tumor, and anti-inflammatory 
activities [30, 31]. Though various MAO inhibitors of 
marine origin were described [32], only few MAO inhibi-
tors have been isolated from Penicillium spp. till date.

This study describes the inhibitory activities of six com-
pounds isolated from the marine Penicillium sp. SG-W3 
against the enzymes MAO, AChE, BChE, and BACE1.

Materials and methods
General experimental procedures
NMR spectra were obtained using NMR spectrometers, 
a Varian Inova (Varian Medical Systems, Inc., Char-
lottesville, VA, USA; 500 and 125  MHz for 1H and 13C, 
respectively) and a Bruker (Bruker, Middlesex, MA, USA; 
300  MHz for 1H), using the residual solvent signals as 
internal references, dimethyl sulfoxide-d6 (DMSO-d6) 
(δH 2.50  ppm and δC 39.5  ppm) and deuterated metha-
nol (CD3OD) (δH 4.87 and 3.31  ppm). Low-resolution 
LC/MS analysis was performed using an Agilent Tech-
nologies 1260 quadrupole (Santa Clara, CA, USA) and 
Waters Micromass ZQ LC/MS system (Milford, MA, 
USA) using a reverse-phase column (Phenomenex Luna 
C18 (2) 100 Å, 50 × 4.6 mm2, 5 µm; Torrance, CA, USA) 
at 1.0 mL/min at NanoBioEnergy Materials Center (Ewha 
Womans University). Column chromatography (CC) was 
carried out using reversed-phase silica gel C18 column 
(70–230 mesh, Merck, Germany) with a step gradient 
solvent of water and methanol. The fractions were fur-
ther purified using the reverse-phase HPLC C18 column 
(Phenomenex Luna C18 (2)).

Isolation and identification of a marine fungal strain SG‑W3
The fungal strain SG-W3 was isolated as previously 
described [33] with a few modifications such as growing 
the fungus on PDA containing 1% (w/v) NaCl at 28  °C 
for 7 to 14  days. Seawater was collected from Dangjin, 
Chungcheongnam-do, Republic of Korea (36º53ʹ19.1ʺN, 
126º49ʹ36.6ʺE) on March 25, 2020, transported to the 
laboratory, and filtered using a membrane filter (0.45-
μm, Hyundai Micro Co., Korea). The filters were then 
incubated on potato dextrose agar (PDA; BD, USA) and 
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yeast mold agar (YM; BD) supplemented with 3% (w/v) 
NaCl, 0.1% (w/v) ampicillin, and 0.1% (w/v) streptomy-
cin at 20  ºC for 7–14  days and the SG-W3 fungal col-
ony was isolated and transferred on fresh PDA media. 
SG-W3 spores were stored in 20% glycerol at – 80 ºC and 
deposited at the Microbial Marine Bio Bank (MMBB) 
of the National Marine Biodiversity Institute of Korea 
(MABIK).

Fungal DNA extraction, polymerase chain reaction 
(PCR), and PCR product purification were performed 
as previously described [33]. Briefly, DNA was isolated 
from SG-W3 mycelia, and the partial beta-tubulin gene 
sequence was amplified, as a molecular marker for fun-
gal identification [34]. The beta-tubulin segment was 
sequenced by Macrogen Inc. (Seoul, Korea), and used as 
a query sequence to search for close sequence matches 
using BLASTN in GenBank. Phylogenetic tree was con-
structed using MEGA version 6 [35].

Culture and isolation of compounds
The strain SG-W3 was cultured in 12 Ultra Yield Flasks 
(2.5 L) containing 1 L PDB SW medium (24 g potato dex-
trose broth and 39.4  g sea salt in 1  L distilled water)  at 
27  ℃ with shaking at 120  rpm for 7  days, and the 
medium (12  L) was extracted with the equal volume of 
ethyl acetate (EtOAc). It was concentrated to yield 2.2 g 
crude extract using a rotary vacuum evaporator. Then, 
10  L crude extract (1.9  g) was fractionated by flash CC 
on C18 resin eluted with 200  mL H2O/CH3OH (80/20, 
60/40, 50/50, 40/60, 30/70, 20/80, and 0/100) to obtain 
seven fractions (F1–F7). Fraction 4 was further puri-
fied by reversed-phase HPLC equipped with a Phenom-
enex Luna C-18(2) column (250 × 100 mm2, 2.0 mL/min, 
5 μm, 100 Å, UV = 254 nm) under an isocratic condition 
with 35% aqueous CH3CN to yield pannorin (1, 15.8 mg, 
tR = 19.0  min), 2,5-dimethyl-6,8-dihydroxy-chromone 
(2, 6.5 mg, tR = 21.2 min), penimethavone A (3, 11.8 mg, 
tR = 24.0  min), calyxanthone (4, 2.6  mg, tR = 28.6  min), 
and endocrocin (5, 15.8  mg, tR = 37.5  min). In addition, 
2 L extract (0.3 g) was fractionated by open-CC on silica 
gel and eluted with a step gradient of CH2Cl2 /CH3OH 
(98/2, 90/10, 0/100) to obtain three fractions (F1–F3). 
Fraction 1 was purified using reverse-phase HPLC (Phe-
nomenex Luna C-18 (2)) under isocratic conditions of 
65% CH3CN in water to obtain hydroxyviocristin (6, 
1.1 mg, tR = 19.0 min).

Pannorin (1): brownish powder, 1H NMR (500  MHz, 
DMSO-d6): δH 12.12 (s, 4-OH), 10.00 (s, 8-OH), 9.86 (s, 
10-OH), 7.19 (s, H-6), 6.55 (d, J = 2.2  Hz, H-7), 6.52 (d, 
J = 2.2 Hz, H-9), 5.51 (s, H-3), 2.65 (s, CH3-5); 13C NMR 
(125 MHz, DMSO-d6): δc 169.7 (C-4), 161.2 (C-2), 158.9 
(C-8), 156.6 (C-10), 154.6 (C-10b), 138.1 (C-6a), 132.4 
(C-5), 124.1 (C-6), 107.7 (C-4a), 106.5 (C-10a), 102.7 

(C-9), 100.9 (C-7), 88.9 (C-3), 23.5 (CH3-5); LR-ESI–MS 
m/z = 259.91 [M + H]+.

2,5-Dimethyl-6,8-dihydroxy-chromone (2): brown-
ish powder, 1H NMR (500 MHz, DMSO-d6): δH 10.15 (s, 
8-OH), 10.04 (s, 6-OH), 7.20 (s, H-10), 6.57 (d, J = 2.2 Hz, 
H-9), 6.55 (d, J = 2.2  Hz, H-7), 6.18 (s, H-3), 2.71 (s, 
CH3-5), 2.37 (s, CH3-2); 13C NMR (125 MHz, DMSO-d6): 
δc 178.4 (C-4), 163.3 (C-2), 159.2 (C-8), 156.8 (C-6),156.6 
(C-14), 138.6 (C-5), 134.3 (C-11), 124.7 (C-10), 116.1 
(C-13), 112.0 (C-3), 107.1 (C-12), 102.8 (C-7), 101.1 (C-9), 
22.9 (CH3-5), 19.4 (CH3-2); LR-ESI–MS m/z = 257.94 
[M + H]+.

Penimethavone A (3): yellowish powder, 1H NMR 
(500  MHz, DMSO-d6): δH 12.91 (s, OH-5), 10.81 
(s, OH-7), 9.81 (s, OH- 2′), 9.71 (s, OH-4′), 6.35 (d, 
J = 1.8  Hz, H-8), 6.27 (d, J = 1.5  Hz, H-3′), 6.20 (d, 
J = 1.8 Hz, H-6), 6.21 (d, J = 1.5 Hz, H-5′), 6.21 (s, H-3), 
2.13 (s, H-7′); 13C NMR (125 MHz, DMSO-d6): δc 181.8 
(C-4), 164.2 (C-7), 164.1 (C-2), 161.6 (C-5), 159.9 (C-4′), 
158.2 (C-8a), 157.0 (C-2′), 139.0 (C-6′), 111.5 (C-3), 
111.2 (C-1′), 108.7 (C-5′), 103.8 (C-4a), 100.2 (C-3′), 98.7 
(C-6), 93.8 (C-8), 19.8 (C-7′); LR-ESI–MS m/z = 201.10 
[M + H]+.

Calyxanthone (4): yellow powder, 1H NMR (400 MHz, 
DMSO-d6): 7.34 (s, H-4), 7.06 (s, H-5), 6.35 (d, J = 2.1 Hz, 
H-2), 6.17 (d, J = 2.1 Hz, H-7), 2.44 (s, H-11); LR-ESI–MS 
m/z = 287.10 [M + H]+.

Endocrocin (5): orange powder, 1H NMR (400  MHz, 
DMSO-d6): δH 12.67 (s, 1-OH), 7.40 (s, H-4), 7.09 
(s, H-5), 6.59 (s, H-7), 2.48 (s, CH3-3); LR-ESI–MS 
m/z = 315.04 [M + H]+.

Hydroxyviocristin (6): yellow powder, 1H NMR 
(400 MHz, CD3OD): δH 7.60 (s, H-9), 7.21 (s, H-3), 7.20 
(d, J = 2.0  Hz, H-8), 6.58 (d, J = 2.0  Hz, H-6), 2.45 (s, 
CH3-3); LR-ESI–MS m/z = 271.10 [M + H]+.

Chemicals
All the enzymes used in this study were purchased from 
Sigma-Aldrich (St. Louis, MO, USA) [13]. Mono- and di-
basic sodium phosphate (anhydrous) were obtained from 
Daejung Chemicals and Metals (Siheung, South Korea). 
A dialyzer DiaEasy™ (6–8 kDa) was purchased from Bio-
Vision (St. Grove, MA, USA).

Enzyme assays and kinetics
MAO-A human (recombinant, M7316, Sigma-Aldrich, 
527 amino acids natively) and MAO-B human (recombi-
nant, M7441, Sigma-Aldrich, 520 amino acids natively) 
activities were measured using the continuous method 
at 316 and 250 nm for 45 min, respectively, using a UV/
Vis spectrophotometer (OPTIZEN POP, K-LAB, Dae-
jeon, Republic of Korea). The absorbance was measured 
using 0.5 mL volume in a 1 mL quartz cuvette containing 
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50 mM sodium phosphate (pH 7.2) at room temperature 
[13, 36]. The substrates used were kynuramine (0.06 mM) 
and benzylamine (0.3  mM), respectively. AChE (electric 
eel, C2888, Sigma-Aldrich,) and BChE (equine serum, 
C7512, Sigma-Aldrich,) activities were analyzed using 
the continuous assay method at 412 nm for 15 min with 
0.50 mM acetylthiocholine iodide and butyrylthiocholine 
iodide as substrate, respectively [37, 38]. BACE1 activ-
ity was measured by BACE1 assay kit (human, CS0010, 
Sigma-Aldrich) using a microplate spectrophotom-
eter (Varioskan LUX, Thermo Fisher Scientific, Inc., 
Waltham, MA, USA).

For enzyme kinetics, MAO-A activity was assayed at 
0.0075–0.12 μM kynuramine [13, 36]. The kinetic param-
eters, Km and Vmax, were determined using Lineweaver–
Burk (LB) plots.

MAO, ChE, and BACE1 inhibition studies
In the primary screening, the inhibitory activity of 10 µM 
test compounds against MAOs, ChEs, and BACE1 were 
evaluated. The 50% inhibitory concentration (IC50) of the 
compounds were calculated up to 40 µM by using Graph-
Pad Prism software 5 (San Diego, CA, USA) [13]. The 
selectivity index (SI) was calculated using IC50 MAO-B/
IC50 MAO-A. The reference inhibitors were included: 
toloxatone and clorgyline for MAO-A, safinamide and 
pargyline for MAO-B, and donepezil for AChE or BChE 
[49, 50]. For the inhibition kinetics, compound 1 for 
MAO-A was used at approximately 0.5-, 1.0-, and 1.5-
times the IC50 [13, 36], and its inhibition constant (Ki) 
was determined using the secondary plot of their slopes 
in the LB plots.

Antioxidant activity assay
The antioxidant activity was analyzed by measuring the 
absorbance at 517 nm, after 15 min preincubation of the 
test compound (50 μM) and 2,2-diphenyl-1-picrylhydra-
zyl (DPPH) (0.1 mM) [39].

Reversibility studies
The reversibility patterns of compound 1 for MAO-A 
inhibition were analyzed by measuring the undialyzed 
(AU) and dialyzed (AD) residual activities after pre-incu-
bation for 30 min, as previously described. The inhibition 
type was determined by comparing to the reference com-
pounds [13, 36].

Molecular docking and dynamics simulation
MAO-A and MAO-B structures (PDB ID: 2Z5X and 
2V5Z, respectively) were obtained from the Protein Data 
Bank [40]. The three-dimensional structures of com-
pounds 1 (PubChem ID: 54692973), 2, and 4 (PubChem 
ID: 23902332) were generated from the SMILES string in 

PubChem [41] and in-house program using OpenBabel 
[42]. AutoDock Vina [43] was used to predict the bind-
ing positions of molecules. A docking box for each pro-
tein was defined as a cube with a length of 22.5 Å along 
each axis. The distance between voxel points was set to 
0.375  Å. AutoDock4 [44] affinity maps were calculated. 
The receptors and ligands were prepared using Auto-
DockTools [44].

To explain the selectivity of compound 1 to MAO-A 
and MAO-B, predicted complex structures were fur-
ther prepared for molecular dynamics (MD) simulations 
using CHARMM-GUI [45]. Cubic boxes with a periodic 
boundary condition were created by extending 10 Å from 
the docked complexes along each axis. TIP3P water mol-
ecules were used to solvate the boxes, and K+ and Cl− 
ions were then added to neutralize them. Proteins and 
ligands were parameterized using AMBER FF19SB [46] 
and GAFF [47], respectively. Both systems were prepared 
in AMBER input format using CHARMM-GUI [48].

AMBER20 [49] was used to simulate the system. 
The system was initialized with a minimization of 2500 
steepest descent steps, followed by 2500 conjugate gra-
dient steps. Subsequently, the NVT equilibration was 
performed for 125 ps using a Langevin thermostat. FAD 
and compound 1 were subjected to position restraints of 
1.0  kcal/mol/Å2 during both steps. Three independent 
100 ns MD simulations were conducted for both systems 
using the SHAKE algorithm [50]. The binding affinities of 
compound 1 and MAOs were determined using MMG-
BSA [51] for all MD production trajectories. MMGBSA 
is one of the widely binding affinity prediction methods 
using MD simulation. Since it was first proposed in 1998 
by P. A. Kollman [PMID: 10052623], a couple of thou-
sand papers have been published [PMID: 25835573] to 
study the binding affinity of biomolecular complexes. The 
method calculates the interaction between protein and 
ligand using molecular mechanics (MM), and solvation 
of each molecule using generalized-Born (GB) and sol-
vent accessible area (SA) for polar and nonpolar atoms, 
respectively. Compared to the docking score, it shows 
higher correlation with the experimentally observed 
binding affinities [PMID: 23268595]. In this study, the igb 
option was set to 2, and the interaction between the com-
pound and binding-site residues was analyzed by decom-
posing MMGBSA to the residue level.

Results and discussion
Identification of the fungal strain SG‑W3
The beta-tubulin segment of a seawater-derived strain 
SG-W3 was analyzed for molecular identification, and 
the resulting 402-bp sequence was deposited in GenBank 
(accession number OR639834). Beta-tubulin sequence-
based neighbor-joining phylogenetic analysis showed 
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that SG-W3 was closely related to Penicillium cyclopium 
CBS 144.45 (MN969380), Penicillium polonicum CBS 
222.28 (MN969392), and Penicillium melanoconidium 
CBS 115506 (MN969387) with 97.77%, 97.52%, and 
97.52% sequence identity, respectively (Additional file 1: 
Fig. S1). In the phylogenetic tree, SG-W3 was clustered 
separately and thus not identified at the species level. 
Based on these data, SG-W3 was assigned as Penicillium.

Identification of the compounds
Compound 1 was isolated as a brownish powder, and 
LR-ESI–MS spectroscopic data showed an ionic peak at 
m/z 259.91 [M + H]+. The 1H NMR spectrum of com-
pound 1 displayed meta-coupled aromatic protons δH at 
6.55 (d, J = 2.2 Hz, H-7) and 6.52 (d, J = 2.2 Hz, H-9); an 
olefinic proton δH at 5.51 (s, H-3); an methyl proton at δH 
2.65 (s, CH3-5); an upfielded proton at δH 7.19 (s, H-6); 
and three hydroxy protons at δH 9.86 (s, 10-OH), 10.00 
(s, 8-OH), and 12.12 (s, 4-OH) (Additional file 1: Fig. S2). 
The 13C NMR spectra showed one ester carbonyl carbon 
at δC 161.2 (C-2); one methyl carbon at δC 23.5 (CH3-5); 
three aromatic methine carbons at δC 100.9 (C-7), 102.7 
(C-9), and 124.1 (C-6); five quaternary carbons at δC 
106.5 (C-10a), 107.7 (C-4a), 132.4 (C-5), 138.1 (C-6a), and 
154.6 (C-10b); three aromatic carbons bearing a hydroxyl 
group at δC 156.6 (C-10), 158.9 (C-8) and 169.7 (C-4); and 
an olefinic methine carbon at δC 88.9 (C-3) (Additional 
file 1: Fig. S3). Based on a comparison of NMR data with 
the literature, compound 1 was identified as pannorin 
[52]. Compound 1 inhibited the GSK-3 isoform and 
HMG-CoA reductase [52, 53].

Compound 2 was isolated (a brownish powder), and 
LR-ESI–MS spectroscopic data showed an ionic peak at 
m/z 257.94 [M + H]+. The 1H NMR spectrum of com-
pound 2 showed two methyl groups at δH 2.37 (s, CH3-2), 
2.71 (s, CH3-5), two hydroxyl group at δH 10.04 (s, 6-OH), 
10.15 (s, 8-OH), a pair of meta-coupled protons at δH 
6.55 (d, J = 2.2  Hz, H-7), 6.57 (d, J = 2.2  Hz, H-9), two 
singlet aromatic protons at δH 7.20 (s, H-10) and 6.18 (s, 
H-3) (Additional file 1: Fig. S4). The 13C NMR spectrum 
of compound 2 indicated the presence of 15 carbon sig-
nals, including a carbonyl group at δc 178.4 (C-4); four 
aromatic carbons connected with oxygen atoms at δc 
163.3 (C-2), 159.2 (C-8), 156.8 (C-6),156.6 (C-14); four 
aromatic tertiary carbons at δc 101.1 (C-9), 102.8 (C-7), 
112.0 (C-3), 124.7 (C-10); and four quaternary carbons at 
δc 107.1 (C-12), 116.1 (C-13), 134.3 (C-11), 138.6 (C-5), 
revealing that compound 2 had a benzochromone skel-
eton (Additional file  1: Fig. S5). Based on a comparison 
of the NMR data with the data previously reported, we 
identified compound 2 as 2, 5-dimethyl-6, 8-dihydroxy-
chromone [54].

Compound 3 was isolated as a yellow powder, and LR-
ESI–MS revealed an ionic peak at m/z 201.10 [M + H]+. 
The 1H NMR spectrum of compound 3 exhibited four 
exchangeable protons at δH 12.91 (s, OH-5), 10.81 (s, 
OH-7), 9.81 (s, OH- 2′), 9.71 (s, OH-4′) and two pairs of 
meta-coupled aromatic signals at δH 6.35 (d, J = 1.8  Hz, 
H-8), 6.27 (d, J = 1.5 Hz, H-3′), 6.20 (d, J = 1.8 Hz, H-6), 
6.21 (d, J = 1.5  Hz, H-5′). Additionally, one olefinic sin-
glet at δH 6.21 (s, H-3) and one methyl singlet at δH 2.13 
(s, H-7′) were observed (Additional file 1: Fig. S6). Com-
pound 3 was identified as penimethavone A by compar-
ing its NMR data with those reported previously [55]. 
Various biological activities of compound 3, including 
anti-cancer, anti-bacterial, and anti-SARS-CoV-2 activi-
ties, have been reported [55–57].

Compound 4 was isolated as a yellow powder, and LR-
ESI–MS spectroscopic data showed an ionic peak at m/z 
287.10 [M + H]+. The 1H NMR spectrum of compound 
4 showed a pair of meta-coupled protons at δH 6.35 (d, 
J = 2.1 Hz, H-2) and 6.17 (d, J = 2.1 Hz, H-7), two singlet 
aromatic protons at δH 7.34 (s, H-4) and 7.06 (s, H-5), and 
one methyl proton at δH 2.44 (s, H-12) (Additional file 1: 
Fig. S7). Compound 4 was identified as a calyxanthone 
based on a comparison of its 1H NMR data with previ-
ously reported data [56]. In addition, compound 4 exhib-
its anti-proliferative activity [56].

Compound 5 was isolated (an orange powder), and 
the LR-ESI–MS spectroscopic data showed an ionic 
peak at m/z 315.04 [M + H]+. The 1H NMR spectrum of 
compound 5 showed one hydroxy proton δH at 12.67 (s, 
1-OH); three singlet aromatic protons at δH 7.40 (s, H-4), 
7.09 (s, H-5), and 6.59 (s, H-7); and one methyl singlet at 
δH 2.48 (s, H-12) (Additional file 1: Fig. S8). It was identi-
fied as endocrocin by comparing the 1H NMR data with 
literature [56]. Compound 5 exhibits anti-inflammatory 
activity and may act as a GDH inhibitor [58, 59].

Compound 6 was isolated as a yellow powder, and 
the LR-ESI–MS spectroscopic data revealed an ionic 
peak at m/z 271.10 [M + H]+. The 1H NMR spectrum of 
compound 6 displayed four aromatic protons at δH 7.60 
(s, H-9), 7.21 (s, H-3), 7.20 (d, J = 2.0  Hz, H-8), 6.58 (d, 
J = 2.0  Hz, H-6), and one methyl proton at δH 2.45 (s, 
CH3-3) (Additional file  1: Fig. S9). Compound 6 was 
identified as hydroxyviocristin based on comparison of 
its 1H NMR data with previously reported data [37].

Thus, six compounds, pannorin (1), 2, 5-dimethyl-6, 
8-dihydroxy-chromone (2), penimethavone A (3), 
calyxanthone (4), endocrocin (5), and hydroxyviocristin 
(6), were isolated from Penicillium sp. SG-W3 (Fig. 1). 
Pannorin (1) has been previously produced by Asper-
gillus sp. [52]. Compound 2,5-dimethyl-6,8-dihydroxy-
chromone (2) was previously isolated from the roots of 
Rheum palmatum [54], and this is the first report of its 
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isolation from Penicillium sp. [55]. Penimethavone A 
(3), calyxanthone (4), and endocrocin (5) were isolated 
from Penicillium spp. [56], and hydroxyviocristin (6) 
was isolated from Aspergillus cristatus [60].

Based on the structural features of compounds 1–6, 
the plausible biosynthetic pathway of them was pro-
posed to begin with the non-reducing polyketide syn-
thase for the generating C16-octaketide. Then, this 
undergoes cyclization to form atrochryone carboxylic 
acid, which can be autoxidized to produce endocrocin 
(5). The emodin derived from this process undergoes 
enzymatic transformation, involving oxidative ring-
opening between C-4 and C-5. Subsequent dehydration 
leads to the formation of intermediate calyxanthone (4) 
[61].

Inhibitory activity against the enzymes
Inhibitory activities of six compounds against MAOs 
(MAO-A and MAO-B), ChEs (AChE and BChE), and 
BACE1 were evaluated (Table  1). In primary screen-
ing, most 10 μM compounds showed higher inhibition 
against MAO-A at than that against other enzymes 
(Table  1). Among them, compounds 1 and 2 most 
potently inhibited MAO-A (IC50: 1.734 and 4.290 μM, 
respectively). These IC50 values of MAO-A were 3.40- 
and 1.38-times lower than naphthopyrone rubro-
fusarin (IC50 = 5.90  μM), respectively [62]. The SI of 
compound 1 was relatively high, > 23.07 for MAO-A vs. 
MAO-B (IC50 > 40 μM) (Table 1). Most compounds had 
high IC50 (> 40 μM) for MAO-B, except compounds 2 
and 6 (IC50: 23.29 and 11.82 μM, respectively; Table 1). 
Regarding the structure–activity relationship (SAR), 

Fig. 1  Chemical structures of compounds 1–6 
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the naphthopyrone (also named benzocoumarin) scaf-
fold (1) showed higher MAO-A inhibition than other 
scaffolds such as anthracene (2, 4, 5, and 6) and fla-
vone (3) (Fig. 1, Table 1). In contrast, most compounds 
weakly inhibited ChEs and BACE1 (Table  1). These 
results suggested that compound 1 is a potent selective 
MAO-A inhibitor, comparable to the reference toloxa-
tone (IC50: 1.25 μM).

Antioxidant activity
Compounds 1 and 2 showed antioxidant activity, with 
37.8% and 33.1% inhibition in the DPPH assay, respec-
tively (Fig. 2). The activity of compound 1 was similar to 
that of the reference Trolox (40.7%), indicating that com-
pound 1 is an efficient antioxidant.

Inhibition kinetics
MAO-A inhibition by compound 1 was analyzed using 
five substrate concentrations (kynuramine) and three 

Table 1  Monoamine oxidase (MAO), cholinesterase (ChE), and β-secretase (BACE1) inhibition by the compounds a

a  Results are the means ± standard errors of duplicate or triplicate experiments
b  Selectivity index (SI) expressed for MAO-A compared to MAO-B. Except for *, the SI for MAO-B
c  The 50% inhibitory concentration (IC50) against AChE was 20.614 ± 0.556 μM
d  The IC50 of donepezil, a reference AChE and BChE inhibitor

Compounds Residual activity at 10 µM (%) IC50 (µM) SIb

MAO-A MAO-B AChE BChE BACE1 MAO-A MAO-B

1 13.95 ± 1.22 88.38 ± 3.95 73.42 ± 5.22 95.51 ± 0.91  > 100 1.73 ± 0.31  > 40  > 23.07

2 26.98 ± 1.49 76.15 ± 3.22 65.12 ± 1.00c 83.97 ± 2.72 78.19 ± 10.49 4.29 ± 0.55 23.29 ± 1.80 5.43

3 51.63 ± 1.00 94.97 ± 4.35 73.51 ± 3.68 95.51 ± 0.91  > 100 12.60 ± 0.12  > 40  > 3.18

4 77.67 ± 0.15 81.80 ± 3.56 71.44 ± 1.16 96.80 ± 2.72  > 100  > 40  > 40 –

5 88.84 ± 0.07 82.21 ± 1.59 74.18 ± 2.64 98.72 ± 1.81  > 100  > 40  > 40 –

6 57.21 ± 0.28 63.84 ± 0.17 75.64 ± 1.29 98.72 ± 1.81 88.96 ± 1.66 13.18 ± 0.03 11.82 ± 0.23 0.90

Toloxatone – – – – – 1.25 ± 0.23  > 40  > 32.13

Clorgyline – – – – – 0.013 ± 0.008 1.85 ± 0.11  > 142.5

Safinamide – – – – –  > 40 0.021 ± 0.001  > 1904*

Pargyline – – – – – 2.403 ± 0.358 0.14 ± 0.01 17.16*

Donepezild – – 0.001 ± 0.002 0.180 ± 0.004 – – – –

Fig. 2  Antioxidant activity of compounds 1–6 using for 2,2-dipheny-1-picrylhydrazyl (DPPH) assay. The results are the means ± standard errors 
of triplicate experiments. Trolox was used as a reference inhibitor. The % inhibition was calculated as (absorbance of control − absorbance 
of reaction mixture)/absorbance of control × 100
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inhibitor concentrations. In LB plots, the lines of com-
pound 1 intersected at a point on y-axis and compound 
1 was determined to be a competitive MAO-A inhibitor 
(Fig.  3A), and its secondary plot showed that its Ki was 
1.049 ± 0.030  μM (Fig.  3B). These results suggested that 
compound 1 is a potent competitive MAO-A inhibitor.

Reversibility studies
Inhibition reversibility was evaluated by the dialysis 
method after pre-incubating the enzyme (two times the 
IC50) and inhibitor for 30 min. Recovery types were ana-
lyzed by comparing the undialyzed (AU) and dialyzed 
(AD) relative residual activities. MAO-A inhibition by 
compound 1 recovered from 32.70% (AU) to 75.00% (AD) 
(Fig.  4). The relative residual activities of compound 1 
was similar to those of toloxatone, a reversible inhibitor 
(AU 29.53%; AD 80.00%), and different from those of clor-
gyline, an irreversible inhibitor (AU 36.10%; AD 33.85%). 
These results indicate that compound 1 is a reversible 
MAO-A inhibitor.

Molecular docking analysis of three compounds
Docking simulation was performed to investigate the 
activity trend of compounds 1, 2, and 4. The predicted 
binding affinities are shown in Additional file 1: Table S1. 
Compound 1 exhibits the lowest binding affinity to 
MAO-A, and compound 2 shows the lowest binding 
affinity to MAO-B, as observed in IC50 values. Accord-
ing to the Cheng-Prusoff equation [PMID: 4202581], 
lower IC50 corresponds to the lower binding affinity, 
although they are not directly related. The predicted Ki 
values of compound 1 to MAO-A and MAO-B from the 
docking scores are 501 nM and 989 nM, respectively. Su 

et  al. [PMID: 30481020] benchmarked the correlation 
between the experimentally observed binding affinity 
and the docking score. AutoDock, which is employed in 
this study, shows the Pearson’s corelation coefficient as 
0.604. Based on the benchmark, compound 1 might have 
a larger Ki to MAO-B than to MAO-A.

Molecular dynamics simulations to explain selectivity
The docking poses of compound 1 to MAO proteins, as 
the starting structure for MD simulations, are displayed 
in Fig.  5. The hydrophobic scaffolds of compound 1 in 
both binding poses substantially overlapped since both 
protein-binding pockets comprised conserved hydro-
phobic residues. G67 (58), Y69 (61), F177 (168), V182 

Fig. 3  A Lineweaver–Burk (LB) plots and B its secondary plot of the slope vs inhibitor concentrations for MAO-A inhibition by compound 1. The 
experiments were conducted using five kynuramine concentrations and three inhibitor concentrations

Fig. 4  Recovery of MAO-A inhibition by compound 1 using dialysis. 
Toloxatone, clorgyline, and compound 1 concentrations used were 
approximately two times their 50% inhibitory concentration (IC50; 
2.50, 0.026, and 3.40 μM, respectively). After 30 min pre-incubation, 
the mixtures were dialyzed for 6 h with twice of buffer change
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(173), Y197 (188), I207 (198), I325 (326), T336 (327), 
L337 (328), M350 (341), F352 (343), Y407 (398), T408 
(399), G443 (434), and Y444 (435) were structurally and 
sequentially conserved hydrophobic residues in both 
MAO proteins at 5  Å from the docked poses (MAO-B 
residue numbers provided in parentheses).

In both docking poses, the hydroxyl groups were ori-
ented toward opposite sides owing to N181 (MAO-A) 
substitution with C172 (MAO-B). The hydroxyl groups 
of compound 1 formed hydrogen bonds with the side 
chains in region between Q215 and N181 of MAO-A, but 
with C172 of MAO-B. The distance between Cδ of Q215 
and Cγ of N181 in MAO-A was 7.7  Å. Moreover, the 
bulky side chain of Y326 (MAO-B) brought it closer to 
FAD, whereas I335 (MAO-A), which occupied the same 
position, offered more space to place the molecule.

During the 100  ns MD simulation, the RMSDs of 
MAO-A and MAO-B in complex with compound 1 fluc-
tuated around 3–4 and 2–3  Å after 30  ns, respectively 
(Fig.  6). These shifts may be owing to the C-terminal 
helix of the proteins. Specifically, the long helix in MAO-
A, with approximately 14 additional residues or four helix 
turns, resulted in significant fluctuations during the sim-
ulation. The RMSD for the C-terminal helix of MAO-A 
(V498–L524) and MAO-B (V489–I501) were 1.1–6.2 
and 0.8–3.4  Å, respectively. The RMSD of compound 1 
was < 0.5  Å in all trajectories, with approximately 0.2  Å 
fluctuations. Guterres and Im [63] have reported that the 
RMSD threshold for active molecules was < 3  Å. There-
fore, compound 1 may function as an active molecule for 
both MAO proteins.

The binding affinities calculated by MMGBSA showed 
that MAO-A (−  25.02  kcal/mol) was a stronger bind-
ing partner than MAO-B (−  24.06  kcal/mol). Convert-
ing the predicted affinities to Ki gives 1.03 × 10–18 M and 

5.03 × 10–18  M for MAO-A and MAO-B, respectively. 
The predicted Ki for MAO-A and compound 1 complex 
is much smaller than the experimentally determined 
one. Due to the enthalpy nature of MMGBSA method, 
the binding affinity might be overestimated. However, 
the method is good at relative ranking the compounds 
[PMID: 25835573]. Since the IC50 values and predicted 
binding affinities are correlated as discussed, the pre-
dicted values are consistent with the experimentally 
observed IC50.

Residue-wise pair decomposition analysis using MMG-
BSA identified hotspots for compound 1. Table  2 lists 
the top 10 residues interacting with the compound in 
both complexes. Hydrophobic amino acids constituted 
most residues in both proteins. For MAO-A, Q215 
(−  4.12  kcal/mol) and N181 (−  3.95  kcal/mol) were the 
top two residues driven by electrostatic potential (− 2.16 
and −  4.29  kcal/mol, respectively). C172 of MAO-B 
occupied the same position as N181 of MAO-A and was 
ranked within the top 10 with a score of − 2.81 kcal/mol. 
However, the van der Waals interaction between C172 
and compound 1 was dominant (−  1.39  kcal/mol). The 
interaction between MAO-B Y326 and compound 1 was 
ranked third with −  3.53  kcal/mol. Thus, this interac-
tion placed the compound closer to FAD in MAO-B than 
that in MAO-A and the interaction between FAD and 
compound 1 was ranked fourth with −  3.27  kcal/mol. 
From the decomposition analysis, the selectivity of com-
pound 1 for MAO-A over MAO-B was mainly caused by 
MAO-A N181/MAO-B C172 and MAO-A I335/MAO-B 
Y326.

In conclusion, marine fungi-produced secondary 
metabolites often exhibit distinct structural features 
and various biological and pharmacological character-
istics. In this study, six compounds were isolated from 

Fig. 5  Predicted binding positions of compound 1 to A MAO-A and B MAO-B. The proteins, compound 1, and FAD are indicated in gold, blue, 
and pink, respectively
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marine Penicillium sp. SG-W3 and their inhibitory 
activities against MAOs, ChEs, and BACE1 related to 
neurological diseases were evaluated. Among them, 
compound 1 (pannorin) showed the highest inhibi-
tory activity against MAO-A (IC50 = 1.734  μM) and 
SI > 23.07. The kinetic study showed compound 1 
was a competitive reversible MAO-A inhibitor with 
1.049 ± 0.030 μM Ki. In addition, compound 1 exhibited 
antioxidant activity in the DPPH assay. However, all the 
compounds weakly inhibited MAO-B, AChE, BChE, 
and BACE1, except compound 6 against MAO-B (IC50: 
11.82  μM). Molecular docking simulation predicted 
that compound 1 formed hydrogen bonds with MAO-A 
at Q215 and N181, and have stronger binding energy 
to MAO-A (−  25.02  kcal/mol) than that to MAO-B 
(− 24.06 kcal/mol) using MMGBSA. These results sug-
gested that compound 1 is a potent, reversible, com-
petitive, and selective MAO-A inhibitor that could be 
used as a therapeutic candidate for treating neurologi-
cal diseases.

Fig. 6  RMSD plots of MD simulations for A MAO-A, MAO-B (B), and pannorin-docked C MAO-A and D MAO-B. Complex and ligand RMSDs 
calculated from the same trajectory are presented as the same color codes

Table 2  Top 10 interacting residues (including FAD) of both 
MAO proteins with compound 1 identified by MMGBSA

Conserved residues are highlighted in bold

MAO-A MAO-B

Residue Energy (kcal/mol) Residue Energy (kcal/mol)

Q215 − 4.12 Y398 − 3.84

N181 − 3.95 Q206 − 3.72

F208 − 3.12 Y326 − 3.53

I335 − 2.95 FAD − 3.27

I180 − 2.69 Y435 − 2.95

Y407 − 2.47 C172 − 2.81

L337 − 2.24 L171 − 2.23

T336 − 2.00 Y188 − 1.77

Y444 − 1.70 I199 − 1.56

F352 − 1.44 G434 − 1.43
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