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Abstract 

Soybeans are a significant agricultural product in China, with certain geographical locations often yielding higher 
quality, and thus more expensive, soybean crops. In this study, metabolomics and transcriptomics analyses were con-
ducted on soybean samples from nine regions in Heilongjiang and Liaoning Provinces using untargeted liquid chro-
matography–mass spectrometry (LC–MS) and Illumina sequencing technologies. The primary objective was to devise 
an effective and unbiased method for determining the geographical origin of each soybean variety to mitigate 
potential fraudulent practices. Through multidimensional and unidimensional analyses, successful identification of dif-
ferentially expressed metabolites (DEMs) and differentially expressed genes (DEGs) was achieved, yielding statisti-
cally significant outcomes. Integration of the metabolomics and transcriptomics datasets facilitated the construction 
of a correlation network model capable of distinguishing soybeans originating from different geographical locations, 
leading to the identification of significant biomarkers exemplifying noteworthy distinctions. To validate the feasibil-
ity of this method in practical applications, partial least squares discriminant analysis was employed to differentiate 
soybean samples from the nine regions. The results convincingly showcased the applicability and reliability of this 
approach in accurately pinpointing the geographical origin of soybeans. Distinguishing itself from prior research 
in soybean traceability, this study incorporates an integrated analysis of metabolomics and transcriptomics data, 
thereby unveiling biomarkers that offer a more precise differentiation of soybean traits across distinct regions, thereby 
bridging a critical research gap within the soybean traceability domain. This innovative dual-data integration analysis 
methodology is poised to enhance the accuracy of soybean traceability tools and lay a new foundation for future 
agricultural product identification research.
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Introduction
Soybean, often hailed as the “crop of the century”, is a 
nutrient-rich legume that serves as a key ingredient in a 
myriad of products, ranging from medicine to cosmet-
ics [1]. Its high content of protein, fat, dietary fiber, and 
isoflavones has made it a dietary staple for both humans 

and livestock. China, being one of the world’s largest pro-
ducers and consumers of soybeans, has its production 
areas primarily located in the northeast regions, Shaanxi, 
Sichuan, and the middle and lower reaches of the Yang-
tze River [2]. Recently, due to intricate shifts in agricul-
tural production and distribution economics, soybeans 
from specific geographic locations have seen a surge in 
prices. This has led to an influx of fraudulent suppliers 
selling substandard soybean products, infringing upon 
consumer rights [3]. Consequently, there is an urgent 
need for a method that can accurately trace the origins of 
soybeans and other agricultural products. Such a method 
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would not only safeguard the geographic indicators of 
these products but also ensure traceability from farm to 
table. This would ultimately promote fair trade practices 
in the bulk agricultural products market.

To uphold consumer interests and maintain order in 
the soybean trading market, it is imperative to enforce 
relevant laws and develop reliable technologies for crop 
origin identification. Current origin identification meth-
ods involve complex analyses of variable compounds 
from different geographical sources, identification of 
effective source confirmation features, establishment of 
a discrimination model, and prediction of sample clas-
sifications. These analyses may include mineral element 
fingerprinting [4], stable isotope identification [5], near-
infrared spectroscopy [6], metabolomics [7], and electri-
cal sensing using an electronic nose [8]. However, origin 
indicators can be influenced by numerous factors, mak-
ing single source data-based indicators (e.g., mineral ele-
ments, fatty acids) inconsistent and less reproducible. 
Metabolites are often considered as signals reflecting 
an organism’s “genetic structure and adaptability to the 
environment” [9]. With the advent of high-throughput 
technology, contemporary research strategies aimed 
at characterizing molecular differences among plants 
grown in various environments primarily focus on identi-
fying unique molecular signatures in the plants’ genome, 
transcriptome, proteome and/or metabolome [10]. The 
integration of transcriptomics and metabolomics has 
garnered increasing attention as it provides a more com-
prehensive understanding of biological systems [11, 12]. 
Numerous studies have explored the effects of abiotic or 
biotic stress on plant metabolism through comparative 
analyses of microarray and metabolomics data. Leverag-
ing recent advancements in experimental platforms and 
technology, we have embarked on studies examining the 
relationship between gene expression and metabolite lev-
els in plants to gain insights into how these networks are 
integrated [13, 14]. Thus, our goal is to establish a more 
stable and accurate method for determining the point of 
origin.

Metabolomics, which allows for the detection of low 
molecular weight organic acids, fatty acids, amino acids, 
sugars, and other metabolites in biological samples 
through high-throughput screening, data processing, and 
integration, is currently the preferred method for analyz-
ing differences in crop breeding strategies, plant-microbe 
interactions, plant agronomic traits, and quality classifi-
cation [15, 16]. This approach has proven useful in dif-
ferentiating the quality and content of various products 
such as coffee beans [17], sea cucumber [18], tea [19], 
and honey [1]. LC–MS is commonly used in metabo-
lomics analysis due to its broad applicability in analyzing 
metabolites that are difficult to volatilize or have poor 

thermal stability [20]. Metabolomics not only offers high 
throughput approaches but also provides high resolution 
and sensitivity for small molecule detection [21]. Unbi-
ased metabolomics systematically and comprehensively 
analyzes soybean metabolite data based on biologically 
relevant single metabolites, which is far more effective in 
determining differential metabolites (DEMs) [22–24].

Transcriptomics provides a means to examine func-
tional genomic elements and overall gene expression pro-
files related to crop growth under diverse environmental 
conditions [25]. The integration of metabolomics and 
transcriptomics data has been applied to biological stress 
and breeding research in recent years, providing a deeper 
understanding of these fields than either approach alone 
could offer [26, 27]. Since both gene transcription and 
metabolism occur simultaneously in an organism, their 
integrated analysis provides a powerful tool for verify-
ing unique plant molecular characteristics to ultimately 
determine potential origin [28, 29].

In recent research, Gong Lijuan et  al. predicted the 
potential distribution of soybeans in frigid regions in 
China using MaxEnt modeling based on climate scenar-
ios [30]. The research focused on climate-related factors 
influencing soybean distribution and provided insights 
into potential habitat changes under various climate sce-
narios. Sheng Cui Dong et al. analyzed the geographical 
specificity of fatty acid and multi-element fingerprints of 
soybeans in northern China to identify the geographi-
cal origin of soybean samples [31]. The research utilized 
gas chromatography and mass spectrometry to clas-
sify soybean samples based on their metabolic finger-
prints. Nawaz Muhammad Amjad et  al. focused on the 
geographic distribution and germplasm conservation 
of Korean wild soybeans (Glycine soja) as an impor-
tant genetic resource for soybean improvement [32]. It 
highlighted the importance of conserving wild soybean 
germplasms and their potential role in soybean breed-
ing programs. Sachar Silky and Anuj Kumar provided a 
comprehensive survey of techniques used in computer 
vision for the automatic identification of plants using leaf 
images [33]. The study discussed various feature extrac-
tion techniques and classification methods to identify 
different plant species, emphasizing the importance of 
automated plant identification for conservation pur-
poses. Zhang Jun et  al. explored the protist community 
assembly and ecological roles in soybean fields in dif-
ferent regions of China [34]. It investigated the interac-
tions between protists, bacteria, and fungi in the bulk 
soil and rhizosphere of soybean plants, highlighting the 
ecological importance of protists in soybean fields. Yin 
Leikun et  al. proposed an optimized feature selection 
strategy for mapping individual crop types in the San-
jiang Plain, China, using Sentinel-2 time series images 
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[35]. The study demonstrated a significant improvement 
in crop mapping accuracy by integrating specific fea-
tures of individual crop types. Feng Xiong et al. focused 
on the differences in metabolites in the rhizosphere of 
soybeans under varying soil potassium conditions, high-
lighting the effects of potassium status on root exudates 
and metabolites in the soil [36]. The research empha-
sized cultivar differences in metabolites and root exuda-
tion under different potassium conditions. Xian Yuyang 
et  al. predicted the current and future distributions of 
major food crop designated geographical indications 
(GIs) in China under climate change using the MaxEnt 
model [37]. The research emphasized the importance of 
considering climate change scenarios in predicting the 
potential climate suitability of food crop GIs. Lucas Kás-
sio R. Garcia et al. evaluated biodiversity damage indica-
tors for soybean crops in different ecoregions in Brazil, 
assessing the potential impacts of soybean production on 
biodiversity loss [38]. The research proposed adjustments 
to biodiversity indicators for the life cycle assessment of 
soybean production in different Brazilian ecoregions. 
Chotekajorn Awatsaya et  al. evaluated seed amino acid 
content in wild Japanese soybean populations to assess 
genetic diversity and free amino acid abundance in wild 
soybean seeds [39]. The study highlighted the variation in 
amino acid content among wild soybean accessions and 
its implications for soybean conservation and improve-
ment efforts. HU Yu-qi et  al. investigated the sexual 
compatibility between transgenic soybeans and differ-
ent wild soybean populations to evaluate the potential 
gene flow via pollen [40]. The study assessed podding 
and seed sets after artificial hybridization, demonstrat-
ing the compatibility of wild soybeans with transgenic 
soybeans. Saleem Aamir et al. analyzed genetic diversity 
and selective sweeps in a European soybean germplasm 
collection compared to Chinese soybean collections [41]. 
The research identified selective sweep regions related to 
domestication and improvement traits, emphasizing the 
genetic diversity available in the European soybean col-
lection. Azizah Firdausi Nur et  al. detected metabolites 
in the rhizosphere of soybeans under different soil potas-
sium conditions, highlighting the impact of potassium 
status on root exudation and metabolites in the soil [42]. 
The study demonstrated cultivar differences in metabo-
lites in the rhizosphere of soybeans under different 
potassium conditions. Liu Yang et al. examined the inter-
relationship between latitudinal differences and meta-
bolic changes in Tilia amurensis Rupr [43]. The research 
analyzed metabolite profiles of T. amurensis from differ-
ent latitudes, highlighting the influence of environmen-
tal factors on metabolite differences in T. amurensis at 
varying latitudes. Kim Myoungsub et al. focused on tran-
scriptional changes in a Korean soybean cultivar during 

its interaction with Pseudomonas syringae at the late 
infection phase [44]. The study identified differentially 
expressed genes related to plant immune response and 
metabolic processes during the compatible interaction 
between soybeans and the bacterial pathogen.

Moreover, advances in other technological fields have 
generated new possibilities for identifying the origin of 
soybeans and facilitating fair trade of agricultural prod-
ucts. In the realm of sustainable greenhouse cultiva-
tion, Durmanov et al. conducted a comprehensive study 
on the pivotal role of technological advancements and 
management practices in promoting agricultural sus-
tainability and their impact on crop metabolism [45]. By 
precisely manipulating environmental conditions during 
soybean growth, such as temperature, light exposure, and 
water availability, significant alterations in the growth 
and metabolic performance of soybeans can be achieved. 
A sustained adaptation to technological progress is cru-
cial for maintaining competitiveness within the food and 
beverage industry. Suseno and Basrowi’s research under-
scores the critical significance of technological innova-
tion and integration in enhancing operational efficiency 
and market responsiveness [46]. Furthermore, Kassym-
bek et  al.’s work emphasizes the crucial contribution of 
feed processing technology to the quality and efficiency 
of agricultural production, providing valuable insights for 
analyzing soybean metabolic characteristics [47].

While existing studies have made valuable contribu-
tions in predicting soybean distribution, identifying geo-
graphical origin based on metabolic fingerprints, and 
analyzing genetic diversity, a gap exists in the integra-
tion of metabolomic and transcriptomic datasets, limit-
ing their ability to offer a comprehensive understanding 
of regional characteristics and traceability in soybeans. 
In contrast, our study bridges this gap by integrating 
metabolomic–transcriptomic data, enabling the accurate 
classification of soybeans from different habitats and the 
identification of unique gene transcripts and metabolites 
for reliable origin tracing while minimizing interference 
from planting conditions and agronomic practices. By 
addressing these limitations and innovating agricultural 
product traceability methods, our research provides a 
cutting-edge approach to exploring regional traits and 
tracing the origin of soybeans.

In this study, we used integrated metabolomic and 
transcriptomic datasets to discover molecular signatures 
unique to soybeans from different habitats. We selected 
Heilongjiang and Liaoning Provinces of northeast China 
as the research areas, with nine main soybean producing 
areas of different latitudes chosen as the sample sources. 
We employed a combination of multi-dimensional and 
single-dimensional analysis to screen differential metabo-
lomic and transcriptomic data. Integrated analyses were 
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conducted by screening the common pathways of genes 
and metabolites to select key molecules of interest. The 
overarching aim of the study was to identify novel gene 
transcripts and metabolites that can inform future mech-
anistic research and provide a theoretical and practical 
basis for the traceability of soybean origin.

Materials and methods
Sample collection and preparation
Liaoning province, characterized by a temperate mon-
soon climate with an average annual temperature of 9.6 
◦
C , and Heilongjiang province, known for its cold tem-

perate monsoon climate with an average annual tempera-
ture of 4.0 ◦C , were selected as the regions for soybean 
sample collection in this study [48, 49]. The samples were 
provided by the local Academy of Agricultural Sciences 
and research institutions. In late October 2021, soy-
bean samples were collected from nine sites in China. 
Each individual soybean sample weighed 20  g, from 
which 5.4g of high-quality, plump seeds were meticu-
lously selected for data analysis. Specifically, the selected 

soybean varieties were: Xingnong 20 (XN20) from Bei’an 
City, Heilongjiang; Heihe 43 (HH43) from Nenjiang City, 
Heilongjiang; Dongsheng 22 (DS22) from Hailun City, 
Heilongjiang; Suinong 52 (SN52) from Bayan County, 
Heilongjiang; Tiedou 67 (TD67) from Zhuanghe City, 
Liaoning; Liaodou 36 (LD36) from Huludao City, Liaon-
ing; Tiefeng 31 (TF31) from Jinlandian District, Liaoning; 
Liaodou 15 (LD15) from Xinmin City, Liaoning; and Tie-
dou53 (TD53) from Linghai City, Liaoning (Fig.  1). The 
fresh soybean samples were promptly cleaned with puri-
fied water and 75% ethanol. After removing the residual 
liquid, the samples were placed into an enzyme-free tube, 
rapidly frozen in liquid nitrogen, and stored at − 80 ◦C . 
Each sample was analyzed in triplicate.

Metabolite extraction and LC–MS analysis
The metabolic profile was analyzed using a LC–MS sys-
tem (Thermo Fisher Scientific, Waltham, Massachusetts, 
USA), which comprised of Dionex U3000 ultra high-
performance liquid chromatography (UHPLC) tandem 
QE high resolution mass spectrometer. The analysis was 

Fig. 1  Location of the production area where soybean samples were obtained
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conducted under ESI positive and negative ion modes. 
Chromatography was performed using an ACQUITY 
UPLC HSS T3 (1.8 µm, 2.1 × 100  mm) column under 
both positive and negative modes. The binary gradient 
eluting solvent consisted of (A) water (containing 0.1% 
formic acid, vol/vol) and (B) acetonitrile (containing 0.1% 
formic acid, v/v), with the following components used for 
the separation gradient: 0 min, 5% B; 2 min, 5% B; 4 min, 
25% B; 8 min, 50% B; 10 min, 80% B; 14 min, 100% B; 15 
min, 100% B; 15.1 min, 5% B, and 16 min, 5% B. The flow 
rate was set at 0.35 mL/min with the column temperature 
maintained at 40 ◦C . All samples were kept at a tempera-
ture of 4 ◦C   during the analysis and the final injection 
volume was set to be at 5 µL. The mass detected ranged 
from m/z of 100 to 1000. The resolution of full MS scan-
ning was set at a value of 70,000, and the resolution of 
HCD-MS/MS scanning was set at 17500. The collision 
energy was set to values of 10, 20, and 40eV respectively. 
The mass spectrometer was operated as follows: spray 
voltage was set to be at 3800V for positive mode (+) and 
3000V for negative mode ( − ); sheath gas flow was set to 
be at 35 arbitrary units (AU); auxiliary gas flow was set to 
be at 8 AU; capillary temperature was set to be at 320 ◦C  
while Aux gas heater temperature was set to be at 350 ◦C ; 
S Lens input frequency class was set to be at 50. All the 
analyses were repeated three times for reproducibility.

Progenisis QI v2.3 software (Nonlinear Dynamics, 
Newcastle, UK) was used for baseline filtering, peak iden-
tification, integration, retention time correction, peak 
alignment and normalization of original LC–MS data. 
Main parameters assessed were: precursor tolerance, 5 
ppm/10 ppm (in-house database); product tolerance: 10 
ppm/20 ppm (in-house database); product ion threshold: 
5%. For the extracted data, ion peaks with missing values 
(0) > 50% within the group were deleted, and the 0 value 
was replaced with half of the minimum value. Qualita-
tively obtained compounds were screened according to 
the qualitative screening score. The screening standard 
was 36 points (full score: 60), and qualitative results < 
36 were considered inaccurate and deleted. Finally, the 
positive and negative ion data were combined into a data 
matrix table in which all the extracted data was analyzed.

RNA extraction and data preprocessing
Total RNA was extracted from each sample, and residual 
DNA was digested with DNase. Eukaryotic mRNA was 
enriched using oligo (dT) magnetic beads. The mRNA 
was fragmented into short segments and used as a tem-
plate to synthesize the first cDNA strand with random 
hexamer primers. The first strand was then reverse tran-
scribed to form double-stranded (ds) cDNA. The puri-
fied ds cDNA underwent end repair, A-tail extension, 
and sequencing adaptor connection. Fragment size was 

selected, and PCR amplification was performed. After 
the constructed library passed quality inspection using 
Agilent 2100 Bioanalyzer, Illumina HiSeqTM 2500 or 
HiSeq X 10 was used for sequencing to generate paired 
end reads of 125 bp or 150 bp.

Raw reads generated from high-throughput sequenc-
ing were in fastq format. Trimmomatic software [50] was 
employed for quality control, adaptor removal, and fil-
tering out of low-quality bases and N-bases. Hisat2 [51] 
was used to map clean reads to the reference soybean 
genome under default parameters, and samples were 
evaluated through genome alignment rate. Gene expres-
sion was quantified using Cufflinks software to obtain 
FPKM values [52, 53]. Htseq-count software [54] was 
used to obtain the number of reads mapping onto genes 
within each sample, and data were normalized using the 
estimateSizeFactors function of DESeq (2012) R pack-
age [55, 56]. Fold change (FC) differences and statistical 
significance were calculated using the nbinomTest func-
tion, with significance threshold set to FDR < 0.1 , and 
p < 0.05 . A FC difference of > 1.2 or < 0.833 was used 
as the biological significance threshold. Gene ontology 
(GO) and KEGG enrichment analyses were performed to 
capture differentially expressed genes (DEGs) [57].

Results
Metabolome and transcriptome
Metabolome
A total of 21,893 discrete peaks were detected in each 
soybean sample from Liaoning and Heilongjiang prov-
inces, including 11,809 peaks in the negative ion mode 
and 10,084 peaks in the positive ion mode. These metab-
olites include 2695 lipids and lipid-like molecules, 915 
phenylpropanoic acids and polyketides, 762 organic oxy-
gen compounds, 633 organic acids and derivatives, 608 
organic heterocyclic compounds, 427 benzoic acids, 92 
nucleosides, nucleotides and analogues, 37 alkaloids and 
derivatives, 37 lignin, neolignan and related compounds, 
34 organic nitrogen compounds, 21 hydrocarbons, 14 
organic sulfur compounds, 4 organic halogen com-
pounds, 2 homogeneous non-metallic compounds, one 
homogeneous metal compound, one hydrocarbon deriv-
ative, one organic phosphorus compound, one organic 
1,3 dipole compound, and 1998 unclassified compounds. 
The metabolite types and amounts for each sample are 
shown in Additional file 1: Table S1.

Transcriptome
A total of 186.54 G of clean sequencing reads was 
obtained using the Illumina sequencing platform. The 
effective data volume of each sample ranged from 6.36 
to 7.4 G, the Q30 base distribution was between 90.39% 
and 94.89%, and the average GC content was 45.21%. In 
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mapping reads to the reference genome, the mapping 
rate ranged from 92.99 to 95.55%. Using known refer-
ence gene sequences and annotation files in the database, 
relative abundance of gene expression in each sample was 
identified by sequence similarity comparison. After the 
counts were obtained by comparison in htseq-count soft-
ware, data was filtered to remove genes with zero reads. 
The total number of genes with detectable expression in 
soybeans from each region is shown in Additional file 1: 
Table S2.

Multidimensional statistical analysis
Principal component analysis (PCA) was initially per-
formed on LC–MS and RNAseq datasets to determine 
outliers and trends, as shown in Additional file 1: Fig. S1. 
PCA confirmed that no outliers were present (p < 0.05) . 
According to PCA based on Bray-Curtis distance, metab-
olites measured in soybeans from the same origin were 
of similar type and composition, while there were sig-
nificant differences between the metabolites of soybeans 
from different origins. Metabolome data were then fil-
tered for biomarkers using partial least squares discrimi-
nant analysis (PLS-DA), which has higher discriminatory 
capacity for biomarker discovery compared with PCA 
[58]. Orthogonal PLS-DA (OPLS-DA) was then used 
to filter the noise irrelevant to soybean classification, 
improve analytical ability and maximize the differences 
between soybean groups within the model. The Variable 
Importance in Projection (VIP) was obtained according 
to OPLS-DA modeling to measure the influence intensity 
and interpretative ability of the expression mode of each 
metabolite, and to mine the DEMs with biological signifi-
cance. The screening criterion was that the VIP charac-
teristics of the first principal component of the OPLS-DA 
model were> 1.0. However, this analysis alone was not 
sufficient to classify all variables accurately, because it 
only involved the natural clustering of samples, while the 
load map only provides the preliminary assumption of 
the variable distribution. Therefore, we conducted tradi-
tional single dimension statistical analysis on all samples 
to more accurately discern the differential characteristics 
of soybeans from each production area.

Screening of potential biomarkers
Screening DEMs and enrichment analysis of KEGG pathways
Both multi-dimensional and single-dimensional analyses 
were employed to screen differential metabolites (DEMs). 
Following the multi-dimensional analysis of the original 
metabolomic data, single-dimensional analysis was uti-
lized to verify whether DEMs between groups were sta-
tistically significant. The characteristic fold change (FC) 
value was > 1.2 or < 0.833 , and the characteristic p-value 

of Student’s t-test was < 0.05 . The number of DEMs in 
each group pair is shown in Additional file 1: Fig. S2.

Pathway enrichment analysis was subsequently con-
ducted on DEMs to comprehend the different meta-
bolic pathways activated in different soybean samples. 
Based on the KEGG database (https://​www.​kegg.​jp/), 
the enriched metabolic pathways were analyzed for 
DEMs, with p < 0.05 as the threshold [59]. The top 20 
differentially enriched metabolic pathways of DEMs are 
shown in Fig.  2. In sample DS22/SN52 from Heilongji-
ang province, significantly enriched pathways included 
tryptophan and galactose metabolism, citric acid cycle, 
and valine/leucine/isoleucine turnover. In sample HH43/
SN52, significantly enriched pathways included isofla-
vone biosynthesis, tryptophan, glycerol phospholipid, 
and glycine/serine/threonine metabolism. In sample 
XN20/SN52, significantly enriched pathways included 
isoflavone and anthocyanin biosynthesis, galactose, tryp-
tophan and cyanoamino acid, alanine/aspartate/gluta-
mate and linoleic acid metabolism, and citric acid cycle. 
In sample LD15/TF31 from Liaoning province, the isofla-
vone biosynthesis pathway was the most highly enriched 
of all significant pathways, while flavone/flavonoid/
flavonol biosynthesis, arginine biosynthesis, and tryp-
tophan metabolism were also pathways that were signifi-
cantly enriched. In sample LD36/TF31, highly enriched 
pathways included isoflavone and arginine biosynthe-
sis, tryptophan and glycerol phospholipid metabolism. 
Other significantly enriched pathways included flavone/
flavonoid/flavonol biosynthesis, histidine and glycine/
serine/threonine metabolism, aminoacyl tRNA biosyn-
thesis, ABC transporters, alanine/aspartic acid/glutamate 
metabolism, and anthocyanin biosynthesis. In sample 
TD53/TF31, the highly enriched pathways included iso-
flavone and flavonoid biosynthesis while other signifi-
cantly enriched pathways were arginine biosynthesis and 
cyanoamino acid metabolism. In sample TD67/TF31, the 
highly enriched pathways included isoflavone biosynthe-
sis, tryptophan, glycerol phospholipid and linoleic acid 
metabolism while other significantly enriched pathways 
included phenylpropanoid and arginine biosynthesis as 
well as autophagy-other. The top 20 enriched pathways 
of DEMs obtained by pairwise comparison improved the 
reliability of biomarker discovery and provided prelimi-
nary hypotheses for the distribution of all variables.

Comparing DEGs and KEGG pathway annotation
The soybean transcriptome from each sample was ana-
lyzed to determine differentially expressed genes (DEGs) 
among soybeans from different regions. The R language 
DESeq2 package was used to standardize the number of 
gene counts within each sample, in which the BaseMean 
value was used to estimate the expression level. The fold 

https://www.kegg.jp/
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change (FC) was calculated and the negative binomial 
(NB) distribution test, was used to determine the signifi-
cance of differential expression. Differentially expressed 
genes were screened according to FC values and signifi-
cance testing. The conditions for screening DEGs were 
FC > 1.5 or < 0.67, and p < 0.05.

In sample LD36/TF31 from Liaoning province, there 
were 4989 DEGs, of which 3032 transcripts were up-reg-
ulated and 1957 down-regulated. These were determined 
to be more than those of other pairwise comparisons 
in Liaoning. The XN20/SN52 sample of Heilongjiang 
province had the most DEGs among all samples within 
that province (2473), of which 1491 transcripts were 

up-regulated and 982 down-regulated (Additional file 1: 
Fig. S3). To better understand the association between 
DEMs and DEGs, KEGG enrichment analysis was carried 
out for each DEG pair, as shown in Additional file 1: Fig. 
S4.

Key metabolome and transcriptome pathway identification
Following single-dimensional and pathway analysis of 
the metabolome and transcriptome, we used R soft-
ware to conduct Venn statistical analysis of the cho-
sen DEMs and DEGs to exclude the possibility of gene 
mutation and variety specificity [56]. Because the com-
mon DEMs and DEGs obtained could be a reflection of 
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Fig. 2  Top 20 differentially enriched pathways of DEMs in each pairwise comparison. p < 0.01 , above the red line; p < 0.05 , between the blue line 
and red line. A DS22/SN52, B HH43/SN52, C XN20/SN52, D LD15/TF31, E LD36/TF31, F TD53/TF31, G TD67/TF31
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basic biological processes ongoing in soybeans that are 
driven by environmental or other factors, this analysis 
allowed us to further reduce the dimension and screen 
out shared pathways (Additional file 1: Fig. S5).

Based on the enrichment analysis, the KEGG path-
ways shared by DEMs and DEGs in each pairwise 
comparison were screened (Table  1). It was deter-
mined that not only are common biological pathways 
in soybeans of the two regions distinct, but pairwise 
comparisons revealed that soybeans from within each 
respective region were different. Among three pair-
wise comparisons of Heilongjiang soybeans, the two 
common pathways within the XN20/SN52 compari-
son, namely, galactose and alanine/aspartate/gluta-
mate metabolism, were significantly enriched in both 
XN20 and SN52 groups. Among pairwise comparisons 
of Liaoning, flavonoid biosynthesis within LD15 and 
TF31, aspartate/glutamate and glycine/serine/threo-
nine metabolism within LD36 and TF31, galactose and 
cyanoamino acid metabolism, and isoflavonoid biosyn-
thesis within TD53 and TF31, and tryptophan metabo-
lism and isoflavonoid biosynthesis within TD67 and 
TF31 were significantly enriched.

The bubble sorting algorithm in R was used to ana-
lyze the common enriched pathways of seven pairwise 
comparisons, as shown in Figs. 3 and 4. This revealed 
that DEGs and DEMs of related pathways were dif-
ferent in each pairwise comparison, even though dif-
ferent comparisons had the same enriched pathways. 
The galactose metabolism pathway involved the most 
pairwise comparisons. In the XN20/SN52 compari-
son, there were 7 DEGs within the galactose metabo-
lism pathway; in the LD15/TF31, LD36/TF31, TD53/
TF31, and TD67/TF31 comparisons, there were 15, 
17, 16, 13 DEGs within the galactose metabolism 
pathway respectively. Correspondingly, four relevant 
DEMs ( α-lactose, D-Gal α1->6D-Gal α1->6D-glucose, 
galactinol and sucrose) were identified in the XN20/
SN52 comparison, along with D-Gal α1->6D-Gal α
1->6D-glucose in LD15/TF31 and TD67/TF3 compari-
sons, D-Gal α1->6D-Gal α1->6D-glucose and sucrose 
in LD36/TF31 and TD53/TF31 comparisons, respec-
tively. Nine DEGs related to alanine/aspartic acid/
glutamate metabolism were identified in the XN20/
SN52 comparison, along with 13 in the LD15/TF31 
comparison, 12 in the LD36/TF31 comparison, and 
8 in the TD53/TF31 comparison. Correspondingly, 
two relevant DEMs-citric acid and L-asparagine-were 
identified in the XN20/SN52 comparison, along with 
argininosuccinate and L-glutamate in the LD36/TF31 
and TD53/TF31 comparisons, and argininosuccinate 
in the LD15/TF31 comparison.

Hierarchical clustering of DEMs in common pathways
To further screen out potential main features and com-
prehensively display the relationship between soybean 
samples and the DEMs among each sample, we used R 
software to perform unsupervised hierarchical clustering 
on common pathway DEMs using seven pairwise com-
parisons [60]. Potential biomarker signatures were iden-
tified, and visual clustering based on Euclidean distance 
was achieved, as shown in Fig. 5.

In the DS22/SN52 comparison of soybeans from Hei-
longjiang, significant DEMs were citric acid and L-phe-
nylalanine. DEM abundance of soybeans from Bayan 
County (SN52) was higher than that of Hailun City 
(DS22). The only DEM identified in the HH43/SN52 
comparison was L-phenylalanine, and its abundance in 
Bayan County (SN52) was higher than that in Nenjiang 
(HH43). There were two kinds of significant DEMs iden-
tified in the XN20/SN52 comparison, one was citric and 
isocitric acid, the other α-lactose and sucrose. The abun-
dance of two DEMs in Bayan County (SN52) was higher 
than that in Hailun City (DS22).

In the LD15/TF31 comparison of soybeans from Liaon-
ing, significant DEMs were sulfate, secologanin, epigal-
locatechin, pelargonidin and D-gal alpha 1->6 D-gal 
alpha 1->6 D-glucose. The abundance of osteoglobulin 
and D-Gal alpha 1->6D-Gal alpha 1->6D-Glucose in 
Xinmin City (LD15) was higher than that in Jinlandian 
District (TF31), while sulfate, secologanin, and (-)-epigal-
locatechin of LD15 were less than those of TF31. In the 
LD36/TF31 comparison, significant DEMs were choline, 
L-glutamate, APC, D-gal alpha 1->6 D-gal alpha 1->6 
D-glucose, sucrose, and osteoglobulin. The abundance of 
these metabolites in samples from Huludao City (LD36) 
was higher than the samples from Jinlandian District 
(TF31), whereas choline and L-glutamate in LD36 were 
less than those of TF31. In the TD67/TF31 comparison, 
significant DEMs were D-gal alpha 1->6 D-gal alpha 1->6 
D-glucose, APC, L-phenylalanine, (-)-epigallocatechin, 
coenzyme A, daidzin, 6 ′′-malonylgenistin and 4-hydroxy-
cinnamic acid. The abundance of D-gal alpha 1->6 D-gal 
alpha 1->6 D-glucose, coenzyme A and APC in samples 
from Zhuanghe City (LD36) was higher than that the 
samples from Jinlandian District (TF31), while (-)-epigal-
locatechin, daidzin, 6 ′′-malonylgenistin and 4-hydroxy-
cinnamic acid of the LD36 samples were lower than those 
of the TF31 samples. In the TD53/TF31 comparison, sig-
nificant DEMs were D-gal alpha 1->6 D-gal alpha 1->6 
D-glucose, L-phenylalanine, and CMP-N-glycoloylneu-
raminate. D-gal alpha 1->6 D-gal alpha 1->6 D-glucose 
in samples from Linghai City (TD53) was more than in 
samples from Jinlandian District (TF31), but L-phenyla-
lanine and CMP-N-glycolylneuraminate of TD53 were 
less than those of TF31. These significant DEMs establish 
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a basis for further exploring the use of these metabolites 
as potential soybean biomarkers in northern China.

Integration of metabolomic and transcriptomic analysis
Based on the transcriptomic and metabonomic analy-
sis, corresponding mRNAs and metabolites relevant to 
each other were comprehensively screened in the differ-
ent environments. The pathway-based method was used 
to integrate and analyze the relationship between gene 
transcription and metabolism so as to comprehensively 
understand the biological pathways which respond to 
environmental changes during soybean growth in each 
region, and to identify possible molecular signatures (i.e., 
biomarkers) which are unique to each region. Based on 

Spearman correlation coefficients of DEGs and DEMs 
in the shared pathways, the relationship between vari-
ables was revealed using correlation network analysis, as 
shown in Additional file 1: Fig. S6.

In order to further characterize differences between 
significant DEGs and DEMs among soybeans from vari-
ous regions, Spearman correlation coefficient analysis 
was applied [61]. Hierarchical clustering (Fig.  6) was 
conducted through R, which showed that there were 
11 very strong and 54 strong correlations between 
DEMs and DEGs in the TD53/TF31 comparison. There 
were 17 very strong and 114 strong correlations in the 
LD36/TF31 comparison, 8 very strong and 39 strong 

Fig. 3  Enriched KEGG pathways of DEGs. A DS22/SN52, B HH43/SN52, C XN20/SN52, D LD15/TF31, E LD36/TF31, F TD53/TF31, G TD67/TF31
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correlations in the LD15/TF31 comparison, 11 very 
strong and 94 strong correlations in the TD67/TF31 
comparison. There were two very strong and 44 strong 
correlations in the XN20/SN52 comparison, one very 
strong and 16 strong correlations in the DS22/SN52 
comparison. The exact biological interpretation of these 
correlations is still unclear, however, and the DEMs and 
DEGs screened need to be further verified under vari-
ous environmental conditions before any of them can 
be assigned as bona fide biomarkers. However, it is 
clear from the correlation between DEMs and DEGs 

that differing environments in different geographical 
regions impacted DEM abundance [62].

Core DEMs
We identified 42 significant DEMs that have the poten-
tial to become novel biomarker signatures capable of 
distinguishing soybeans from different production 
areas (Table  2). Venn statistical analysis was conducted 
on these 42 DEMs to find representative core DEMs 
as shown in Additional file  1: Fig. S7. In Heilongjiang 
province, core DEMs were citric acid, isocitric acid and 
L-phenylalanine (Additional file 1: Table S3). In Liaoning 

Fig. 4  Enriched KEGG pathways of DEMs. The ordinate is the name of a metabolic pathway, the abscissa is the Rich factor (number of statistically 
significant DEMs/total number of metabolites in this pathway). The larger the Rich factor, the greater the enrichment degree. The color from green 
to red indicates that the p-value decreases in turn. The larger the dot, the more metabolites enriched on this pathway. A DS22/SN52, B HH43/SN52, 
C XN20/SN52, D LD15/TF31, E LD36/TF31, F TD53/TF31, G TD67/TF31
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province, the most core DEM was D-gal alpha1->6 D-gal 
alpha 1->6 D-glucose, followed by sulfate, (-)-epigallocat-
echin, argininosuccinic acid and norsanguinarine (Addi-
tional file 1: Table S4).

Partial least squares discriminant analysis of core DEMs
To determine whether D-Gal alpha 1->6D-Gal alpha 
1->6D-Glucose, citric acid, isocitric acid, L-phenylala-
nine, sulfate, (-)-epigallocathin, argininosuccinic acid and 
norsanguinarine can be used as classification indicators 
to distinguish soybeans from different production areas, 
PLS-DA analysis was used on these DEMs as shown in 

Additional file 1: Fig. S8. In the PLS-DA model, R2X and 
R2Y represent the percentage of X and Y matrix informa-
tion respectively. R2X (cum) = 90.9%, indicating that the 
three principal prediction components of the model can 
explain 90.9% of the X variable; R2Y (cum) = 100%, indi-
cating that the three principal prediction components of 
the model can explain 100% of the Y variable. Q2 indi-
cates that the prediction ability of the evaluation model 
was obtained through cross validation. Here, Q2 = 0.944, 
indicating that the prediction ability of PLS-DA for soy-
bean samples in the nine production areas of the two 
provinces (Bei’an, Nenjiang, Hailun, Bayan, Zhuanghe, 

Fig. 5  Heatmap of DEMs in pairwise comparisons. The abscissa represents the sample name, and the ordinate represents DEM. The left branch 
shows the clustering of DEMs, and the color from blue to red represents the expression abundance of metabolites from low to high; the more 
intense red and blue colors represent the magnitude of DEM expression. A DS22/SN52, B HH43/SN52, C XN20/SN52, D LD15/TF31, E LD36/TF31, F 
TD67/TF31, G TD53/TF31
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Huludao, Jinlandian, Xinmin and Linghai) was 94.4%. 
Additional file 1: Fig. S8 shows that all soybean samples 
were divided into different regions, and soybeans from 
the same production region had aggregated R2Z/Y val-
ues. These findings suggest that the seven classification 
indexes contained enough information to accurately 
identify and distinguish soybean samples from nine pro-
duction areas.

Discussion
In this study, we found that an unbiased metabolomics 
approach using LC–MS provides a comprehensive com-
parison of metabolic characteristics among soybean 
samples obtained from different geographical regions 
in China. These data yield key characteristics about the 
soybeans in high dimension. A total of 8283 metabolites 
were detected by LC–MS. Of these, 42 significant DEMs 
were identified by the combination of single-dimensional 
and multi-dimensional statistical methods with path-
way-based integrated analysis. These DEMs were deter-
mined to mainly be comprised of flavonoids, isoflavonids, 

organooxygen compounds, carboxylic acids and deriva-
tives. Among them, eight DEMs belong to the family of 
carboxylic acid derivatives, followed by seven isoflavo-
noids and seven organooxygen compounds.

The composition of metabolites in agricultural prod-
ucts not only depends on the underlying genetics of the 
various species tested but also is heavily influenced by 
the natural environment of their cultivation [62]. This 
is reflected in the significant differences in the metab-
olite composition of soybeans from different produc-
tion areas in the present study. Plant metabolism is also 
highly responsive to climate (temperature, precipita-
tion) and geographical location (altitude, longitude and 
latitude) [63]. We analyzed the climate and geographi-
cal characteristics of nine regions, including average 
temperature, rainfall, sunshine time, etc. Daily sunshine 
duration can affect photosynthesis rates in soybean 
plants, thus affecting carbohydrate metabolism [64], 
formation of flavonoids [65] and other metabolites. 
Annual average temperature has a substantial impact 
on lipid metabolism. In lower temperatures, changes in 

Fig. 6  Correlation heatmap of DEMs and DEGs. The left branch shows the clustering of DEMs, and the upper branch shows the clustering of DEGs. 
The correlation coefficient r is expressed in color; r > 0 represents positive correlation, expressed in red, while r < 0 represents negative correlation, 
expressed in blue. The darker the color is, the stronger the correlation is. The p-value reflects the significant level of correlation. * p < 0.1 , **p < 0.05 . 
A TD53/TF31, B LD36/TF31, C LD15/TF31, D TD67/TF31, E XN20/SN52, F DS22/SN52
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enzyme activity lead to lipid accumulation [65]. Aver-
age annual precipitation and soil composition are fac-
tors which can impact the accumulation of carboxylic 
acids, derivatives and non-metallic oxygen compounds.

The annual average temperature and length of sum-
mer in Heilongjiang Province is lower than in Liaoning 
Province. These differences likely explain our finding that 
L-phynylalanine, citric acid and isocitric acid metabolites 

Table 2  Significant DEMs

DEM Type of compounds

(-)-Epigallocatechin Flavonoids

2-Hydroxycinnamic acid Cinnamic acids and derivatives

2 -Hydroxydihydrodaidzein Isoflavonoids

4-Hydroxycinnamic acid Cinnamic acids and derivatives

5,10-Methylene-THF Pteridines and derivatives

6-Hydroxydaidzein Isoflavonoids

6 -Malonylgenistin Isoflavonoids

6 -O-Malonylglycitin Isoflavonoids

Alpha-Lactose Organooxygen compounds

APC Organooxygen compounds

Argininosuccinic acid Carboxylic acids and derivatives

beta-Cortol Organooxygen compounds

Biochanin A 7-(6-malonylglucoside) Benzofurans

Choline Organonitrogen compounds

cis-2-Hydroxycinnamate Cinnamic acids and derivatives

Citric acid Carboxylic acids and derivatives

CMP-N-glycoloylneuraminate Pyrimidine nucleotides

Coenzyme A Purine nucleotides

Daidzein Isoflavonoids

Daidzin Isoflavonoids

D-Galalpha 1->6D-Gal alpha 1->6D-Glucose Organooxygen compounds

Galactinol Organooxygen compounds

Gamma-Linolenic acid Fatty Acyls

Genistein Isoflavonoids

Isocitric acid Carboxylic acids and derivatives

Kaempferol Flavonoids

L-Asparagine Carboxylic acids and derivatives

Leucopelargonidin Flavonoids

L-Glutamate Carboxylic acids and derivatives

L-Isoleucine Carboxylic acids and derivatives

L-Phenylalanine Carboxylic acids and derivatives

N-Acetylornithine Carboxylic acids and derivatives

Naringin Flavonoids

Norsanguinarine Quinolines and derivatives

PC (16:0/20:4(5Z,8Z,11Z,14Z)) Glycerophospholipids

PC (18:1(11Z)/16:0) Glycerophospholipids

Pelargonidin Flavonoids

Prunasin Organooxygen compounds

Secologanin Prenol lipids

Sucrose Organooxygen compounds

Sulfate Non-metal oxoanionic compounds

Uridine diphosphate-N-acetylglucosamine Pyrimidine nucleotides
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were higher in soybeans from Heilongjiang as compared 
with those from Liaoning. The annual average precipi-
tation and sunshine days are higher in Heilongjiang as 
compared with those from Liaoning. Abundant precipi-
tation greatly increases soil organic matter accumula-
tion and transformation, and abundant sunlight during 
soybean growth period likely promoted the increase of 
(-)-epigallocatechin, D-Gal α1->6 D-Gal α1->6 D-glucose 
and other metabolites in Heilongjiang soybeans. Organic 
matter accumulation and humus content are impacted by 
differences in terroir of the various soybean production 
areas examined in this study. Through the comparison of 
DEM heat maps, we found that carboxylic acids and their 
derivatives in Heilongjiang samples were higher than in 
Liaoning samples. Heilongjiang has low temperature, 
abundant precipitation and robust black soil aggregation. 
This favorable environment has greatly facilitated the 
material exchange of various organic matters in the “soil-
soybean plant” interaction, and promoted high quality 
soybean production.

The overall cold temperate climate of Heilongjiang 
province is in sharp contrast to the temperate monsoon 
climate of Liaoning. Due to differences in longitude 
and latitude of different regions within each province, 
the average sunshine, precipitation and climate in these 
regions are also different, in turn promoting the increase 
or decrease of various metabolites. Among all environ-
mental factors, the most important is geographical loca-
tion (i.e. latitude, longitude), followed by annual average 
temperature, average precipitation, and soil organic mat-
ter composition [66]. Soybeans must be planted carefully 
and with appropriate timing so as to maximize overall 
ventilation and light conditions. In general, large seeds 
need more water and are suitable for planting in areas 
with sufficient rainfall, while small seeds need less water 
and are mostly planted in arid areas. Soybean metabo-
lite differences are not only related to soil and climatic 
conditions, but also to soybean varieties and agricultural 
practices. We screened metabolites directly related to 
geographical origin in this study, which was combined 
with transcriptome sequencing and characterization to 
reduce genotype interference. However, differences in 
some metabolites among the various soybean samples 
may be due to the different varieties grown in the dif-
ferent production areas. In future studies, both soybean 
varieties and agricultural practices should be considered 
when determining the geographical origin of the samples 
that will be studied.

In the comparison study of samples DS22, SN52, LD15, 
TF31, LD36, TF31, LD53, TF31, LD67, TF31, XN20, and 
SN52, it was found that there are core differential sub-
stances present in DS22 and SN52 samples, including 
key metabolites in amino acid and the citric acid cycle. 

The biological pathways and regulatory genes involved 
in these differences are as follows: Differential metabo-
lites related to the citric acid cycle include Citric acid 
and Isocitric acid, which are essential components in the 
respiratory process, providing precursors for energy pro-
duction and various biosynthetic pathways. Differential 
genes may be involved in regulating the enzymes of the 
TCA cycle, impacting the production and conversion of 
citric acid and isocitric acid. In terms of amino acid bio-
synthesis, L-Isoleucine and L-Phenylalanine are essential 
amino acids for protein biosynthesis and serve as precur-
sors for certain secondary metabolites, such as alkaloids 
and flavonoids. The biosynthesis of these amino acids 
may be regulated by core differential genes.

From a genetic perspective, core differential genes such 
as LOC100775394, LOC100776419, and LOC100778188 
may be involved in regulating relevant metabolic path-
ways. L-Phenylalanine, as a core differential substance, 
appears in the HH43 and SN52 samples, indicating that 
genes related to phenylalanine biosynthesis pathways 
may have different expression patterns between these 
two samples. These genes (such as LOC100306108, 
LOC100780806, LOC100785449, LOC100814593, 
LOC547792) may have different allelic versions, or their 
expression levels may be regulated, influencing the syn-
thesis and accumulation of phenylalanine.

The core differential substances between LD15 and 
TF31 samples may be related to the growth environment 
of the samples, such as soil composition and climatic 
conditions. These environmental factors can influence 
the type and quantity of final metabolites by affecting 
the expression or activity of plant endogenous metabolic 
pathways. For example, (-)-Epigallocatechin is a flavonoid 
compound found in high concentrations in green tea, 
and Kaempferol is a widely distributed flavonoid found 
in plants. Norsanguinarine and Pelargonidin are respec-
tively alkaloids and anthocyanins, and their biosynthesis 
may be induced or inhibited by environmental factors. 
Core differential genes such as AS1, CHS7, CHS8, and 
CHS9 may participate in the biosynthesis, regulation, 
and response to environmental changes of the above-
mentioned metabolites.

The core differential substances between LD36 and 
TF31 samples indicate significant differences in lipid 
metabolism and polyphenol synthesis pathways. PC 
(16:0/20:4(5Z,8Z,11Z,14Z)) and PC (18:1(11Z)/16:0) 
are specific molecular species of phospholipids, playing 
important roles in cellular membrane structure and func-
tion, signal transduction, and lipid storage. The synthesis 
and metabolism of PC involve various enzymes, such as 
PCYT and PLA2, and the activity and regulation of these 
enzymes may be related to differential gene expression. 
Pelargonidin is an anthocyanin, a class of plant secondary 
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metabolites with antioxidant properties, directly related 
to flower coloration. Its biosynthesis pathway involves 
the participation of multiple enzymes, such as CHS 
and CHI. Sucrose, Sulfate, and Uridine diphosphate-N-
acetylglucosamine are key molecules in the metabolic 
process, participating in carbohydrate metabolism, sulfur 
assimilation and transport, and glycosyl transfer reac-
tions, respectively. Core differential genes such as AS1, 
COI1 may be involved in the above metabolic pathways 
and biological processes.

The core differential substances and differential genes 
between LD53 and TF31 samples indicate significant bio-
chemical differences between these two samples, which 
may result from the interaction of environmental influ-
ences and genetic factors. Core differential substances 
such as Argininosuccinic acid are important interme-
diates in the urea cycle, related to the detoxification 
and excretion of ammonia; beta-Cortol, Biochanin A 
7-(6-malonylglucoside), cis-2-Hydroxycinnamate, Daid-
zin, and Norsanguinarine are plant secondary metabolites 
related to plant defense mechanisms, pigment formation, 
and interaction with the environment. N-Acetylornithine 
is involved in amino acid conversion and metabolism 
intermediates; PC (16:0/20:4(5Z,8Z,11Z,14Z)) and P 
C(18:1(11Z)/16:0) are constituents of membrane lipids, 
affecting cellular membrane structure and function; 
Prunasin is a cyanogenic compound, possibly involved 
in plant natural defense mechanisms. Core differential 
genes such as 4CL4, ADH2, AOC1, CHIA1, CYP93A1, 
GDH2, GS, GS1GAMMA2, GM-ASNASE1, GMPAL2.1, 
GMPAL2.3, and GOLS may be involved in the synthesis, 
regulation, and response to environmental changes of the 
above-mentioned metabolites.

The core differential substances between LD67 and 
TF31 samples indicate significant differences in bio-
chemical composition. These differences may reflect 
the physiological state, growth conditions, environmen-
tal stress adaptation, and metabolic pathway character-
istics of the two samples. Core differential substances, 
such as (-)-Epigallocatechin, Daidzein, Genistein, and 
other flavonoid and isoflavone compounds, are com-
monly associated with antioxidant, defense responses, 
and signal transduction. 4-Hydroxycinnamic acid par-
ticipates in the biosynthesis of phenolic compounds 
and has antioxidant properties. Gamma-Linolenic acid 
is a polyunsaturated fatty acid that is crucial for regu-
lating inflammatory responses and maintaining cellu-
lar membrane function. Core differential genes such as 
ADH2 play a role in the alcohol dehydrogenase-derived 
products process in estimating yeast. CHS7, CHS8, 
and CHS9 are related to the biosynthesis of flavonoid 
compounds. SACPD-C participates in the unsaturation 
of fatty acids. Coenzyme A is an important cofactor 

that functions in various biological reactions, such as 
fatty acid and amino acid metabolism. OAS-TL2 and 
OAS-TL3 participate in sulfur metabolism and protein 
synthesis.

The core differential substances between XN20 and 
SN52 samples indicate significant metabolic differ-
ences, which may be the result of multiple factors 
interacting. Core differential substances such as Alpha-
Lactose are a form of lactose found in dairy products, 
associated with energy supply and carbohydrate metab-
olism; Citric acid and Isocitric acid are key metabolites 
in the tricarboxylic acid cycle, crucial for energy pro-
duction and metabolic regulation; D-Gal α-1->6D-Gal 
α-1->6D-Glucose is a compound containing galactose 
and glucose residues, possibly related to sugar trans-
port and signaling; Galactinol is a plant sugar alcohol, 
serving as an osmoprotectant in response to stress con-
ditions such as drought. L-Asparagine is a nonessen-
tial amino acid playing a role in nitrogen transport and 
storage. Sucrose is the most common non-structural 
carbohydrate in plants, used for energy storage and 
transport. Core differential gene RBCS-1 is typically 
associated with photosynthesis in plants, participating 
in the carbon fixation process.
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