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Abstract
Fecal waste from livestock farms contains numerous pathogens, and improperly managed waste may flow into 
water bodies, causing water-borne diseases. Along with the popularization of high-throughput technologies, 
community-wide microbial source-tracking methods have been actively developed in recent years. This study 
aimed to construct a comprehensive fecal microbiome database for community-wide microbial source tracking 
and apply the database to identify contamination sources in the Miho River, South Korea. Total DNA was extracted 
from the samples, and the 16 S rRNA gene was amplified to characterize the microbial communities. The fecal 
microbiome database was validated by developing machine-learning models that predict host species based on 
microbial community structure. All machine learning models developed in this study showed high performance, 
where the area under the receiver operating characteristic curve was approximately 1. Community-wide microbial 
source tracking results showed a higher contribution of fecal sources to the contamination of the main streams 
after heavy rain. In contrast, the contribution of fecal sources remained comparatively stable in tributaries after 
rainfall. Considering that farms are more concentrated upstream of tributaries compared to the main streams, this 
result implies that the pathway for manure contaminants to reach the main streams could be groundwater rather 
than surface runoff. Systematic monitoring of the water quality, which encompasses river water and groundwater, 
should be conducted in the future. In addition, continuous efforts to identify and plug abandoned wells are 
necessary to prevent further water contamination.
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Introduction
Global demand for meat has increased significantly, 
resulting in extensive livestock farming and increased 
manure generation [1]. A large amount of manure is 
stockpiled before it is used as fertilizer or temporarily 
stored before it is transported to livestock waste facilities 
for energy production and disposal [2–6]. Many farms, 
owing to a lack of indoor spaces, store livestock manure 
in open areas where it can leach into stream waters 
through surface runoff or into groundwater. Because 
fecal materials from livestock contain a myriad of patho-
gens that may cause waterborne diseases, it is important 
to properly manage livestock manure and track leaching 
events to prevent disease outbreaks [2, 7].

Microbial source tracking (MST) is a collection of 
methods used to discriminate fecal pollution sources in 
aquatic environments using microbes [8]. Traditional 
MST methods include genomic fingerprinting methods 
such as repetitive-element palindromic PCR (rep-PCR) 
[9, 10] and pulsed-field gel electrophoresis (PFGE) [11–
13]. More recently, quantitative PCR (qPCR) has been 
widely used for MST because it is culture-independent. 
Numerous qPCR markers have been designed, includ-
ing HF183 and BacHum, which detect human-specific 
Bacteroides [14, 15], Pig2Bac, which detects pig-specific 
Bacteroidales [16], and GFD, which detects bird-specific 
Helicobacter spp [17].

With the advent of high-throughput sequencing meth-
ods, community-wide approaches to MST have emerged. 
Knights et al. [18] introduced a bioinformatics tool for 
community-wide MST called SourceTracker. Source-
Tracker models the contributions of source communities 
to the contamination of sink communities. Staley et al. 
[19] reported the applicability of SourceTracker for MST 
through double-blind tests using samples spiked with one 
to five source libraries. Unlike previous MST methods, 
which have limited use in the detection of predetermined 
fecal indicator bacteria, community-wide approaches 
directly estimate source proportions with much higher 
resolution.

Community-wide MST methods are powerful, but 
can sometimes be resource-intensive because of the 
increased size of microbial community sequence data. 
Recently, other machine learning-based community-wide 
source-tracking bioinformatics tools, such as FEAST (fast 
expectation-maximization for microbial source tracking) 
[20] and STENSL (Microbial Source Tracking with Envi-
ronment SeLection [21] have been developed to over-
come a few of the drawbacks of SourceTracker. FEAST 
was developed based on a highly efficient expectation 
maximization-based method that enables community-
wide MST on time. STENSL identifies true contributing 
sources and reduces the noise introduced by noncontrib-
uting sources by incorporating sparsity into the model.

In South Korea, 142,155 tons of livestock manure are 
generated daily [22]. To understand the contribution 
of fecal sources to water contamination, we conducted 
a case study in the Miho River, South Korea, where the 
average number of total coliforms in 2022 reached 16,870 
CFU (colony forming unit)/100 mL [23] (at sampling 
point MH10 [Fig.  1]). We first developed a comprehen-
sive fecal microbiome database and validated it using 
machine learning models that predict host species based 
on fecal microbial community structures. Based on the 
constructed database, we performed a community-wide 
MST to track the contamination sources of the Miho 
River in South Korea. We aimed to diagnose the current 
status of fecal pollution in detail, identify its causes, and 
suggest appropriate control methods.

Materials and methods
Sample collection and physicochemical measurements
In total, 633 fecal samples (125 human samples, 144 poul-
try samples, 116 swine samples, 42 horse samples, and 
206 cow samples) were collected in Jeju and Gwangju, 
South Korea, between 2016 and 2020 (Supplemen-
tary Table S1) and stored at -20  °C before DNA extrac-
tion. River samples were collected from the mainstream 
(MH08, MH09, SY01, BR01, and MH10) and tributaries 
(BC02, JO02, and WH01) of the Miho River watershed, 
located across Cheongju (upstream) and Sejong (down-
stream) in South Korea, where the three major livestock 
species are cows, pigs, and poultry (chicken and duck) 
(Supplementary Table S2) (Fig.  1). Three replicate sam-
ples were collected at each sampling point before and 
after the heavy rain on June 26th, 2023 (daily rainfall of 
34.1  mm) (Supplementary Fig. S1). Water temperature, 
pH, and electrical conductivity (EC) were measured using 
a multifunction meter CX-401 (Elmetron, Poland). Water 
samples were filtered using cellulose nitrate filters (pore 
size of 0.45 μm and diameter of 47 mm) (Whatman, UK) 
and stored at -20 °C before DNA extraction.

DNA extraction and high-throughput sequencing
Fecal DNA was extracted using either a PowerFecal Isola-
tion Kit (MOBIO, Carlsbad, CA, USA) or a QIAamp Pow-
erFecal DNA Kit (Qiagen, Germany). DNA was extracted 
from the filters using a DNeasy PowerWater Kit (Qiagen, 
Germany). The amplicon sequencing library targeting the 
V4 (or V3-V4) region of the bacterial 16 S rRNA gene was 
prepared according to the “16S Metagenomic Sequencing 
Library Preparation” guidelines provided by Illumina [24]. 
For the amplification of the V3–V4 region, we used the 
primer sets 341  F (5′-CCTACGGGNGGCWGCAG-3′) 
and 805R (5′-GACTACHVGGGTATCTAATCC-3′) 
and to amplify the V4 region, we used the primer sets 
515  F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 
806R (5′-GGACTACHVGGGTWTCTAAT-3′) [25]. 
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The pooled library was sent to Macrogen Inc. (Seoul, 
South Korea) for sequencing. Fastq-formatted sequence 
data have been deposited in the Sequence Read Archive 
under project ID PRJNA1071275 for Miho River sam-
ples and PRJNA1071195 for fecal samples, except for 
21 human samples that have already been published in 
another study [26] (Sequence Read Archive project ID of 
PRJNA544370).

Sequence processing
Sequences were processed using Mothur software [27] 
following MiSeq SOP (https://mothur.org/wiki/miseq_
sop/). Sequences with ambiguous base pairs and homo-
polymers (> 8 base pairs) were removed. Sequences of 
< 250  bp or > 550  bp were removed. Sequences were 

aligned against the Silva database v. 138 [28], and the 
“pcr.seqs” command (with a start option of 11,895 and 
an end option of 25,316, which covers the 515–805  bp 
region of the bacterial 16  S rRNA gene) was used for 
the consistency between V4 amplicons and V3–4 ampli-
cons. The chimeric sequences were removed using the 
VSEARCH algorithm [29]. Sequences were classified 
based on RDP database v. 18 [30], and the sequences 
annotated as “Chloroplast,” “Mitochondria,” “unknown,” 
and “Eukaryota” were removed. Sequences with a simi-
larity greater than 97% were clustered into operational 
taxonomic units (OTUs) using the OptiClust algorithm 
[31].

Fig. 1 A map showing land-use type of the study area and sampling points. Water flows from the north to the south. Land-use information was collected 
from the National Geographic Information Institute of Korea. Map image was generated through QGIS 3.34.3
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Statistical analysis, machine learning, and microbial source 
tracking
To test if the microbial community structure varies sig-
nificantly depending on their hosts, a pairwise permuta-
tional multivariate analysis of variance (PERMANOVA) 
test was performed using the “vegan” package [32] and 
the “ranacapa” package [33] in R. Before performing pair-
wise PERMANOVA, we subsampled 10,575 reads per 
sample and calculated the Bray–Curtis distance between 
samples based on the square-root transformed OTU 
abundance data. To visualize the distance between the 
samples, we generated a non-metric multidimensional 
(nMDS) plot using the “vegan” package in R.

We constructed machine learning classification mod-
els to predict hosts based on microbial communities. The 
relative abundances of the genera were used as features 
(independent variables) of the models, and five hosts 
(poultry, cow, horse, human, and pig) were used as traits 
(dependent variables). Unclassified genera were excluded 
when building machine learning models. We used five 
machine-learning algorithms: (1) random forest (RF) 
[34], (2) extreme gradient boosting (XGBoost) [35], (3) 
support vector machine (SVM) [36], (4) logistic regres-
sion (Logr), and (5) K-nearest neighbor (KNN) [37]. The 
Python “xgboost” module was used to construct the 
XGBoost model, and the “scikit-learn” module [38] was 
used to construct the other four models. Hyperparam-
eters were tuned using the “GridSearchCV” function in 
“sklearn.model_selection,” except for the XGBoost model, 
in which we used the default values due to resource limi-
tations. The samples were randomly divided into training 
and test data 100 times, and the models were evaluated 
using 5-fold cross-validation. To find out important fea-
tures in the random forest model, the “feature_impor-
tances_” attribute in the Python “scikit-learn” package 
was used.

Community-wide MST was performed at the OTU-
level using the “FEAST” function in the R “FEAST” pack-
age [20]. Fecal microbiome data were used as sources, 
and Miho River data were used as sinks. The source con-
tribution values of the fecal samples were summed for 
each host.

Results
Community composition of the fecal samples and the Miho 
River freshwater samples
At the phylum level, Firmicutes comprised over 60% of 
the gut microbiome in poultry samples and were domi-
nant in other fecal sources (Fig.  2A). Bacteroidetes 
were dominant in fecal samples, except in poultry. The 
freshwater samples collected before heavy rain were 
dominated by Proteobacteria, Bacteroidetes, and Cyano-
bacteria. In contrast, freshwater samples collected after 

heavy rainfall were dominated by Proteobacteria, fol-
lowed by Actinobacteria and Bacteroidetes.

At the genus level, Prevotella was dominant in human 
and pig samples but not in the other samples (Fig. 2B). In 
human samples, Phocaeicola, Bacteroides, Faecalibacte-
rium, and Bifidobacterium were dominant. Lactobacillus 
was dominant in both pig and poultry samples. In poultry 
samples, Romboutsia and Streptococcus were dominant. 
Cow samples were dominated by Phocaeicola and Alis-
tipes, whereas horse samples were dominated by Trepo-
nema and Methanocorpusculum. No overlap exists in the 
major (top five) genera between the fecal and freshwater 
samples.

The nMDS results showed strong clustering for each 
sample group (Fig.  2C). PERMANOVA results showed 
significant differences between the different sample 
groups (global R2 = 0.51637, p < 0.001; pairwise test results 
are shown in Supplementary Table S3). The microbial 
community in freshwater samples shifted towards the 
fecal microbiomes after heavy rain (Fig. 2C, Supplemen-
tary Table S3). The horse samples were most distantly 
located in the freshwater samples on the nMDS plot.

 Verification of the fecal microbiome database 
using machine learning
To evaluate the fecal microbiome database constructed 
in this study, we built machine-learning models that pre-
dicted hosts based on fecal microbial community compo-
sition. The hyperparameters used to construct the final 
models are listed in Supplementary Table S4. All five 
machine learning classification models performed well, 
with areas under the receiver operating characteristic 
curves of approximately 1 (Fig.  3A, Supplementary Fig. 
S2, and Table S5). The most important 20 features iden-
tified in the RF model included the major genera repre-
sented in Fig.  2B, including Faecalibacterium, Alistipes, 
Methanobrevibacter, Treponema, and Romboutsia, and 
minor genera such as Paeniclostridum, Clostridioides, 
Paludibacter, Monoglobus, and Ihubacter (Fig. 3B and C).

Community-wide microbial source tracking of the 
miho river
The water temperature was approximately 24–27 °C dur-
ing the sampling period, both before and after the heavy 
rain (Table 1). The pH and EC decreased after rainfall at 
most sampling points. The MST results demonstrated 
that freshwater samples were contaminated with the 
fecal microbiome of humans, cows, pigs, and poultry to 
a minor extent before heavy rain (Fig.  4). However, the 
source contributions of human, cow, pig, and especially 
poultry samples increased after rain in the mainstream. 
In contrast, there were relatively smaller changes in the 
source contribution profiles of tributary samples, such as 
BC02 and WH01, after the rain. Overall, the downstream 
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samples (BR01 and MH10) showed a highly contami-
nated profile after rain compared to the other samples. 
Regardless of sampling time, the horse fecal microbiome 
had nearly zero contribution.

Discussion
In this study, we constructed a comprehensive fecal 
microbiome database based on 633 fecal samples col-
lected from poultry, cows, horses, pigs, and humans in 
South Korea for community-wide MST. The database 
constructed in this study can save time and effort in col-
lecting fecal samples and facilitate comparative studies. 

Fig. 2 (A) Phylum-level composition of the studied samples. Top 5 phyla (except unclassified) for each sample group were chosen. (B) Phylum-level 
composition of the studied samples. Top 5 genera (except unclassified) for each sample group were chosen. (C) An nMDS plot generated based on the 
OTU-level composition of the samples
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Traditional MST methods, such as rep-PCR and PFGE, 
have a high possibility of producing false negatives (fail-
ure to identify a source when present), as the target 
indicator bacteria (Escherichia coli, Enterococci, etc.) con-
stitute only a small proportion of the overall community. 
This issue can be resolved in community-wide MST, as it 
does not target a single bacterial species but instead con-
siders multiple species collaboratively.

Traditional MST methods have limitations in dis-
tinguishing different host species from contamination 
sources. In this study, the fecal microbiomes were distin-
guishable by different host groups, as reported in many 
other studies [39, 40]. The machine learning models 
constructed in this study showed nearly 100% accuracy 
in predicting host groups based on fecal microbial com-
munity structures. The features that contributed most 
to accurate prediction in the RF model included the 
major genera and the minor ones, which have often been 
neglected. This indicates that these minor genera can 
function as important indicators and help enhance the 
resolution of community-wide MST.

The MST results for the Miho River revealed that 
humans, chickens, cows, and pigs were the main contrib-
utors to fecal contamination. The contribution of poultry 
samples was generally higher than that of other sources, 
particularly after rainfall. This could be due to the high 
number of poultry farms and poultry individuals in the 
study area (Supplementary Table S2). Horses contrib-
uted marginally to the contamination of the Miho River 
both before and after the rain. This corresponds to the 
low number of horse farms and horses in the study area 
(Supplementary Table S2).

Tributary samples, such as WH01 and BC02, were only 
minimally contaminated before and after the rain, even 
though a few livestock farms were located upstream of 
these tributaries (Fig. 1). In contrast, in the mainstream, 
especially downstream (BR01 and MH10), there was 
more severe contamination after rain, even though few 
livestock farms were located nearby. This suggests that 
the contamination of the mainstream may not originate 
from surface water flushing from tributaries or nearby 
surface water, but likely from groundwater. In South 

Korea, it has been estimated that there are more than one 
million abandoned tubular wells [41]. Abandoned wells 
function as direct channels for surface contaminants to 
pollute groundwater; therefore, an appropriate plugging 
method is generally required. In the study area, it has 
been reported that the quality of groundwater originat-
ing from abandoned tubular wells is lower than that of 
general groundwater [41]. Although the local govern-
ments of Cheongju and Sejong have made huge efforts to 
plug abandoned tubular wells annually, the results of this 
study suggest that there are still many unmanaged wells 
that contaminate groundwater and, subsequently, the 
mainstream of the Miho River. Further source tracking of 
groundwater could be helpful for assessing the contami-
nation source locations in detail.

The results of this study show that the aquatic environ-
ment in farming areas can be contaminated by diverse 
fecal sources after rainfall. A strong demand exists for 
proper monitoring plans and surveillance systems to 
improve water quality. In addition, government support 
for proper livestock waste storage systems may be help-
ful. Further efforts are necessary to identify and plug the 
tubular wells.

In this study, we identified the possible causes of water 
contamination by applying community-wide microbial 
source tracking methods. In recent years, more sophisti-
cated MST methods have been developed, such as SNV-
FEAST, which uses single nucleotide variants for MST 
[42]. However, these metagenome-based methods are 
resource-intensive and require high-performance serv-
ers, which limits their range of applications. Currently, 
16 S rRNA gene-based community-wide source tracking 
is a reliable and cost-effective MST method. The data-
base construction and validation methods used here and 
the case study of the Miho River can be applied to other 
source-tracking studies and can aid policy decision-mak-
ing processes. As the fecal microbiome can vary geo-
graphically [43, 44], region- or country-specific databases 
must be developed before performing community-wide 
MST.

Table 1 Physicochemical conditions of the Miho River before and after heavy rain
Sample ID Temperature (°C) pH Electrical Conductivity (µS/cm)

Before After Before After Before After
BC02 26.7 ± 0.4 27.1 ± 0.1 8.5 ± 0 7.1 ± 0 379 ± 7.9 278.3 ± 0.6
MH08 25.1 ± 0 26.5 ± 0.1 7.9 ± 0 6.7 ± 0 548.2 ± 4.4 354.9 ± 11.1
MH09 26.4 ± 0.3 26.5 ± 0.1 7.8 ± 0.3 6.6 ± 0 491.3 ± 10.9 303.7 ± 5.5
JO2 26.1 + 0 24.8 + 0.9 7.3 + 0 6.8 + 0 390.9 + 8.4 498.1 + 6.4
SY01 24.7 ± 0.2 27 ± 0.1 8.2 ± 0 6.7 ± 0 554.5 ± 12.8 267.9 ± 9
WH01 24.7 ± 0.1 24.3 ± 0.1 6.8 ± 0.1 6.7 ± 0 223 ± 8.8 220.6 ± 3.4
BR01 25 ± 0.1 25.8 ± 0.1 8.2 ± 0 6.7 ± 0 547.8 ± 1.2 317.5 ± 6.5
MH10 26.4 ± 0.7 25.6 ± 0.2 7.8 ± 0 6.8 ± 0 582.6 ± 0.6 250.4 ± 2.7
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Fig. 4 Boxplots representing the source contributions of the fecal microbiome on Miho River samples
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