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Abstract 

This study was conducted to provide evidence, using in vitro and in silico testing methods, regarding the adverse 
effects of iprodione, a representative dichlorophenyl dicarboxamide fungicide, on the endocrine system. In the pre‑
sent study, we used the HeLa9903 stably transfected transactivation assay (OECD TG 455), 22Rv1/MMTV_GR‒KO 
androgen receptor transcriptional activation assay (OECD TG 458), and toxicity prediction using VEGA QSAR. Our 
results showed that iprodione had no estrogen receptor antagonistic or androgen receptor agonistic effects; however, 
iprodione was determined to be an estrogen receptor agonist (log PC10 value is less than − 9) and androgen recep‑
tor antagonist (log IC30 value is − 4.58) without intrinsic toxicity against the human cell lines used in this study. VEGA 
QSAR was used to evaluate five substances with structures similar to that of iprodione. Among them, four chemicals 
were found to have positive androgen receptor and aromatase activities and have been observed to be developmen‑
tal toxicants. These results suggest that iprodione regulates steroid hormone receptor interactions and is a potential 
reproductive toxicant.
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Introduction
Pesticides have been extensively used worldwide to 
achieve adequate volumes of food crops that are of an 
acceptable quality [1]. Pesticides comprise a variety of 
compound classes, including herbicides, fungicides, and 
insecticides, for controlling pests. The use of pesticides 
has not only contributed to a significant increase in agri-
cultural yield but has also helped to fight vector- and/

or food-borne diseases [2]. However, the repeated and 
extensive use of pesticides has caused serious environ-
mental pollution of the atmosphere, soil, and water [3]; 
moreover, exposure to certain pesticides is associated 
with various adverse effects, such as asthma, allergy, can-
cer, endocrine system disruption, and hypersensitivity 
[4].

Iprodione is a dichlorophenyl dicarboxamide fungi-
cide used to control a broad range of root and stem rots, 
molds, and mildew in a variety of fields, fruits, and veg-
etable crops, including grapes, peaches, tomatoes, pota-
toes, berries, and onions [5, 6]. Iprodione has relatively 
low toxicity compared to organochlorine and organo-
phosphate fungicides; however, environmental residues 
of iprodione have been a concern because of its exten-
sive use and environmental persistence [7]. In a previous 
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study regarding the adverse effects of iprodione pesticide 
products on the endocrine system, iprodione weakly pro-
moted aromatase activity and increased estrogen pro-
duction [8] and the acute toxicity of iprodione was low 
in zebrafish [9]. Additionally, iprodione inhibits steroid 
hormone synthesis and causes atrophy of the liver, ova-
ries, and kidneys, leading to changes in body weight [10]. 
However, studies on the endocrine-disrupting potential 
of iprodione-mediated hormone receptors are lacking.

As the risk of endocrine disruptors are presented, the 
Organization for Economic Cooperation and Devel-
opment (OECD) has published a guidance document 
(GD150) providing details regarding the endocrine dis-
rupting potential of several chemicals that humans could 
be exposed to through the environment and food stuffs 
[11]. The OECD offered a conceptual framework for the 
testing and assessment of endocrine-disrupting chemi-
cals (EDCs), comprising five different levels. Level two 
is used to ascertain the endocrine mechanism affected 
by chemicals via data collection from in  vitro assays 
[11]. According to the OECD endocrine disrupters test-
ing assessment (EDTA), if a chemical does not affect 
the estrogen, androgen, and thyroid hormone‒medi-
ated reaction and steroid hormone biosynthesis process, 
it is judged to be a substance that does not disrupt the 
endocrine system [12]. The stably transfected transac-
tivation (STTA) assay using the HeLa9903 cell line was 
performed, adopting the performance-based test guide-
line (PBTG) No. 455 [13], and the androgen receptor 
transactivation (ARTA) method involving the 22Rv1/
MMTV_GR‒KO cell line was described as an OECD test 
guideline (TG) No. 458 [14], including in  vitro OECD 
conceptual framework level 2. These assays involve sev-
eral mechanically similar in  vitro assays for identifying 
androgen or estrogen receptor agonists and antagonists.

Pesticides are a representative group of endocrine 
disruptors (EDs), defined by the World Health Organi-
zation (WHO) as “an exogenous substance or mixture 
that alters the function(s) of the endocrine system and 
consequently causes adverse health effects in an intact 
organism, or its progeny, or (sub)populations” [15]. With 
regard to the endocrine-disrupting potential of pesti-
cides, several reports have suggested that pesticide prod-
ucts can directly interact with hormone receptors such 
as estrogen or androgen receptors [16–18]. Aldrin and 
atrazine, which are organochlorine pesticides, may dis-
rupt the endocrine system by exerting estrogen receptor 
agonist and androgen receptor antagonist effects [19, 20]. 
The organophosphorus pesticide diazinon induces the 
proliferation of a rat pituitary tumor cell line via estrogen 
receptor agonistic effects [21]. In the case of pyrimidine 
fungicides, fenarinol acts as an estrogen receptor ago-
nist by inhibiting aromatase [22, 23]. Azole fungicides 

including hexaconazole and prochloraz influence the 
endocrine system by interacting with several cytochrome 
P450 enzymes [24]. However, there is insufficient evi-
dence confirming the endocrine-disrupting potential of 
dichlorophenyl dicarboximide pesticides.

Therefore, the aim of the present study was to conduct 
research on iprodione (IFD), estrogen receptor reference 
(17β-estradiol and 4-hydroxytamoxifen) and androgen 
receptor reference (5α-dihydrotestosterone and bicaluta-
mide) to provide mechanistic insights into its endocrine-
disrupting activity (agonist and antagonist) using sex 
hormone receptor assays and toxicity prediction results.

Materials and methods
Test substances
Iprodione (IFD) was purchased from Sigma-Aldrich (St. 
Louis, MO, USA) for STTA and ARTA. Reference sub-
stances of estrogen receptor (ER), 17β-estradiol (E2) 
and 4-hydroxytamoxifen (OHT), and androgen recep-
tor (AR), 5α-dihydrotestosterone (DHT) and bicalu-
tamide, were obtained from Sigma-Aldrich (St. Louis, 
MO, USA). Reagents for cell culture, such as media, fetal 
bovine serum (FBS), and antibiotics, were commercially 
obtained.

Cell culture
HeLa9903 human uterine cervix cells transfected with 
human estrogen receptor α (hERα) reporter gene was 
obtained from the JCRB cell bank (Osaka, Japan) and 
cultured in Eagle’s Minimum Essential Media (EMEM) 
without phenol red containing 10% dextran-coated char-
coal-treated FBS (DCC-FBS) and 60 mg/L of kanamycin. 
For the androgen receptor transactivation assay, 22Rv1/
MMTV_GR‒KO human prostate cancer cells were 
obtained from KCTC (Jeongeup, Korea) and cultured 
in RPMI 1640 medium supplemented with 10% FBS, 1% 
antibiotics (penicillin, streptomycin, and amphotericin 
B), and 2 mM GlutaMax™ (Gibco, USA). Before chemi-
cal treatment, the medium was replaced with phenol-free 
RPMI 1640 medium supplemented with 5% DCC-FBS, 
antibiotics, and 2 mM GlutaMax™. Cells were incubated 
in a humidified atmosphere of 5% CO2 at 37 ℃. Cells 
were sub-cultured every 2–3 days at 80–85% confluence 
for a maximum of 20 passages.

Cell viability assay
HeLa9903 cells (1 × 104 cells/well) and 22Rv1/MMTV_
GR‒KO cells (3 × 104 cells/well) were seeded into 96-well 
plates. The cytotoxicity of ER and AR antagonists, which 
are detected by comprehensive tests, was determined in 
the test concentration range of IFD using the Cell Count 
Kit-8 (CCK-8, CK04, Dojindo, Japan) and CellTiter-Flour 
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™ assay reagent (G6081, Promega, USA), following the 
manufacturer’s instructions. The absorbance of each well 
was measured at 450 nm.

Stably transfected transactivation assay using HeLa9903 
cell line
To evaluate the potential endocrine-disrupting of IFD, 
E2 and OHT against estrogen receptor, the STTA assay 
using the HeLa9903 cell line was conducted following the 
OECD test guideline 455 [13]. Briefly, the cells (1 × 104 
cells/well) were pre-incubated in 5% CO2 at 37 ℃ for 
3  h before exposure to the test chemicals. After adding 
the chemical without (agonist assay) or with (antagonist 
assay) of E2, the plates for testing were incubated in 5% 
CO2 at 37 ℃ for 24  h. The media were removed from 
the test plates and 50 μL/well of luciferase assay reagent 
(Steady-Glo® Luciferase Assay System, E2510, Promega, 
USA) was added, and the plate was shaken for 10  min. 
The luminescence intensity of luciferase activity was 
assessed using a luminometer (Thermo, USA). The test 
results were divided into positive and negative according 
to the classification criteria of the OECD test guidelines 
[13].

Androgen receptor transactivation assay (ARTA) using 
22Rv1/MMTV_GR‒KO cell line
To evaluate the potential endocrine-disrupting of IFD, 
DHT and bicalutamide against androgen receptor, the 
ARTA assay using the 22Rv1/MMTV_GR‒KO cell line 
was performed following the OECD test guideline 458 
protocol [14]. The cells (3 × 104 cells/well) were pre-
incubated in 5% CO2 at 37 ℃. After 48 h, the media were 
replaced with new media treated with various concen-
trations of the test chemicals and incubated for 20–24 h. 
The luciferase activity of test chemical was assessed using 
Steady-Glo® luciferase assay reagent (E2510, Promega, 
USA) at a concentration of 50 μL/well and luminometer 
(Thermo, USA). The test results were divided into posi-
tive and negative according to the classification criteria of 
the OECD test guidelines [14].

In silico modeling using VEGA QSAR
To adequately describe the IFD molecules, the simplified 
molecular-input line-entry system (SMILES) was used to 
extract the chemical formula as a linear string of atoms. 
IFD was screened to predict estrogen receptor, androgen 
receptor, aromatase activity, and developmental toxicity 
using VEGA quantitative structure activity relationship 
(QSAR). The VEGA platform is an in silico program con-
taining dozens of QSAR models for various endpoints. In 
silico techniques have been used to predict various toxi-
cological endpoints of chemicals based on their physico-
chemical properties and structures.

Statistical analysis
In this study, data were described as the means ± standard 
deviation. We compared each group using one-way anal-
ysis of variance (ANOVA) of GraphPad PRISM software 
(GraphPad Software Inc., La Jolla, CA, USA). Differences 
between groups were considered significant at a P value 
of < 0.05.

Results
Proficiency test for the STTA and ARTA assays using human 
cell line
A proficiency test was conducted using reference stand-
ards: 17β-estradiol (E2) and 4-hydroxytamoxifen (OHT) 
for STTA assay and 5α-dihydrotestosterone and bicalu-
tamide for ARTA assay, before testing with iprodione 
(IFD). For the STTA assay, the log PC10 and log PC50 
values of 17β-estradiol were < − 14 and − 10.71 (Fig. 1A 
and Table 1), respectively, against agonist effects and the 
log IC30 and log IC50 values of 4-hydroxytamoxifen were 
−  8.45 and −  9.29 (Fig.  1B and Table  1), respectively, 
against antagonist effects. For the ARTA assay, the log 
PC10 and log PC50 values of 5α-dihydrotestosterone were 
−  9.91 and −  9.21 (Fig.  2A and Table  1), respectively, 
against agonist effects and the log IC30 and log IC50 val-
ues of bicalutamide were − 6.54 and − 6.18 (Fig. 2B and 
Table 1), respectively, against antagonist effects.

Agonistic and antagonistic effects of IFD on estrogen 
receptor
An STTA assay using HeLa9903 cells was performed 
to estimate the agonist and antagonist effects of IFD on 
estrogen receptor. In the agonist assay, IFD was con-
firmed as an estrogen receptor agonist, with log PC10 
and log PC50 values of < −  9 and −  3.21, respectively 
(Fig.  1C and Table  1). In contrast, IFD did not exert an 
estrogen-antagonistic effect (Figs.  1A, 3D, and Table  1). 
The mean luciferase activity of the positive control (1 nM 
17β-estradiol) was 4.8-fold higher in the agonist assay 
and 4.5-fold higher in the antagonist assay compared 
with that of the mean vehicle control (VC) on each test 
plate. The mean luciferase activity of the positive control 
should be at least fourfold greater than the mean VC for 
the agonist and antagonist assay. Therefore, these results 
satisfy the validation criterion.

Agonistic and antagonistic effects of IFD on androgen 
receptor
The results showed that IFD did not exert an androgen 
receptor agonist effect (Fig.  2C and Table  1) but had 
an androgen receptor antagonist effect without intrin-
sic cytotoxicity (above 70% cell viability) on the 22Rv1/
MMTV_GR‒KO cell line (Figs.  2B, 3D and Table  1). 
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In the antagonist assay, the log IC30 and log IC50 val-
ues of IFD were −  4.58 and −  3.88, respectively. The 
mean luciferase activity of the positive control (800 pM 

5α-dihydrotestosterone) was 14.8-fold higher in the ago-
nist assay and 26.2-fold higher in the antagonist assay 
compared with that of the mean VC on each test plate. 

Fig. 1  Results for Stably transfected transactivation assay (STTA) using HeLa9903 cell line. Luciferase activities of (A) 17β‒estradiol as agonist 
reference and (B) 4‒hydroxytamoxifen as antagonist reference. Estrogen receptor transactivation Result of agonist (C) and antagonist (D) 
activities for STTA assay in HeLa9903 cells treated with IFD. Bar graph showing cell viability (%) obtained from CCK‒8 assay. The dots represented 
the luciferase activity (%) compared to the vehicle control group. Vehicle control is 0.1% dimethyl sulfoxide (DMSO). Data were expressed 
as mean ± standard deviations (n = 3). Asterisks denote statistical significance compared to respective control; *P < 0.05

Table 1  Estrogen (STTA assay) and androgen (ARTA assay) receptor agonistic and antagonistic effects of IFD

a Concentration of IFD estimated for a 10% induction of a hormone receptor agonist activity by 1 nM E2 or 10 nM DHT
b Concentration of IFD estimated for a 50% induction of a hormone receptor agonist activity by 1 nM E2 or 10 nM DHT
c Concentration of IFD estimated for a 30% induction of a hormone receptor antagonist activity by 25 pM E2 or 800 pM DHT
d Concentration of IFD estimated for a 50% induction of a hormone receptor antagonist activity by 25 pM E2 or 800 pM DHT

Test chemical (CAS No.) Hormone Method Agonistic activity Antagonistic activity

Log PC10 (M)a Log PC50 (M)b Result Log IC30 (M)c Log IC50 (M)d Result

17β‒Estradiol(E2) (50-28-2) Estrogen receptor STTA assay < − 14 − 10.71 ± 5.6 Positive

4-Hydroxytamoxifen (68047-
06-3)

Estrogen receptor STTA assay − 8.45 − 9.29 Positive

5α-Dihydrotestosterone(DHT) 
(521-18-6)

Androgen receptor ARTA assay − 9.91 − 9.21 Positive

Bicalutamide (90357-06-5) Androgen receptor ARTA assay − 6.54 − 6.18 Positive

Iprodione(IFD) (36734-19-7) Estrogen receptor STTA assay < − 9 − 3.21 Positive ‒ ‒ Negative

Androgen receptor ARTA assay – – Negative − 4.58 − 3.88 Positive
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The mean luciferase activity of the positive control should 
be at least 13-fold greater than the mean VC for the ago-
nist assay, and at least tenfold greater than the mean VC 
for the antagonist assay. Therefore, these results satisfy 
the validation criterion.

Acceptability criteria on STTA and ARTA assay
The relative transcriptional activity (RTA) value of IFD 
for the estrogen receptor agonist assay was 20.5 ± 1.9, 
which is presented as a percentage of the PC10 value 
of 10 nM E2. If the maximum response of the test sub-
stance was more than 10% of the activity of 10  nM 
E2, that is, if the RTA value was more than 10, it was 
judged as positive. In the androgen receptor antagonist 
assay, the RTA of IFD was − 24.4 ± 3.2, which was pre-
sented as a response to the IC30 value of 800 pM DHT. 
If the test substance inhibited the activity of 800  pM 

DHT by more than 30%, that is if the RTA values were 
less than 70 and the cell viability was more than 80%, it 
was judged positive. Therefore, IFD affect estrogen and 
androgen receptor activity, which can lead to problems 
(or toxicity) related to excessive activity or inhibition of 
hormones (estrogen and androgen).

Toxicity prediction using VEGA QSAR
VEGA QSAR was used to evaluate the five substances 
with structures similar to that of IFD for potential tox-
icities, including estrogen receptor (ER)- and androgen 
receptor (AR)-mediated effects, aromatase activity, and 
developmental toxicity (Table  2). Overall, four chemi-
cals with structures similar to that of IFD had positive 
AR and aromatase activities and were observed to be 
developmental toxicants.

Fig. 2  Results for Androgen receptor transactivation assay (ARTA) using 22Rv1/MMTV_GR‒KO cell line. Luciferase activities of (A) 5α‒
dihydrotestosterone as agonist reference and (B) bicalutamide as antagonist reference. Androgen receptor transactivation Result of agonist 
(C) and antagonist (D) activities for ARTA assay in 22Rv1/MMTV_GR‒KO cells treated with IFD. Bar graph showing cell viability (%) obtained 
from CellTiter‒Flour ™ assay. The dots represented the luciferase activity (%) compared to the vehicle control group. Vehicle control is 0.1% dimethyl 
sulfoxide (DMSO). Data were expressed as mean ± standard deviations (n = 3). Asterisks denote statistical significance compared to respective 
control; *P < 0.05
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Discussion
Estrogen receptor alpha (ERα) is present mainly in 
mammary glands, uterus, ovary (theca cell), and male 
reproductive organs including testes, epididymis, and 
prostate [25]. Androgen receptor (AR) is activated by 
binding of any of the androgenic hormones, such as 
testosterone and dihydrotestosterone [26].

Agonistic or antagonistic activities of receptors cause 
different conformational changes in human reproduc-
tive tissues, such as the uterus, breast, and prostate 
glands. The risk of endometrial proliferation, endome-
trial hyperplasia, uterine sarcomas, and vaginal bleed-
ing upon exposure to tamoxifen, a representative ERα 
agonist, has been reported [27, 28]. Antiandrogens also 
have serious adverse effects, including prostate cancer, 

enlarged prostate, and early puberty in males [29]. 
The STTA assay (OECD PBTG 455) and ARTA assay 
(OECD TG 458) were established to detect the agonist/
antagonist activities of endocrine-disrupting chemicals 
because ERα and AR are essential in the maturation of 
the female and male reproductive systems, respectively 
[13, 14, 30].

In the current study, the evaluation of IFD toxic-
ity using the VEGA QSAR platform, which is a repre-
sentative in silico model, did not predict any adverse 
outcomes, including ER, AR, or aromatase activity, 
except for developmental toxicity. However, the evalu-
ation of chemicals with structures similar to that of IFD 
positively predicted AR and aromatase activity. Because 
VEGA QSAR is based on compound structure, some 

Fig. 3  Effect of IFD on cell cytotoxicity test. Result of cell viability (%) of HeLa9903 (A) and 22Rv1/MMTV_GR‒KO (B) cell line. Cells were treated 
with different concentrations of IFD for 24 h. Cell viability was measured using the (A) CCK‒8 and (B) CellTiterFlour™ assays. Vehicle control 
is 0.1% dimethyl sulfoxide (DMSO). Data were expressed as mean ± standard deviations (n = 3). Asterisks denote statistical significance compared 
to respective control; *P < 0.05

Table 2  Predicted potential toxic effects of iprodione (IFD) using VEGA QSAR system

a Similarity is automatically determined by the VEGA QSAR system. bPredicted using IRFMN/CERAPP model (ER activity). cPredicted using IRFMN/COMPARA model 
(AR activity). dPredicted using Tox21 model (aromatase activity). ePredicted using PG model (Developmental toxicity). f−: non-active. g+: active/or toxicant. hn.a: not 
available

Test Chemical (CAS No.) SMILES Similaritya VEGA QSAR

ER activityb AR activityc Aromatase 
activityd

Developmental 
toxicitye

Iprodione(IFD)  (36734-19-7) CC(C)NC(= O)N1CC(= O)N(C1 = O)
C2 = CC(= CC(= C2)Cl)Cl

1 −f − − + 

Nilutamide (63612-50-0) CC1(C)NC(= O)N(C1 = O)c1cc(c(cc1)[N +]([O-
]) = O)C(F)(F)F

0.823 − +g +  n.ah

Procymidone (32809-16-8) CC12CC1(C)C(= O)N(c1cc(Cl)cc(Cl)c1)C2 = O 0.814 − +  +  + 

Linuron (330-55-2) CON(C)C(= O)Nc1cc(Cl)c(Cl)cc1 0.813 − +  +  + 

Diuron (330-54-1) CN(C)C(= O)Nc1cc(Cl)c(Cl)cc1 0.810 − − − + 

Vinclozolin (50471-44-8) CC1(C = C)OC(= O)N(c2cc(Cl)cc(Cl)c2)C1 = O 0.799 − +  +  + 
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models may produce different results. Therefore, an 
integrated assessment that carefully considers the avail-
ability of sufficient information is necessary.

To demonstrate proficiency, the reference 
chemicals (17β-estradiol, 4-hydroxytamoxifen, 
5α-dihydrotestosterone, and bicalutamide) were tested 
with each test method. In our previous study, Hong et al. 
(2023) acquired proficiency for STTA and ARTA assays 
[31]. According to acceptable criteria for STTA assays, 
the log PC10 value of 17β-estradiol is < −  11 and the log 
IC50 value of 4-hydroxytamoxifen is − 8.4. In addition, for 
ARTA assay, the log PC10 value of 5α-dihydrotestosterone 
is − 12.2 to − 9.7 and the log IC50 value of bicalutamide is 
− 7.0 to − 5.8. Therefore, the proficiency of the STTA and 
ARTA assays fell within acceptable criteria.

Our results demonstrated that IFD had no ER antago-
nistic or AR agonistic effects; however, it was determined 
to be an ER agonist and AR antagonist without intrinsic 
toxicity against the studied human cell lines. Therefore, 
IFD exposure causes endocrine-disrupting effects by 
interacting with human estrogen and androgen receptors. 
From these data, IFD did not display ER antagonistic and 
AR agonistic effects in test ranges (0.001 to 1000 μM) by 
both in vitro assays. In contrast, IFD exhibited ER agonis-
tic and AR antagonistic activities, as confirmed by STTA 
and ARTA assays. In addition, IFD was also found to have 
no cytotoxicity against the 22Rv1/MMTV_GR‒KO cell 
line. The intrinsic toxicity of test chemicals against cell 
lines is an important aspect, because the cytotoxicity of 
test chemicals can interfere with the detection of antago-
nistic activity [32]. If the cell viability is reduced by 30% 
or more at exposure concentrations of test chemicals, 
this concentration is regarded as exhibiting a cytotoxic 
effect, and the concentrations at or above the cytotoxic 
concentration should be excluded from the data analysis 
[14].

These findings are consistent with those of previous 
studies. Blystone et  al. (2007) suggested that iprodione 
delayed pubertal development in male rats and reduced 
serum and testicular testosterone production [10]. 
Additionally, Hassan et  al. reported that iprodione and 
chlorpyrifos induced testicular damage, oxidative stress, 
apoptosis, and the suppression of steroidogenic-related 
genes in male rats [33]. However, the association between 
IFD and ER has not been investigated in previous studies. 
The findings of our study indicate the need for further 
research on reproductive toxicity of IFD and effects on 
the female reproductive system.

In this study, we attempted to confirm the potential 
endocrine disruption cause by agonist and antagonist 
effects of the representative dichlorophenyl dicarboxa-
mide fungicide, IFD, using in  vitro and in silico assays. 
Thus, the evidence of ER agonistic and AR antagonistic 

activity obtained using OECD in  vitro PBTG 455 and 
TG 458 in this study will be a valuable reference for the 
human health-based guidance value of IFD. Furthermore, 
the present study has some limitations. First, steroid hor-
mone–mediated reactions need to be investigated. Fur-
ther studies on steroidogenesis will reveal the endocrine 
disrupting effects of IFD. Second, the effect of IFD on 
ERβ could not be determined.
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