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Caffeoylquinic acids -3,4-di-O-caffeoylquinic acid (1); 1,3,5-tri-O-caffeoylquinic acid (2); and 3,4,5-

tri-O-caffeoylqunic acid (3)- were isolated from an acetone-soluble fraction of the aerial parts of

Artemisia princeps. Their structures were determined spectroscopically using 1D- and 2D-nuclear

magnetic resonance (NMR) studies, as well as by comparing the NMR results with previously

published structures. All the isolates were subjected to in vitro bioassays to evaluate their efficacy in

inhibiting rat lens aldose reductase (RLAR) activity and the formation of advanced glycation end

products (AGEs). We found 1,3,5-tri-O-caffeoylquinic acid (2) to be the most potent AGE inhibitor,

and the concentration that resulted in 50% inhibition (IC50) was 22.18 ±1.46 mM, as compared to

the aminoguanidine and chlorogenic acid controls, which had IC50 values of 1,093.11±10.95 and

117.63±0.20 mM, respectively. In the RLAR assay, the three caffeoylquinic acids were found to

have IC50 values in the range of 1.78-2.40 μM, demonstrating a 5- to 10-fold greater efficacy in

RLAR inhibition as compared to the quercetin control, which had an IC50 value of 17.91 μM.
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Diabetes mellitus is characterized by chronic hyper-

glycemia, and a deficiency in the production and

secretion of insulin [DeFronzo et al., 1997]. Insulin-

insensitive organs such as the lens, nerves, and kidneys

are targets for complications such as cataracts, neuropathy,

and nephropathy [Ureda et al., 2004]. Among the

biochemical causes of these complications, hyperglycemia

has attracted the most attention, and the polyol pathway,

an alternate route of glucose metabolism, has been

implicated [Alexiou et al., 2009]. It has been demonstrated

that, in cells that take up glucose via an insulin-

independent mechanism, hyperglycemia results in a

marked rise in intracellular glucose concentration,

consequently leading to hexokinase saturation. The

excess substrate is acted upon by aldose reductase (AR,

E.C. 1.1.1.21), an enzyme present in most tissues, which

converts the glucose into sorbitol [Brownlee, 2001].

Increasing sorbitol accumulation is harmful to cells, and

may contribute to diabetic complications [Chung and

Chung, 2005]. Further, in hyperglycemia, body proteins

undergo increased glycation, during which glucose reacts
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non-enzymatically with protein amino groups to form a

labile Schiff’s base that rearranges to a stable Amadori

product [Peyroux and Sternberg, 2006]. This Amadori

product undergoes further reactions involving reactive

dicarbonyl intermediates such as 3-deoxyglucosone and

methylglyoxal to form complex, heterogeneous, fluorescent,

and cross-linked structures called advanced glycation end

products [Ahmed, 2005; Vander, 2008]. These observations

have led to the development of numerous AR and/or

AGE inhibitors with diverse chemical structures for use

as possible therapeutic agents. Recently, there has been a

growing interest in alternative therapies, especially in the

therapeutic use of plant-derived natural products for the

management of diabetes [Yoshikawa and Matsuda,

2006]. This is because plant-derived products are usually

considered to be less toxic and have fewer side-effects

than synthetic ones. The genus Artemisia comprises

about 500 plants [McArthur, 1979]. Most Artemisia herbs

are perennials that grow in the Northern hemisphere and

are used for various purposes such as medicine, food,

spices, and ornamental plants. Artemisia herbs possess

the following diverse medicinal effects: anti-atherosclerotic

[Han et al., 2009], anti-inflammatory [Chang et al.,

2009], anti-tumor [Sarath et al., 2007; Bang et al., 2008;

Park et al., 2008], anti-oxidant [Kim et al., 2008], and

anti-diabetic effects [AI-Waili, 1986; Jung et al., 2007;

Kang et al., 2008]. Previous phytochemical investigations

of this plant have resulted in the isolation of various

flavonoids such as luteloin, apigenin, scoplletin, cinnamates,

eupatilin, and jaceosidin [Okada, 1995; Jung et al., 2007].

Compounds such as davidigenin, 6-demethoxycapillarisin,

4,5-di-O-caffeoylquinic acid, and 2,4-dihydroxy-4-

methoxydihydrochalcone from Artemisia dracunculus

[Logendra et al., 2006] and capillarisin from Artemisia

capillaries [Lee et al., 2008a] have been reported to

exhibit an inhibitory effect on aldose reductase. Among

Artemisia herbs, A. princeps has been widely used in

Korean traditional medicine for treating colic, vomiting

and diarrhea, and irregular uterine bleeding [Zhao et al.,

1994]. Recently, Jung et al. [2007] reported that the

ethanol extract from this plant exerted an anti-diabetic

effect in type 2 diabetic mice. In this study, we investigated

the AR-inhibitory activity of compounds isolated from A.

princeps leaf extracts to evaluate their potential for

treating diabetic complications that are caused by the

enhanced activation of the polyol pathway and the

formation of AGEs in hyperglycemic conditions. We

isolated and identified three caffeoylquinic acids from A.

princeps that inhibited both the activity of AR and the

formation of AGEs. To our knowledge, this is the first

report of the isolation of these compounds from the genus

Artemisia.

Materials and Methods

Plant materials. The aerial parts of A. princeps,

originally from Korea, were purchased from the herbal

medicine market, Chuncheon, Korea. The plant was

identified and authenticated by emeritus professor Hyung

Jun Ji, Natural Products Research Institute, Seoul

National University. A voucher specimen (No. RIC-

0802) was deposited and maintained at the Herbarium of

Regional Innovation Center, Chuncheon, Korea.

Instruments and chemicals. The 1H- and 13C-NMR

spectra were recorded on a Bruker DPX 400 spectrometer

(Karlsrube, Germany) using tetramethylsilane as an

internal standard at 400 and 100 MHz, respectively. FT-

IR spectra data were taken with a JASCO (Hachioji,

Tokyo, Japan) FT/IR-4100 spectrophotometer, and specific

rotation [α]D was measured with a Jasco P-2000 digital

polarometer in a 3.5 mm i.d.×50 mm cell. UV–vis spectra

were measured on a Uvikon Xs Secoman (Ales, France)

spectrophotometer using quartz cell of 1 cm width.

Melting points were determined with an electrothermal

digital Büchi B-540 melting point apparatus. ESI mass

spectra were obtained using a Finnigan LCQ Advantage

Max ion trap mass spectrometer (ThermoQuest, San Jose,

CA). DL-glyceraldehyde, the reduced form of nicotinamide

adenine dinucleotide phosphate (NADPH), quercetin,

aminoguanidine hydrochloride (AG), methylglyoxal (MGO,

40% aqueous solution), and bovine serum albumin (BSA,

essentially fatty acid free) were purchased from Sigma

(St. Louis, MO).

Extraction and isolation. The aerial parts of A.

princeps (1 kg) were ground in a blender, subjected twice

to extraction with 95% ethanol (5 L) for 5 h, and then

filtered (Advantec filter paper, type 2; Advantec, Tokyo,

Japan). The combined filtrate was then concentrated in

vacuo at 45oC (Büchi Rotavapor R-220, Flawil, Switzerland)

to give 102.2 g of a total extract (Yield : 10.2% of the

aerial parts). The extract was coated onto a filter aid

(Celite 545 AW; Sigma-Aldrich, St. Louis, MO) and

loaded on to a column (100 mm i.d.×200 mm). It was

then eluted stepwise with organic solvents, which

resulted in four fractions [n-hexane (16.6 g), methylene

chloride (18.6 g), acetone (46.6 g), and methanol (18.2

g)], which were used for subsequent bioassays. The

soluble fraction of the organic solvents was then

concentrated to dryness using a rotary vacuum evaporator

(Eyela N-N Series; Eyela, Tokyo, Japan) at 45oC. The

acetone fraction was loaded onto a silica gel (70-230

mesh ASTM; Merck, Darmstadt, Germany) column (100

mm i.d.×1000 mm) and eluted stepwise with ethylacetate

and methanol (2:0→0:2), and 18 fractions (A1-18) were

obtained. The fractions A7-9 exhibited strong inhibitory
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activity against both AR and the formation of AGEs.

Therefore, these fractions were re-chromatographed on a

36 mm i.d.×460 mm column and were eluted with

ethylacetate/methanol (2:1) to give the active A7-9:5

fraction. This fraction was further purified by preparative

high-performance liquid chromatography (HPLC) (Japan

Analytical Industry Co. Ltd., Tokyo, Japan), by applying

it on to a JAI gel Silica Series column (DOS-BP-L, SP-

120-15). A mixture of methanol/water (4/1, v/v) was used

as the mobile phase at a flow rate of 4.0 mL/min, and

detection was carried out at 245 nm; this yielded the

active A7-9:5:6 fraction. All fractions were analyzed by

HPLC (Agilent 1100 series; Agilent, Palo Alto, CA).

Fractions with similar chromatography patterns were

combined, and bioassays were performed using a

concentration of 10 μg/mL to determine their effects on

AR activity and 220 μg/mL to study the inhibition of

AGE formation. The three active compounds from the

A7-9:5:6 fraction were then isolated, and their structures

were determined by instrumental analyses. Quercetin and

chlorogenic acid, both known AR inhibitors, were used as

positive controls for the RLAR enzyme activity assay and

aminoguanidine, a known AGE inhibitor, was used as a

positive control in the methylglyoxal-modified bovine

serum albumin (BSA-MGO) assay. For the RLAR assay,

DL-glyceraldehyde and NADPH were used as the

substrate and cofactor, respectively. 

3,4-di-O-caffeoylquinic acid (1).  -115.9o (c 0.05,

MeOH); IR νmax cm−1 3364 (-OH), 2984 (C-H), 2947 (C-

H), 2922 (C-H), 2868 (C-H), 2813 (C-H), 2782 (C-H),

1686 (aromatic C=C), 1647 (aromatic C=C), 1600

(aromatic C=C), 1550 (C-C), 1450 (C-C), 1267

(benzene); ESI-MS m/z 517 [M+H]+; mp 154-156oC (lit.

155-158oC) [Hung et al., 2006]; 1H-NMR (400 MHz,

CD3OD, ppm) δ 2.15 (brd m, 1H, J=13.43, 14.80 10.76

Hz, H-2), 2.31 (t, 2H, J=15.46, 7.73 Hz, H-6), 2.38 (d,

1H, J=14.09 Hz, H-2), 4.41 (ddd, 1H, J=2.65, 2.72, 2.67

Hz, H-5), 5.16 (dd, 1H, J =2.67, 10.2 Hz, H-4), 5.59 (ddd,

1H, J=3.1, 10.1, 10.7 Hz, H-3) (quinic acid moiety); 6.24

(dd, 1H, J=12.31, 15.56 Hz, H-8), 6.35 (dd, 1H, J=6.46,

15.82 Hz, H-8), 6.82 (m, 2H, J=4.75, 9.37 Hz, H-5 and

5), 6.98 (t, 2H, J=6.44, 11.83 Hz, H-2 and 2), 7.07 (t, 2H,

J=9.2, 9.78Hz, H-6 and 6), 7.57 (dd, 1H, J=7.94, 15.78

Hz, H-7), 7.65 (d, 1H, J=15.74 Hz, H-7) (caffeoyl

groups); 13C-NMR (100 Hz, CD3OD, ppm) δ 38.38 (C-6),

39.37 (C-2), 68.57 (C-3), 69.08 (C-5), 74.69 (C-4), 75.76

(C-1), 175.20 (C-7) (quinic acid moiety); δ 114.54 (C-2),

114.71 (C-2), 115.16 (C-8, 8), 116.48 (C-5, 5), 123.16 (C-

6, 6), 127.54 (C-1), 127.70 (C-1), 146.80 (C-3, 3), 147.61

(C-4), 147.73 (C-4), 149.71 (C-7), 149.80 (C-7), 168.49,

168.56 (C-9, 9) (caffeoyl groups).

1,3,5-tri-O-caffeoylquinic acid (2).  -26.3o (c

0.6, MeOH); IR νmax cm−1 3470 (-OH), 2954 (C-H), 2936

(C-H), 2876 (C-H), 2848 (C-H), 2827 (C-H), 2757 (C-H),

1674 (C=C), 1618 (C=C), 1598 (C=C), 1526 (C-C), 1445

(C-C), 1273 (benzene); ESI-MS m/z 679 [M+H]+; mp

179-183°C (lit. 178-181oC) [Agata et al. 1993]; 1H-NMR

(400 MHz, CD3OD, ppm) δ 2.10 (dd, 1H, J=10.2, 13.3

Hz, H-6), 2.43 (dd, 1H, J=3.1, 16.5 Hz, H-2), 2.55 (dd,

1H, J=3.4, 13.7 Hz, H-6), 2.86 (d, 1H, J=16.2 Hz, H-2),

3.97 (dd, 1H, J=3.8, 8.4 Hz, H-4), 5.38 (d, 1H, J=3.41

Hz, H-3), 5.42 (m, 1H, H-5) (quinic acid moiety); δ 6.24,

6.29, 6.34 (d, 1H each, J=15.9 Hz, H-8), 6.55, 6.65, 6.75

(d, 1H each, J=8.2 Hz, H-5), 6.64, 6.81, 6.96 (dd, 1H

each, J=2.1, 8.2 Hz, H-6). The signals at δ 6.64 and 6.96

are overlapped by other signals: 6.83, 6.95, 7.06 (d, 1H

each, J=2.1 Hz, H-2), 7.51, 7.55, 7.62 (d, 1H each, J=16.0

Hz, H-7) (caffeoyl groups). 13C-NMR (100 Hz, CD3OD,

ppm) δ 34.19 (C-2), 35.41 (C-6), 70.13 (C-5), 70.69 (C-

4), 70.93 (C-3), 79.42 (C-1), 173.30 (C-7) (quinic acid

moiety); δ 113.81, 113.70 (C-2, 2, 2'''), 114.17 (C-8, 8,

8'''), 115.06 (C-5, 5, 5'''), 121.61 (C-6, 6, 6'''), 126.37,

126.5 1 (C-1, 1, 1'''), 145.64, 145.40 (C-3, 3, 3'''), 145.90,

146.13 (C-4, 4, 4'''), 148.21 (C-7, 7, 7'''), 166.58, 167.19

(C-9, 9, 9''') (caffeoyl groups).

3,4,5-tri-O-caffeoylquinic acid (3).  -116.3o (c

0.09, MeOH); IR λmax cm−1 3378 (-OH), 2985 (C-H),

2934 (C-H), 2900 (C-H), 2876 (C-H), 2846 (C-H), 1684

(C=C), 1624 (C=C), 1600 (C=C), 1523 (C-C), 1453 (C-

C), 1153 (benzene); ESI-MS m/z 679 [M+H]+ ; mp 165-

168°C; 1H-NMR (400 MHz, CD3OD, ppm) δ 2.18 (dd,

1H, J=10.5, 13.2 Hz, H-6), 2.27 (dd, 1H, J=3.2, 16.1 Hz

H-2), 2.39 (dd, 1H, J=3.2, 13.3 Hz, H-6), 2.86 (d, 1H,

J=16.2 Hz, H-2), 5.03 (dd, 1H, J=2.98, 9.7 Hz, H-4), 5.44

(ddd, 1H, J=2.97, 2.87, 2.62 Hz, H-5), 5.68 (ddd, 1H,

J=2.65, 9.7, 11.8 Hz, H-3) (quinic acid moiety); δ 6.22,

6.29, 6.31 (d, 1H each, J=15.9 Hz, H-8), 6.51, 6.55, 6.61

(d, 1H each, J=8.2 Hz, H-5), 6.62, 6.74, 6.86 (dd, 1H

each, J=2.1, 8.2 Hz, H-6). The signals at δ 6.62 and 6.86

are overlapped by other signals: 6.63, 6.85, 6.99 (d, 1H

each, J=2.1 Hz, H-2), 7.47, 7.52, 7.60 (d, 1H each, J=16.0

Hz, H-7) (caffeoyl groups). 13C-NMR(100 Hz, CD3OD,

ppm) δ 36.98 (C-6), 41.99 (C-2), 65.78 (C-5), 70.15 (C-

3), 75.19 (C-4), 76.57 (C-1), 175.04 (C-7) (quinic acid

moiety); δ 114.95, 115.26, 115.12 (C-2, 2, 2'''), 115.70 (C-

8, 8, 8'''), 116.48 (C-5, 5, 5'''), 123.24, 123.11 (C-6, 6, 6'''),

123.11, 127.80 (C-1, 1, 1'''), 145.62 (C-3, 3, 3'''), 145.80,

146.13 (C-4, 4, 4'''), 149.63 (C-7, 7, 7'''), 168.33, 168.55

(C-9, 9, 9''') (caffeoyl groups).

Bovine serum albumin-methylglyoxal assay. Bovine

serum albumin (10mg/mL) was incubated with methylglyoxal

(5 mM) in sodium phosphate buffer (0.1 M, pH 7.4).

Dimethylsulfoxide used for dissolving samples was

found to have no effect on the reaction. All of the reagent
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and samples were sterilized by filtration through 0.2 μm

membrane filters and the mixture was incubated at 37oC

for 7 days. The fluorescence intensity was measured at an

excitation wavelength of 330 nm and an emission

wavelength of 410 nm with a Luminescence spectrometer

LS50B (Perkin-Elmer Ltd., Buckinghamshire, England).

Aminoguanidin hydrochloride (Sigma, St. Louis, MO)

was tested as a known inhibitor. The concentration of

each test sample giving 50% inhibition of the activities

(IC50) was estimated from the least-squares regression

line of the logarithmic concentration plotted against the

remaining activity [Lee et al., 2008b].

Assay for rat lens aldose reductase inhibitory

activity. Crude aldose reductase was prepared as follows:

Rat lenses were removed from Sprague-Dawley (SD) rats

weighing 250-280 g and frozen until required. The rat

lens homogenate was prepared according to the method

of Hayman and Kinoshita [1965] with some

modifications. A partially purified enzyme with a specific

activity of 6.5 U/mg was routinely used to test the

enzyme inhibition. The partially purified material was

separated into 1.0 mL aliquots and stored at 40oC. RLAR

activity was assayed spectrophotometrically by

measuring the decrease in the absorption of NADPH at

340 nm over a 4-min period with DL-glyceraldehyde as

the substrate. Each 1.0 mL cuvette contained equal units

of the enzyme, 0.10 M sodium phosphate buffer (pH 6.2),

0.3 mM NADPH, with or without 10 mM of the substrate

and an inhibitor. The concentration of inhibitors giving

50% inhibition of enzyme activity (IC50) was calculated

from the least-squares regression line of the logarithmic

concentrations plotted against the residual activity [Lee et

al., 2008c].

Statistical analyses. The results are expressed as the

mean±SD (n=3) of triplicate experiments.

Results and Discussion

The ethanol extract of A. princeps inhibited RLAR

activity by 86.7% and the formation of AGEs in the BSA-

MGO assay by 61.06%, whereas the inhibition by the

quercetin and aminoguanidine controls was 70.17% and

95.06%, respectively (Table 1).

To identify the active compounds from the leaves of A.

princeps, the leaf extract was systematically separated

into four fractions, which were then tested for inhibitory

activity against AR and protein glycation. The acetone

fraction exhibited the strongest inhibitory activity against

both RLAR and AGE formation in the BSA-MGO assay

as shown in Table 1. Since this result suggested the

likelihood of the presence of RLAR and/or AGE

inhibitors in this fraction, we focused on isolating the

active compounds from it. The acetone fraction was

subjected to repeated chromatography on Si gel and

reversed-phase Si gel to yield compounds 1-3. The

structures of these compounds were elucidated on the

basis of infra-red (IR), electrospray ionization (ESI)-mass

spectrometry, and 1-dimensional (1H- and 13C-NMR) and

2-dimensional NMR (heteronuclear multiple quantum

coherence [HMQC] and heteronuclear multiple bond

coherence [HMBC]) spectral data, and by comparison

with published spectral data [Merfort 1992; Agata et al.,

1993; Peluso et al., 1995; Basnet et al., 1996; Pauli et al.,

1998; Nakatani et al., 2000]. The three compounds were

characterized as 3,4-di-O-caffeoylquinic acid (1), 1,3,5-

tri-O-caffeoylquinic acid (2), and 3,4,5-tri-O-caffeoylquinic

acid (3). Their chemical structures are shown in Fig. 1.

In this study, we have demonstrated the inhibitory

effect of caffeoylquinic acids from A. princeps on AR

activity and AGE formation. Caffeoylquinic acids including

1,3-di-O-caffeoylquinic acid; 4,5-di-O-caffeoylquinic acid;

and chlorogenic acid have been reported to be potent

natural AR inhibitors [Fuente and Manzanaro, 2003;

Logendra et al., 2006]. However, this is the first study to

demonstrate that 3,4-di-O-dicaffeoylquinic acid (1),

1,3,5-tri-O-caffeoylquinic acid (2), and 3,4,5-tri-O-

caffeoylqunic acid (3) possess similar inhibitory activity.

3,4-di-O-caffeoylquinic acid (1) is a well-known

compound and has been previously isolated from many

plant species [Yoshimoto et al., 2002; Satake et al., 2007;

Shi et al., 2007; Timmermann et al., 1983], including

Flos Lonicerae [Tong et al., 2008]. The reported

biological activities of this compound include anti-

Table 1. Inhibitory activities of the extracts and
solvent-soluble fractions obtained from the aerial parts
of A. princeps on RLAR activity and on the formation
of AGEs

Fractions
RLARa AGEb

Inhibition (%) Inhibition (%)

Ethanol ex. 086.7±0.53 61.06±1.44

n-Hexane fr. 25.17±0.59 26.22±1.32

Methyene chloride fr. 58.06±0.35 23.62±5.43

Acetone fr. 98.10±0.98 73.55±2.01

Methanol fr. 74.89±0.77 42.53±2.14

Quercetinc 70.17±0.63 -

Aminoguanidined - 95.06±0.01

aRLAR: The final concentration of the test samples and

quercetin was 10 μg/mL in 100% dimethyl sulfoxide

(DMSO). bAGE: The final concentration of the test samples

and aminoguanidine was 200 μg/mL in 100% DMSO.
cQuercetin and daminoguanidine were used as positive controls

for the RLAR and AGE assays, respectively.
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oxidant [Hung et al., 2006], xanthine oxidase inhibitory

[Nguyen et al., 2006], anti-thrombotic [Satake et al.,

2007], and antiviral activities [Li et al., 2005]. 1,3,5-tri-

O-caffeoylquinic acid (2) has been previously isolated

from Xanthium strumarium by Agata et al. [1993]. 3,4,5-

tri-O-caffeoylqunic acid (3) has previously been isolated

from sweetpotato (Ipomoea batatas L.) leaves, and this

compound effectively inhibited the reverse mutation

induced by Trp-P-1 in Salmonella typhimurium TA 98

[Yoshimoto et al., 2002]. However, this is the first study

to test the efficacy of these three compounds on the

inhibition of RLAR activity.

As shown in Table 2, all three caffeoylquinic acids

exhibited potent inhibitory activity against RLAR with

IC50 values of 2.40±0.58 μM (1), 1.78±0.94 μM (2), and

1.95±0.21 μM (3). They were 5- to 10-fold more potent

than quercetin, which had an IC50 value of 17.91±0.69

μM. Therefore, we suggest that the number of caffeoyl

groups and their position in the quinic acid moiety might

not play a key role in their inhibitory activity against

RLAR.

The inhibitory effects of compounds 1-3 on MGO-

mediated protein glycation were investigated by observing

the specific fluorescence generated during the course of

AGE formation. In a BSA-MGO system, MGO readily

reacts with lysine and arginine residues in proteins to

produce high molecular weight, cross-linked, fluorescent

products. As shown in Table 3, 1,3,5-tri-O-caffeoylquinic

acid (2) exhibited the most potent inhibitory activity, with

an IC50 value of 22.18±1.46 μM, as compared to

aminoguanidine and chlorogenic acid controls, which had

IC50 values of 1,093.11±10.95 and 117.63±0.20 μM,

respectively. Interestingly, the inhibitory effect of 3, 4-di-

O-caffeoylquinic acid (1) on AGE formation was similar

to that of chlorogenic acid (3-O-caffeorylquinic acid), but

was approximately two-fold higher than that of 3,4,5-tri-

O-caffeoylqunic acid (3). This suggests that the number

of caffeoyl groups and their position in the quinic acid

moiety might be important for the inhibition of AGE

formation. 

These results demonstrate the potential therapeutic use

of 3,4-di-O-caffeoylquinic acid (1), 1,3,5-tri-O-caffeoylquinic

Fig. 1. Chemical structure of chlorogenic acid (3-O-caffeoylquinic acid) and caffeoylquinic acids isolated from the
acetone-soluble fraction of the aerial parts of A. princeps. 3,4-di-O-caffeoylquinic acid, 1; 1,3,5-tri-O-caffeoylquinic acid,
2; 3,4,5-tri-O-caffeoylquinic acid, 3.
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acid (2), and 3,4,5-tri-O-caffeoylqunic acid (3) in the

management of diabetes-related complications.
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