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Abstract In this study, the effects of Opuntia ficus-indica

lectin (OfiL) on the survival and nutritional parameters of

Sitophilus zeamais (maize weevil) adults were evaluated.

OfiL was incorporated into the artificial diets at concen-

trations of 15, 60, and 95 mg/g (mg of lectin per g of wheat

flour). Mortality was evaluated after 7 and 15 days, and the

amount of food ingested and the weight of the insects were

determined on the 7th day. In addition, the in vitro effects

of OfiL on the gut enzymes of the insect were investigated.

The ingestion of OfiL did not show any significant differ-

ence in the mortality rates compared to control. The rela-

tive consumption rate was also similar to that of the

control, and no deterrent effect was detected. However, the

values of the relative biomass variation and the efficiency

of ingested food conversion were negative in the treatments

at 60 and 95 mg/g, showing that lectin ingestion resulted in

weight loss. OfiL exhibited a stimulatory effect on the

protease activity from S. zeamais gut extract, which may

cause uncontrolled hydrolysis of proteins in the digestive

tract. This lectin did not promote significant alteration in

the amylase activity. In conclusion, OfiL was able to exert

anti-nutritional effects without causing a deterrent effect.

Keywords Indian-fig � Lectin � Insecticidal activity �
Greater rice weevil � Agricultural pest

Introduction

The weevils belonging to Sitophilus genus (Family: Cur-

culionidae) are cosmopolitan insects found in the tropical

regions and are able to infest grains of major importance

such as rice, wheat, and maize [1]. The grains are the

nutrient source for these insects and serve as the shelter for

the immature forms, which develop inside them [2].

Sitophilus zeamais is one of the main pests of maize;

however, it also attacks other crops such as rice, wheat, and

sorghum, in addition to fruits and processed foods [3, 4].

The potential to promote cross-infestation and the high

capacity for penetration and destruction of the grains

account for the high economic impact of this insect [1, 5].

In addition, a remarkable plasticity at the individual and

population levels renders the control of this pest very dif-

ficult [6]. The presence of S. zeamais also facilitates the

dissemination of pathogens and contamination by fungal

toxins at storage [7, 8].

The control of stored grain pests has been mainly per-

formed by cleaning of the grains, aeration, temperature and

moisture regulation, and application of insecticides [1].

The use of methyl bromide and phosphine is commonly

used as the main strategy for the control of storage pests.

However, these compounds were reported to be highly

toxic to the environment and humans, which has led to the

search for alternative non-chemical methods of control

(e.g., heat treatments and entomopathogenic fungi) and for

more environmentally friendly insecticides (e.g., plant

essential oils and entomotoxic proteins) [9–12]. In
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addition, there are reports on the insecticidal-resistant

populations of S. zeamais exposed to selective pressures

under laboratory conditions or found directly in the field

[13–16].

Lectins are carbohydrate-binding proteins broadly found

in plants. One of the roles of these proteins is the defense

against pathogens, predators, and herbivores [17, 18]. They

have been described as insecticidal agents against species

of the orders Coleoptera, Diptera, Hemiptera, Homoptera,

Hymenoptera, Isoptera, Lepidoptera, and Neuroptera, act-

ing on both immature and adult forms [19]. Many of the

insecticidal lectins have a chitin-binding ability, which

allows them to interact with important structures of the

insect body that are composed of this polysaccharide [20].

In addition, lectins may interfere with insect physiology

and behavior. A lectin from Myracrodruon urundeuva leaf

was reported to be a strong feeding deterrent to S. zeamais

adults and was able to impair the digestive process of this

insect by enzyme modulatory effects [10].

The cladodes of Opuntia ficus-indica (L.) Mill. (Cac-

taceae) contain a chitin-binding lectin (deemed OfiL) that

has been previously isolated and characterized [21]. OfiL

showed antifungal activity against phytopathogens and

insecticidal activity against Nasutitermes corniger termite

[21, 22]. In this work, the effects of OfiL on the survival

and nutritional parameters of S. zeamais adults were

evaluated.

Materials and methods

Plant material and insects

Cladodes of O. ficus-indica were collected in Limoeiro,

Pernambuco, Brazil, with authorization (36301) of the In-

stituto Chico Mendes de Conservação da Biodiversidade

(ICMBio). The cladodes were dried for 7 days (27 ± 2 �C;
relative humidity of 70 ± 5%), powdered, and stored at

28 �C. The insects are reared in the Laboratório de Bio-

quı́mica de Proteı́nas, Departamento de Bioquı́mica,

Universidade Federal de Pernambuco since 2012. The

colonies were maintained at 28 ± 2 �C in glass containers

(capacity, 1 L) sealed with unwoven fabric to allow aera-

tion. The diet consisted of maize grains (100 g per con-

tainer), which was selected based on the integrity, sanitary

conditions, size, and absence of contamination with other

insects.

Isolation of OfiL

OfiL was isolated according to Santana et al. [21], initiating

with the extraction of proteins from the cladodes using

0.15 M NaCl, followed by chromatography using a chitin

column. Lectin concentration was determined according to

Lowry et al. [23] using bovine serum albumin

(31.25–500 lg/mL) as the standard. Carbohydrate-binding

ability was monitored through the hemagglutination assay,

which was carried out in microtiter plates according to

Procópio et al. [24] using rabbit erythrocytes treated with

glutaraldehyde [25]. The collection of erythrocytes was

approved by the Ethics Committee on Animal Experi-

mentation of the Universidade Federal de Pernambuco

(23076.033782/2015-70).

Insecticidal assay

Insecticidal activity was evaluated using a modified version

of the method of Xie et al. [26], as described by Napoleão

et al. [10]. First, wheat flour suspensions were prepared,

each one consisting of 2.0 g of autoclaved wheat flour

(Bunge Alimentos S.A., Benevides, Brazil), homogenized

in 5 mL of sterile distilled water (control) or a solution

containing OfiL diluted in the sterile water. In each assay,

five aliquots (200 lL) were placed on a petri dish

(90 9 100 mm) to form flour disks after overnight incu-

bation at 56 �C. Next, each dish containing the disks was

weighed. Twelve S. zeamais adults with known weight

were then transferred to each dish. The assays were

maintained at 25 ± 2 �C in the dark for 7 days. After this

period, the mortality rate and the weights of dishes (con-

taining the broken flour disks) and insects were recorded

again. Mortality was also evaluated on the 15th day. The

assays were performed in quadruplicate, and the tested

lectin concentrations (mg of lectin/g of wheat flour) were

15, 60, and 95 mg/g.

Feeding deterrence evaluation

The feeding deterrence index (FDI) was calculated as fol-

lows: FDI (%) = 100 9 (X - Y)/(X), where X is the mass

of the food ingested by the insects in the control assay and

Y is the mass of the food ingested by the insects in the

lectin assay [27]. According to the FDI value, the lectin

was classified as: non-deterrent (FDI\ 20%), weak

deterrent (50%[ FDI C 20%), moderate deterrent

(70%[ FDI C 50%), or strong deterrent (FDI C 70%).

Nutritional parameters

The data recorded at the end of the insecticidal assay were

used to calculate the following nutritional parameters [26]:

(1) the relative consumption rate = A/(B 9 days), where

A is the mass of the ingested food in mg and B corresponds

to the initial insect biomass in mg; (2) the relative biomass

variation = C/(B 9 days), where C corresponds to the

insect biomass variation in mg, after 7 days from the
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beginning of the experiment; and (3) the efficiency of

conversion of ingested food = C/(A 9100).

Gut preparations from S. zeamais

Groups of fifty S. zeamais adults were collected and

immobilized by exposure to - 20 �C for 20 min. The guts

were dissected by hand and homogenized in 1 mL of Tris

buffer (0.1 M Tris–HCl, pH 8.0, containing 0.02 M CaCl2
and 0.15 M NaCl) or acetate buffer (0.1 M sodium acetate,

pH 5.5, containing 0.02 M CaCl2 and 0.15 M NaCl) using

a 3-mL tissue grinder. The homogenates were centrifuged

at 90009g at 4 �C for 15 min. The supernatants (gut

extracts) were collected, and the protein concentration [23]

and enzyme activity (as described below) were evaluated.

Enzyme assays

Protease activity was determined according to Azeez et al.

[28]. Briefly, the gut extract in Tris buffer (50 lL; 350 lg
of protein) was previously incubated (15 min, 28 �C) with
50 lL of OfiL (1.5–20 lg) or distilled water (100%

activity control) and then mixed with 300 lL of 0.1 M

sodium phosphate, pH 7.5, containing 50 lL of 0.6% (w/v)

azocasein. The mixture was supplemented with 100 lL of

0.1% (v/v) Triton X-100 and incubated at 37 �C for 3 h.

The reaction was stopped by adding 200 lL of 10% (v/v)

trichloroacetic acid (TCA), and the assay was incubated at

4 �C for 30 min. Each assay was accompanied by a blank

(identical to the test except that TCA was added before the

addition of azocasein). Next, it was centrifuged at

90009g for 10 min, and the absorbance of the supernatant

was determined at 366 nm using a spectrophotometer. One

unit of protease activity was defined as the amount of

enzyme that yielded an increase of 0.01 in the absorbance.

A control assay containing OfiL without the gut extract was

also performed. The assays were performed in triplicate.

a-Amylase activity assay was carried out based on the

method described by Bernfeld [29]. Briefly, the gut extract

in acetate buffer (100 lL; 600 lg of protein) was previ-

ously incubated (15 min, 28 �C) with 100 lL of OfiL

(1.5–100 lg) or distilled water (100% activity control).

Next, the samples were incubated at 50 �C for 10 min with

400 lL of 1% (w/v) soluble starch solution in acetate

buffer. The reaction was stopped by adding 500 lL of 3,5-

dinitrosalicylic acid (DNS) reagent. Then, the assays were

heated at 100 �C in boiling water for 6 min and immedi-

ately cooled on ice for 15 min. The absorbance was mea-

sured at 540 nm using a spectrophotometer, and the

amount of reducing sugars was calculated using a standard

curve of the reaction between glucose and DNS reagent.

One unit of the a-amylase activity was defined as the

amount of enzyme required to generate 1 lmol of glucose

per minute. Reaction blanks were performed without

starch. The assays were performed in triplicate.

Statistical analysis

The data were expressed as the mean of replicates ± s-

tandard deviations (SD). Significant differences between

the treatment groups were analyzed by one-way analysis of

variance (ANOVA), followed by Tukey’s test, with a sig-

nificance level at p\ 0.05. The analyses were performed

using the Action 2.4.163.322 software (Estatcamp, São

Carlos, Brazil).

Results

The ingestion of OfiL did not result in significant differ-

ence (p[ 0.05) in the mortality rates in comparison with

the control group after 7 and 15 days of the assay

(Table 1). The relative consumption rate was also similar

to that of the control (p[ 0.05) in all the treatments,

showing that the presence of OfiL did not affect the intake

of diet (Fig. 1A). Indeed, the calculation of FDI revealed

no deterrent effect.

Although OfiL did not cause insect death, the relative

biomass variation was negative for the treatments at 60 and

95 mg/g (Fig. 1B), showing that lectin ingestion resulted in

the decrease in body weight. The data on the efficiency of

the conversion of the ingested food are in agreement with

the loss of biomass of the insects, because the feed con-

version values were also negative for the treatments at 60

and 95 mg/g (Fig. 1C).

OfiL exhibited a stimulatory effect on the protease

activity from S. zeamais gut extract (Fig. 2). Concerning

the a-amylase activity, OfiL was not able to promote sig-

nificant reduction in starch hydrolysis (Fig. 2B), when S.

zeamais gut extract was previously incubated with it.

Table 1 Mortality of Sitophilus zeamais adults maintained for 7 and

15 days on artificial diets containing the lectin OfiL

Treatment Mortality rate (%)

7 days 15 days

Control 2.5 ± 2.8 a 16.2 ± 4.8 a

OfiL (mg/g)

15 2.5 ± 2.8 a 23.2 ± 5.5 a

60 7.5 ± 2.8 a 21.0 ± 5.3 a

95 1.2 ± 2.5 a 20.0 ± 7.1 a

Significant differences were not observed between the treatments

(p[ 0.05)
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Discussion

The entomotoxic effects of lectins have been reported, and

the potential of these proteins in crop protection has been

indicated in several studies [12, 19, 20]. The ingestion of

plant lectins might exert deleterious effects on insects at all

stages, interfering with survival, feeding, morphology, and

development. In this study, we investigated the effect of an

artificial diet composed of wheat flour and the lectin OfiL

on the survival and nutritional parameters of S. zeamais

adults. For this, the OfiL isolation procedure was repeated

about 30 times, yielding a lectin amount sufficient for the

insecticidal assays at concentrations of 15, 60, and 95 mg/

g.

Similar to OfiL, the lectin from M. urundeuva leaf

(MuLL) did not promote mortality in S. zeamais adults

after 7 days of treatment [10]. However, the authors partly

attributed this result to the feeding-deterrent action of

MuLL, which was not ingested by the insects and thus not

Fig. 1 Nutritional parameters of Sitophilus zeamais adults reared on

artificial diets consisting of wheat flour disks without (control) or with

Opuntia ficus-indica lectin (OfiL, 15–95 mg of lectin per g of wheat

flour). (A) The relative consumption rate indicates the mean

estimative of the amount of food consumed in mg per mg of insect

body weight per day. (B) The relative biomass variation indicates the

mean estimative of the amount of biomass in mg gained or lost every

day per mg of initial body weight. (C) The efficiency in conversion of

ingested food (%) indicates the amount of ingested food incorporated

by insects as biomass after 7 days from the beginning of the

experiment. Each bar corresponds to the mean ± SD of four

replicates. Different letters indicate significant (p\ 0.05) differences

between treatments

Fig. 2 Protease (A) and a-amylase (B) activities from Sitophilus

zeamais gut extracts incubated with or without Opuntia ficus-indica

lectin (OfiL). Each bar corresponds to the mean ± SD of three

replicates. Different letters indicate significant (p\ 0.05) differences

between the assays
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able to exert acute toxic effects. In the present study, the

insects did not avoid the diet containing OfiL, and thus, the

absence of mortality might not be explained as in case of

MuLL. It is plausible that damage in the gut of S. zeamais

adults was not caused by OfiL, or, if it occurred, was not

sufficient to promote the death of the insects in the periods

evaluated.

It is possible that OfiL, when present in the digestive

tract of S. zeamais adults, interfered with the digestion and

absorption process, and thus, the food was not converted

into biomass. The decrease in weight was a consequence of

this, because the energy spent by the insects for their

physiological processes was greater than the energy that

could be harnessed from feeding.

S. zeamais adults provided with diet containing MuLL

also showed negative values of biomass variation and food

conversion. However, although the final effect was similar,

the mechanism involved was probably different. The

insects treated with MuLL lost biomass because of the

starvation process as a consequence of the deterrent effect.

In the case of OfiL, the diet was ingested; however, it was

not metabolically useful to the insects. Similar results

obtained with OfiL have been reported in studies using

lectins and other insects. Reduction in the weight and

efficiency of food conversion into body mass were detected

in Anagasta kuehniella larvae, when these insects were

maintained with an artificial diet containing M. oleifera

seed lectins [30, 31]. The ingestion of Dioclea violacea

lectin also decreased A. kuehniella larval mass without

affecting its survival [32].

The results instigated us to evaluate whether OfiL would

be able to interfere with the activity of digestive enzymes

present in the gut of S. zeamais adults. At the first glance,

this stimulatory effect on proteases might be considered

positive for the insects because such protease stimulus

might facilitate digestion; however, an imbalance in the

proteolysis is usually damaging because it might lead to the

disruption of the intestinal tract organization. For example,

it has been demonstrated that the water-soluble lectin from

M. oleifera seeds, which shows larvicidal activity against

Aedes aegypti, was able to stimulate the protease activity at

the same time that induces strong damage to the epithelial

organization of larvae gut [33, 34]. These effects could

impair both digestion and nutrient absorption.

The absence of significant effect on amylase activity

indicates that a direct inhibitory effect of this lectin on

amylases might not be a major explanation for the reduc-

tion in the efficiency of food conversion. However, the

possibility of uncontrolled digestion of enzyme molecules

by proteases stimulated by OfiL, resulting in an indirect

impairment in the digestion of the starch present in wheat

flour, should be considered.

Chitin-binding lectins usually bind the peritrophic

membrane, which is a structure composed of chitin and

glycoproteins that protect the gut epithelium from insects

against abrasion by plant fragments and infection by

pathogens and also play a compartmentalization role in the

digestive process [35]. The disruption of the peritrophic

membrane may result in the deregulation of the action of

enzymes and allow the access of the lectins to the gut

microvillar brush border and epithelial cells. Once a lectin

reaches these structures, it might interfere with several

physiological processes, including the absorption of nutri-

ents [19, 36, 37]. Powell et al. [38] showed that Galanthus

nivalis agglutinin caused the disruption of the microvilli

brush border region of Nilaparvata lugens.

The D. violacea lectin, which was not able to kill A.

kuehniella larvae, but affected their nutrition, was able to

bind to the peritrophic membrane [32]. The chitin-binding

lectins from the bark, heartwood, and leaf of M. urundeuva

were able to induce apoptosis in the digestive and

enteroendocrine cells of N. corniger gut and consequently

block the absorption of nutrients and deregulate the coor-

dination of enzyme release into the gut lumen [39].

Alterations in the expression profile of genes in the gut of

insects fed on artificial diets containing chitin-binding

lectin from wheat germ have also been reported; some of

these genes are linked to the expression of digestive

enzymes and energy metabolism [40]. In summary,

although OfiL did not induce acute lethality in S. zeamais

adults, it caused an intoxication effect that led to the

malnutrition of these insects. Some of these mechanisms

already reported for other lectins might be involved, which

warrants future studies on this aspect.

The nutritional impairment in the insects might lead to

disturbances other than mortality that might affect their

efficiency as pests. An inadequate nutrition status results in

a deficient metabolic functioning, which can affect the

fecundity and longevity [20, 41, 42]. A methanolic extract

from Syzygium aromaticum flower buds had no effect on

the mortality of S. zeamais but promoted a reduction of

37% in the F1 progeny, and n-hexane extract from this

same plant material showed toxicity through a possible

stomach action and reduced the F1 progeny in 99% [43].

This is important to reduce the impact of a pest such as S.

zeamais, which is known for a destructive potential linked

to a high reproductive fitness. In addition, compounds able

to affect the insect physiology without promoting their

death are important; for example, to be used as synergists

or to obtain long-term effects without an increase in the

selective pressure that could result in resistance

establishment.

In conclusion, OfiL is a type of lectin reported to be

active against S. zeamais adults. This lectin is able to exert

anti-nutritional effects without causing a deterrent effect.
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The results warrant new investigations aiming to explore

the effect of OfiL on the long-term assays as well as syn-

ergists of other insecticides.
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