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Abstract Fenazaquin (4-(2-(4-t-butylphenyl)ethoxy)quina-

zoline) is a quinazoline insecticide, which contains a rare

pesticidal toxophore, quinazoline. Its metabolic fate in ani-

mals and plants was previously reported. However, the

microbial metabolism of the compound has never been

studied. Microbial transformation is an important research

area for the investigation of environmental safety issues of

pesticides. Aspergillus niger was selected as a model soil

fungus since it is ubiquitous in agricultural soils, with

extensive genetic studies undertaken. Fenazaquin was rapidly

metabolized by A. niger (half-life, t1/2 = 0.6 day). 4-Hy-

droxyquinazoline and 4-t-butylphenethyl alcohol were iden-

tified as major metabolites from the cultures. Fenazaquin was

also rapidly transformed into the same metabolites (t1/2 =

0.1–0.5 day) under chemical oxidation (m-chloroperoxyben-

zoic acid). Among the several metabolic inhibitors, flavin-

dependent mono-oxygenase inhibitor, methimazole yielded

no inhibitory activity (t1/2 = 1.6 day). Several cytochrome

P450 inhibitors including piperonyl butoxide, ketoconazole,

and myclobutanil were also tested. Piperonyl butoxide

strongly reduced fenazaquin metabolism (t1/2 = 58.7 days).

However, ketoconazole and myclobutanil showed no activity

even at fungi-toxic concentrations (t1/2 = 1.2–4.3 days) with

major metabolites similar to those of control experiments.

The results suggest that oxidative metabolism of fenazaquin

was catalyzed by specific cytochrome P450s, which are

insensitive to azole fungicides. In addition, piperonyl butox-

ide was found to be one of the most promising synergists of

pesticides, through cytochrome P450 inhibition.
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Introduction

Quinazoline is a compound with a unique chemical configu-

ration, which is found in a limited numbers of pesticides (e.g.,

fenazaquin, (4-(2-(4-t-butylphenyl)ethoxy)quinazoline). The

insecticide can be used to control several mites [1, 2]. It inhibits

mitochondrial electron transport chain at site I of the respira-

tory chain [2, 3]. Fenazaquin is a highly lipophilic compound

(logP = 5.5) and hence is not translocated into plants from the

agricultural environment [4]. However, few studies indicated

the widespread contamination with this pesticide compared

with other lipophilic pesticides [5]. Its half-life ranges from 3 to

60 days in soils and aqueous systems [6, 7]. Metabolic trans-

formation of fenazaquin has been studied in a few animals and

plants [4–6]. However, its fate in microorganisms has never

been reported.

Pesticides in soil and aqueous environment are subjected

to various degradative reactions, among which biotrans-

formation is often one of the most significant determinants

of degradation rates [8]. Because of their large biomass,

populations, and genetic adaptation, bacteria and fungi are

usually considered as major contributors in pesticide

biodegradation [9, 10]. For example, several recalcitrant

pesticides (e.g., organochlorine insecticides) were miner-

alized by white rot fungi [11–13]. In addition, numerous
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non-lignolytic fungi are also known to decompose struc-

turally diverse pesticides [14–17]. Interestingly, several

phytopathogenic fungi can rapidly metabolize pesticides

[17–20]. For example, many Aspergillus and Fusarium

species can efficiently metabolize organophosphate and

carbamate insecticides [19, 20]. The Aspergillus species

are well-known producers of extra-cellular hydrolase (e.g.,

lipases, proteinases, and other depolymerizing enzymes).

Biodegradation of ester-type pesticides (e.g., organophos-

phates, carbamates, and pyrethroids) are usually catalyzed

by hydrolases [21]. Aspergilli are also known to metabolize

many other natural and synthetic compounds. For example,

Aspergillus niger can metabolize numerous synthetic fla-

vonoids via oxidative transformation [22]. The metabolites

of these xenobiotics suggest that oxidative enzymes (e.g.,

cytochrome P450s, CYP) take a major metabolic role.

Current genomic studies indicate that the Aspergillus

genome contains more than 150 CYPs [23, 24]. Due to its

metabolic versatility and genetic information, Aspergillus

is a promising research tool for the study of microbial

pesticide metabolism.

Rapid dissipation of pesticide is an important factor in

food safety issues. However, it decreases the efficacy of

pesticides, which results in reduced agricultural produc-

tivity. In addition, metabolic inactivation of pesticides is

one of the most common mechanisms of pesticide resis-

tance [25]. Inhibitors of pesticide metabolism are fre-

quently included in commercial pesticide formulations

(e.g., piperonyl butoxide).

In this study, fenazaquin was subjected to metabolic

transformation by A. niger. Metabolic pathways were elu-

cidated via chemical oxidation, specific enzyme inhibitor

studies, and instrumental analyses.

Materials and methods

Chemicals

The following reagents were purchased from Sigma-

Aldrich Korea Ltd (Seoul, Korea); including fenazaquin,

4-t-butylphenylacetic acid, piperonyl butoxide, methima-

zole, ketoconazole, myclobutanil, and m-chloroperoxy-

benzoic acid (MCPBA). 4-Hydroxyquinazoline and 2,4-

quinazolinedione were obtained from Oakwood Products

Inc (PA, USA). Other reagents for the syntheses were

obtained from Alfa Aesar Korea (Seoul, Korea). Potato

dextrose broth was obtained from BD Korea (Seoul,

Korea). Solvent was HPLC grade or higher.

Synthesis of 4-t-butylphenethyl alcohol

4-t-Butylphenethyl alcohol was prepared by literature

method [26].

Kinetic study of fenazaquin biotransformation

by A. niger

Aspergillus niger KACC 45093 was kindly provided by the

National Agrobiodiversity center, RDA-Genebank Infor-

mation Center (Jeonju, Korea). The fungal seed culture was

grown on a potato dextrose broth (PDB) for 3 days at

28 �C, 200 rpm. For the kinetics study, the mycelium from

seed culture (0.2 g, fresh weight) was added to a freshly

sterilized PDB (200 mL). Then, aliquots (0.5 mL) of

fenazaquin solution (20 mg/10 mL in dimethyl sulfoxide,

DMSO) were added. The cultures were further grown at

28 �C, 200 rpm for specific period (0, 1, 3, 5, 7, 14 days).

For sterilized control experiments, 7-day cultures were

sterilized at 110 �C, 30 min and fenazaquin solution

(0.5 mL) was treated as described above. After further

incubation at the same condition, the concentrations of

fenazaquin were analyzed. Media control was also pre-

pared according to the same procedure without fungal

mycelia. All experiments were performed in triplicates.

Effects of metabolic inhibitors

The following metabolic inhibitors were selected, includ-

ing piperonyl butoxide, ketoconazole, and myclobutanil as

cytochrome P450 (CYP) inhibitors, and methimazole as a

flavin-dependent mono-oxygenase (FMO) inhibitor. The

seed culture of A. niger KACC 45093 (0.2 g, fresh weight)

was added to a freshly sterilized PDB (200 mL), followed

by stock solutions of metabolic inhibitors (500 mg/10 mL

DMSO). The inhibitor concentrations were set to 1 mg/

200 mL PDB, except myclobutanil (1, 5, and 20 mg/

200 mL PDB). After 12 h of pre-incubation at 28 �C,
200 rpm, aliquot (0.5 mL) of fenazaquin solutions (20 mg/

10 mL, DMSO) was added. After incubations, the amounts

of parent and metabolites were measured. Triplicate cul-

tures were prepared for each treatment.

Extraction of metabolites and instrumental analysis

The cultures, including mycelia and medium, were

homogenized with Waring blender (2 min) and filtered.

The filter cake was extracted with MeOH (100 mL 9 2).

The combined extracts were concentrated under reduced

pressure. The residue was suspended in saturated NaCl

(200 mL). Fenazaquin and its metabolites were extracted

with ethyl acetate (EA, 100 mL 9 3). The EA extracts

were dried over anhydrous Na2SO4 and concentrated to
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dryness. The residue was re-dissolved in EA (10 mL) and

used for gas chromatography–mass spectrometry (GC–

MS).

Chemical oxidation of fenazaquin

Fenazaquin (30 mg) was dissolved in dichloromethane

(80 mL). A solution of MCPBA (2, 6, and 20 mg/20 mL,

dichloromethane) was added in one portion and stirred at

25 �C. Aliquots of reaction mixture was collected at sev-

eral intervals and analyzed with GC–MS.

Instrumental analyses of fenazaquin and metabolites

Fenazaquin and its metabolites were analyzed with gas

chromatograph–mass spectrometer (GC–MS). Analytical

conditions for GC–MS were as follows: Shimadzu GC-

2010 with GCMS-2010 SE) equipped with Rtx-5MS col-

umn (30 m, 0.25 lm film thickness, 0.25 nm i.d.; Restek,

USA). Helium was carrier gas at a flow rate of 1 mL/min.

The column temperature was programmed as follows:

160 �C (10 min) and raised to 295 �C at a rate of 2.5 �C/
min and held for 30 min. The mass spectra of metabolites

were obtained in full scan mode.

Results and discussion

Kinetics of fungal and chemical degradation

of fenazaquin

Fenazaquin was quite stable in control experiments (Fig. 1,

Table 1). However, the concentration of remaining

fenazaquin showed an exponential decay with reaction

time. In addition, a concentration-dependent dissipation

was observed in MCPBA-mediated oxidations. For

example, the reaction rate with 200 mg/L MCPBA (ap-

proximately 10 molar excess to fenazaquin) was 5 times

higher than that of 20 mg/L MCPBA (approximately 1

equivalent). Both results indicated that MCPBA-mediated

fenazaquin oxidation followed first-order kinetics. MCPBA

is frequently used as an oxidative enzyme mimic in pesti-

cide metabolism [27–29]. Numerous functional groups can

be oxidized with MCPBA (e.g., including alcohols, alde-

hyde, carbamates, and organophosphorus) [30]. MCPBA

can catalyze oxidative transformation of ethers into ketones

[31]. In addition to MCPBA, several peracids are also used

in chemical synthesis and metabolic studies [27, 28].

Extensive studies showed that the reaction products of

drugs and pesticides via peracid oxidation are frequently

similar to those of CYP-catalyzed metabolism [27–30].

Based on these results, comparative analysis with the

fungal metabolism yielded a detailed insight into fenaza-

quin metabolism.

Fenazaquin was rapidly dissipated under A. niger cul-

ture. The degradation pattern also showed exponential

decay. Biological degradation of xenobiotics often follows

first- or pseudo-first-order kinetics [32, 33]. Half-life and

rate constants of fenazaquin were 0.6 and 1.13/day,

respectively. No degradation was observed in sterilized

mycelia and medium control (Fig. 1; Table 1).

Metabolites from chemical and fungal degradation

According to instrumental analyses, the major degradation

products of MCPBA oxidation were 4-t-butylphenethyl

alcohol (II) and 4-hydroxyquinazoline (IV) (Table 2). All

metabolites, except 2-(4-(2-hydroxyethyl)-phenyl)-2-

methyl-1-propanol (VI), were identified with synthetic

standards (Supplementary material). The concentrations of

II and IV gradually increased during chemical oxidation

and fungal cultures. However, the levels of these
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Fig. 1 Degradation of fenazaquin by MCPBA-catalyzed oxidation

(A) and A. niger (B). Inserts in panel A indicate the concentrations of

MCPBA (symbols for MCPBA concentration: filled circle, 20 mg/L;

empty circle, 60 mg/L; filled triangle, 200 mg/L; Inserts in panel B

are for non-sterile normal cultures (filled circle), sterilized cultures

(empty circle), PDB culture medium without mycelium (filled

triangle), respectively
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metabolites decreased at the end of the experiments

(Fig. 2). One of the most notable differences between

chemical and biological oxidations was detected with the

metabolites 4-t-butylacetic acid (III) and 2,4-quinazoline-

dione (V) in MCPBA oxidation. Because of its strong

oxidative activity, MCPBA is commonly used for the

Table 1 First- or pseudo-first-order kinetic parameters of fenazaquin degradation

Classification Inhibitors Oxidants (mg/L) Rate (/day) Half-lives (day) R2,a

Chemical oxidation by MCPBA – 20 0.06 0.5 0.9591

60 0.11 0.3 0.9693

200 0.26 0.1 0.9622

Biodegradation Non-sterile – 1.13 0.6 0.9912

Sterile – NDb – –

Medium – ND – –

Biodegradation inhibitorsc MTZd – 0.44 1.6 0.9962

PBO – 0.01 58.7 0.9407

KCZ – 0.58 1.2 0.9107

MCN – 0.42 1.7 0.9415

MCNe – 0.38 1.8 0.9696

MCNe – 0.16 4.3 0.9815

aRegression coefficient
bNo degradation (ND)
cInhibitor concentration (5 mg/L)
dMTZ methimazole, PBO piperonyl butoxide, KCZ ketoconazole, MCN myclobutanil
eConcentration of myclobutanil: 25 and 100 mg/L

Table 2 GC–MS retention times and mass spectral data of fenazaquin and metabolites derived from MCPBA oxidation and cultures of A. niger

ID Name Retention

time

(min)

Molecular and fragment ions (% relative abundance)

I Fenazaquin 45.02 306 (M?, 1), 207 (1), 160 (47), 145 (100), 131 (10), 117 (29)

II 4-t-Butylphenethyl alcohol 23.75 178 (M?, 23), 163 (100), 147 (21), 132 (19), 117 (33), 105 (25), 91 (25)

III 4-t-Butylphenylacetic acid 27.24 192 (M?, 22), 177 (100), 149 (19), 131 (50), 117 (22), 91 (25), 77 (9)

IV 4-Hydroxyquinazoline 30.33 146 (M?, 100), 118 (32), 91 (24), 64 (23)

V 2,4-Quinazolinedione 34.18 162 (M?, 82), 133 (7), 119 (100), 92 (75), 64 (25)

VI 2-(4-(2-hydroxyethyl)-phenyl)-2-methyl-1-

propanol

30.75 194 (M?, 1), 176 (2), 163 (100), 145 (21), 133 (18), 117 (32), 105 (25), 91 (21),

77 (8)
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Fig. 2 Concentrations of

fenazaquin metabolites during

MCPBA-mediated oxidation

(A) and cultures of Aspergillus

niger (B). Concentration of

MCPBA, 60 mg/L. Metabolites

II–V are listed in Table 2
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oxidation of alcohols to aldehyde or carboxylic acids.

Heterocycles are also susceptible to oxidation with the

same reagent [27, 29, 30]. Recent studies showed that the

same oxidant can oxidize cycloalkyl methyl ether to cyclic

ketones [31]. Based on these findings, II and IV may be

further oxidized to III and V by MCPBA. Instrumental

analysis of A. niger cultures yielded II and IV as the major

metabolites, with concentrations accounting for 30–50% of

fenazaquin transformation. The levels of III and V in

fungal culture were negligible. The metabolite VI was

tentatively identified as 2-(4-(2-hydroxyethyl)-phenyl)-2-

methyl-1-propanol, derived from the oxidation of 4-t-butyl

group of II or via cleavage of the ether bond cleavage in

undetected metabolite(s). Notably, fenazaquin metabolites

containing oxidized 4-t-butyl group (alcohol and acid)

were reported in rats and a few plants [6]. In a photo-

chemical degradation experiment, preferential oxidation of

t-butyl group over alcohols was observed [34]. Previous

study with synthetic flavonoids showed that A. niger can

rapidly oxidize t-butyl group to alcohols and acids by

cytochrome P450 [22]. These results indicated that

metabolite VI may be originated from metabolite II or

fenazaquin alcohol. However, previous studies showed that

II and IV were the major metabolites occurring in most

biological systems [6, 34, 35]. Accordingly, it is plausible

that metabolic pathways of fenazaquin in A. niger resemble

those of animal and plants.

Effects of inhibitors on fungal metabolism

of fenazaquin

Xenobiotics in biological system are subjected to metabolic

transformation. Such structural modification of pesticides

can result in potentiation or reduction of bioactivity

[36, 37]. The binary or ternary mixture of pesticides fre-

quently showed a synergistic effect of acetylcholine

esterase inhibition [37]. Similar results were also found in

drugs. For example, several antifungal agents (e.g., keto-

conazole) are strong inhibitors of drug metabolizing CYP

isoforms [38]. Co-application of these fungicides and other

drugs reduces the metabolic clearance of drugs, which

results in enhanced efficacy. Piperonyl butoxide (PBO) is

an important synergistic agent included in many pesticide

formulations. It is an established and irreversible inhibitor

of CYPs [39]. In this study, three CYP inhibitors were

tested for their effects on fenazaquin metabolism. PBO

strongly inhibited fenazaquin metabolism, while azole

antifungal reagents (ketoconazole and myclobutanil)

showed a limited inhibition (Figs. 3, 4; Table 1). The

degradation of fenazaquin showed a concentration-depen-

dent reduction by myclobutanil (Table 1). For example, the

rate constant at the highest concentration of myclobutanil

was one-third of the value observed at the lowest treatment

level (0.16 and 0.42/day, respectively). However, these

effects may result from the fungi-toxic effects of

myclobutanil (Fig. 4). Accordingly, it can be concluded

that certain CYPs that are susceptible to PBO-mediated

inhibition catalyze fenazaquin metabolism. Flavin-depen-

dent mono-oxygenase (FMO) is another common mediator

of xenobiotic metabolism [40]. Until now, no FMO inhi-

bitors have been registered as pesticide synergists. How-

ever, methimazole is frequently used as FMO inhibitor in
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Fig. 3 Effects of metabolic inhibitors on the degradation of fenaza-

quin. Names of inhibitors are abbreviated as follows: MTZ methima-

zole; PBO piperonyl butoxide; KCZ ketoconazole; MCN

myclobutanil. Inhibitor concentrations were 5 mg/L
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metabolic studies of drugs and pesticides [40, 41]. Methi-

mazole slightly reduced the transformation rate of

fenazaquin (Fig. 3; Table 1). The finding indicates that the

contribution of FMO is limited in fenazaquin metabolism.

In summary, the fungal metabolic pathway of fenaza-

quin resembles that of animal and plants (Fig. 5). PBO-

selective inhibition indicates that CYPs may be the major

enzymes in fenazaquin metabolism. These findings showed

that PBO or related synergists enhance the efficacy of

pesticides, which in turn reduces the pesticide application

via PBO combination. Environmental safety can also be

achieved via efficient use of synergists.
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