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Abstract 

Begonia semperflorens Link et Otto has been broadly raised up for ornamental purpose as well comestible blossom. As 
the reproductive structures of phanerogams, flowers contain various secondary metabolites and have many biologi‑
cal activities. Accordingly, we began the contrivance for isolation and analysis of flavonoids contained in B. semperflo-
rens flowers. MeOH extraction of B. semperflorens followed solvent fractionation was prosecuted. Column chromatog‑
raphy of non-polar fraction gave four flavonoids using several resins. Identification of the flavonols were established 
as quercetin (1), kaempferol (2), astragalin (3), and isoquercetin (4) by interpreting a variety of spectral information. 
Quercetin (1) and kaempferol (2) inhibited NO production and protected against t-BHP-induced oxidative stress. 
Kaempferol (2) also protected cell death of glutamate-treated HT22. Quantitative analysis of flavonoid content in B. 
semperflorens flowers was also performed using HPLC experiment.
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Introduction
A flower, as the reproductive organ of a plant, is polli-
nated by insects, water, and wind and produces various 
secondary metabolites, including volatiles, pigments, and 
flavonoids, for alluring pollinating insects as well definite 
pollination. Pollinators, especially insects, are attracted 
by floral colors and scents. Volatile compounds have been 
suggested as the main drivers of visitation decisions by 
pollinators [1–3]. Many flowers have UV patterns that 
are specifically visible to insects, and UV-absorbing pig-
ments concentrated in the center of the flower increase 
its attractiveness [4].

Flowers have been used as ornamental plants for thou-
sands of years because of their flavors, colors, and pleas-
ing shapes. However, many flowers are also used as food 
ingredients. KFDA acknowledges approximately twenty 

edible flowers including pansies (Viola tricolor), jasmine 
(Jasminum polyanthum), camellia (Camellia japon-
ica), peaches (Prunus persica), geranium (Pelargonium 
inquinans), and begonias (Begonia semperflorens). These 
flowers include a variety of active components show-
ing anti-inflammatory [5], antioxidant [6], antibacterial 
[7], and NO-inhibition effects [8]. In addition, the Rural 
Development Administration (RDA) reported that edible 
flowers contain a 10-fold higher concentration of anti-
oxidant constituents compared to vegetables and fruits. 
Among the edible flowers, B. semperflorens has a high 
content of total polyphenols and flavonoids, and NMR 
and MS analyses have shown it to contain anthocyanins 
[9, 10]. Therefore, the flowers of B. semperflorens were 
also expected to contain polyphenols and flavonoids.

B. semperflorens (Begoniaceae), native to Brazil, is 
broadly raised in tropical wetlands areas. This plant is 
in height by 15–45  cm with broad oval-shaped leaves, 
and its flowers bloom throughout the growing season 
until frost. As mentioned above, NMR and MS analyses 
of B. semperflorens flowers have shown the presence of 
acylated anthocyanins [11]. The anthocyanin cyanidin 
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3-(2G-xylosylrutinoside) was also reported from the 
leaves of this plant [12]. Anthocyanins provide photopro-
tection under stressful conditions [9].

In this study, four flavonoids were isolated from B. sem-
perflorens flowers using extraction, fractionation as well 
repeated chromatography. The flavonoids were identi-
fied using spectroscopic methods, NMR, IR, MS. The 
flavonoids were quantitatively analyzed through HPLC 
experiment. And antioxidant, hepatoprotective, and neu-
roprotective effects of the flavonoids were then assessed.

Materials and methods
Plant materials
Begonia semperflorens flowers were acquired in Busan 
flower plantation, Korea, 2017, and Dr. D.G. Kim of 
Woosuk University, Jeonju, Korea identified. A voucher 
specimen (NPCL-20170716) was deposited at the Natu-
ral Products Chemistry Laboratory of Kyung Hee Uni-
versity, Yongin, Korea.

Reagents and instrumentation
The reagents and instruments used in this study were 
same as those used in the previous study [13].

Extraction of Begonia semperflorens flowers and isolation 
of flavonoids
Extraction of the fresh flowers of B. semperflorens (3.0 kg) 
was executed using 100% methanol (MeOH, 18 L) and 
80% aqueous MeOH (27 L × 2) at r.t. for 24 h. The filtrates 
were evaporated under reduced pressure to yield an alco-
hol extract (Ext, 58 g). Ext was added to water (H2O, 2 L) 
and successively fractionated with ethyl acetate (EtOAc, 2 
L × 2) and n-butanol (n-BuOH, 2 L × 2). The evaporated 
EtOAc Ext (BSE, 11.2 g) was put in application for SiO2 
column chromatography (CC) (7 × 15  cm) and eluated 
by n-hexane:EtOAc (15:1 → 10:1 → 7:1 → 3:1 → 1:1, 7 L 
of each). Fraction (Fr) BSE-12 (459.0 mg, elution volume/
total volume (VET) 0.772–0.797) was subjected to ODS 
CC (3.5 × 5  cm) and eluated by acetone:H2O (1:2, 8 L), 
resulting in 6 Frs (BSE-12-1 to BSE-12-6) with isolation of 
1 in BSE-12-3 (4.6 mg, VET 0.070–0.172, TLC using ODS 
Rf 0.51 in 4:2 acetone:H2O). Fr BSE-12-5 (126.5 mg, VET 
0.175–0.787) was subjected to SiO2 CC (2.5 × 13 cm) and 
eluated by CHCl3:MeOH:H2O (36:3:1 → 25:3:1 → 18:3
:1 → 65:35:10, 470  mL of each), resulting in 6 Frs (BSE-
12-5-1 to BSE-12-5-6) with isolation of 2 in Fr BSE-12-
5-2 (3.5  mg, VET 0.118–0.101, TLC using ODS Rf 0.42 
in 4:2 acetone:H2O). Fr BSE-18 (5.85 g, VET 0.956–1.000) 
was subjected to SiO2 CC (5.0 × 13  cm) and eluated by 
CHCl3:MeOH:H2O (20:3:1, 15.7 L), resulting in 20 Frs 
(BSE-18-1 to BSE-18-20). Fr BSE-18-15 (137.3 mg, VET 
0.573–0.725) was subjected to SiO2 CC (3.0 × 14  cm) 
and eluted by CHCl3:MeOH:H2O (25:3:1 → 20:3:1, 4.1 L 

of both), resulting in 7 Frs (BSE-18-15-1 to BSE-18-15-
7) with isolation of 3 in Fr BSE-18-15-2 (6.7  mg, VET 
0.257–0.324, TLC using ODS Rf 0.43 in 2:2 acetone:H2O) 
and 4 in Fr BSE-18-15-4 (22.5  mg, VET 0.545–0.665, 
TLC using ODS Rf 0.50 in 2:2 acetone:H2O).

quercetin (1) yellow crystals; m.p. 277  °C; IRν (KBr) 
3425, 1660, 1610, and 1505  cm−1; positive FAB/MS 
(pFABMS) m/z 303 [M + H]+.
kaempferol (2) light yellow crystals; m.p. 178–
180  °C; IRν (KBr) 3396, 3021, 2867, 1642, and 
1609 cm−1; EI/MS m/z 286 [M]+, 258, 229, 213, 184, 
153, and 121.
astragalin (3) yellow crystals; m.p. 230–232  °C; 
[α]25D  +16.0°; IRν (KBr) 3420, 1680, and 1628  cm−1; 
pFABMS m/z 449 [M + H]+ and 287.
isoquercetin (4) yellow crystals; m.p. 230–232  °C; 
[α]25D  230–231°; IRν (KBr) 3400, 2919, 1656, 1606, and 
1508  cm−1; pFABMS m/z 465 [M + H]+, 447, 423, 
389, 297, and 204.

1H-NMR (400  MHz, CD3OD, δH) and 13C-NMR 
(100 MHz, CD3OD, δC) see Table 1.

Inhibitory effects on NO production in LPS‑induced RAW 
264.7
Cell culture of murine macrophage RAW 264.7 cells and 
measurement of nitrite (NO) production can be referred 
to literature [14]. Butein was used as a positive control.

Protective effect on cell death of glutamate‑treated HT22
Cytoprotective effect was assayed according to the same 
methods reported in literature [15]. Trolox was used as a 
positive control.

Protective effect on oxidative stress in treated HepG2 cells 
by t‑BHP
Human hepatoma HepG2 cell culture and Hepatopro-
tective effect assay was accomplished using the same 
method reported in the previous study [14]. Curcumin 
was used as a positive control.

Quantitative analysis of the flavonoids isolated 
from Begonia semperflorens flowers
The MeOH Ext of B. semperflorens flowers was fraction-
ated using EtOAc and H2O. The organic phase Fr was 
utilized to analyze the isolated flavonoids. The flavo-
noids were diluted to various concentrations to establish 
calibration curves (1: 1.890625, 3.78125, 7.5625, 15.125, 
and 31.25  μg/mL; 2: 3.78125, 7.5625, 15.125, 31.25, and 
62.5 μg/mL; 3 and 4: 15.125, 31.25, 62.5, 125, 250 μg/mL).

The equipment and materials for HPLC analysis were 
as the followings. An Waters 600S (Milford, MA), a 



Page 3 of 8Kwon et al. Appl Biol Chem           (2019) 62:11 

reverse phase column (Waters C18, 5 μm, 250 × 4.6 mm). 
The eluting solvents, aqueous 0.05% trifluoroacetic acid 
(A) and 100% acetonitrile (B). 0.6  mL/min with gradi-
ent of B: 0–5 min, 10–30%; 5–20 min, 30%; 20–23 min, 
30–40%; 23–38 min, 40%; 38–43 min, 40–100%. Injection 
volume, 10 μL. Detection was carried out using a pho-
todiode spectrophotometer at 280 nm. The analysis was 
repeated three times.

Results and discussion
TLC for alcohol Ext of B. semperflorens flowers revealed 
yellow spots after spraying with a 10% H2SO4 solution 
and heating, indicating the presence of flavonoids in the 
Ext. The Ext was fractionated into EtOAc, n-BuOH, and 
H2O Frs through solvent fractionation. And repeated 
SiO2 and ODS CC of EtOAc Fr afforded four flavonoid 
compounds. All compounds were isolated as yellow crys-
tals and exhibited yellow spots on TLC plate after by 
same treatment, which led to deduction that they were 
flavonoids. The UV absorption pattern of the compounds 
confirmed the above-mentioned ratiocination.

The molecular weight (MW) of 1 was determined 
to be 302 amu based on the molecular ion peak (MIP) 
[M + H]+ at m/z 303 in the pFABMS. IR spectrum 

showed absorption peaks at 3425 (OH), 1660 (conjugated 
ketone), and 1610 cm−1 (aromatic double bond). The 1H-
NMR (PMR) spectrum (400 MHz, CD3OD) showed two 
olefin methine proton signals at δH 6.68 (br. s, H-8) and 
6.73 (br. s, H-6) due to a 1,2,3,5-tetrasubstituted benzene 
ring and three olefin methine proton signals at 7.35 (d, 
J = 8.4  Hz, H-5′, coupling pattern, coupling constant in 
J in Hz), δH 8.08 (br. d, 8.4, H-6′) and 8.55 (br. s, H-2′) 
due to a 1,2,4-trisubstituted benzene ring. The 13C-NMR 
(CMR) (100  MHz, CD3OD) spectrum included 15 car-
bon signals, suggesting 1 was a flavonoid. The five olefin 
methine carbon signals at δC 94.16 (C-8), 99.09 (C-6), 
116.48 (C-5′), 116.48 (C-2′), and 120.93 (C-6′); two ole-
fin quaternary carbon signals at 104.31 (C-10) and δC 
123.43 (C-1′); seven oxygenated olefin quaternary car-
bon signals at δC 137.7 (C-3), 146.91 (C-4′), 147.59 (C-2), 
149.66 (C-3′), 157.33 (C-9), 162.28 (C-5), and 165.37 
(C-7); one conjugated ketone carbon signal at δC 177.12 
(C-4) suggested that 1 was a flavonol. 1 was identified to 
be quercetin through intensive analysis of 2D-NMR (i.e., 
gHSQC and gHMBC) data as well comparison of the 
spectroscopic data with reported literature [16].
2 showed very similar NMR signals to those of 1 with 

the exception of the B-ring structure. The PMR signals 

Table 1  1H- (400 MHz) and 13C-NMR (100 MHz) data of compounds 1-4 from Begonia semperflorens flowers (CD3OD)

Carbon 
number

δc δH, coupling pattern, J in Hz

1 2 3 4 1 2 3 4

2 147.59 148.06 158.54 158.99

3 137.70 137.27 135.47 135.63

4 177.12 177.45 179.51 179.42

5 162.28 162.53 162.80 162.97

6 99.09 99.28 99.96 99.89 6.73, br. s 6.16, d, 2.0 6.19, d, 2.0 6.17, br. s

7 165.37 165.92 166.13 165.96

8 94.16 94.45 94.80 94.72 6.68, br, s 6.36, d, 2.0 6.39, d, 2.0 6.36, br. s

9 157.33 158.26 159.08 158.39

10 104.31 104.54 104.09 105.48

1′ 123.43 123.76 122.80 122.92

2′ 116.48 130.66 132.28 117.58 8.55, br. s 8.07, d, 9.2 8.05, d, 8.8 7.70, d, 2.0

3′ 149.66 116.30 116.08 145.84 6.89, d, 9.2 6.88, d, 9.2

4′ 146.91 160.54 161.58 149.82

5′ 116.48 116.30 116.08 115.98 7.35, d, 8.4 6.89, d, 9.2 6.88, d, 9.2 6.85, d, 8.4

6′ 120.93 130.66 132.28 123.19 8.08, br. d, 8.4 8.07, d, 9.2 8.05, d, 8.8 7.56, dd, 8.4, 2.0

1″ 104.09 104.41 5.24, d, 7.2 5.22, d, 7.2

2″ 75.74 75.70

3″ 78.43 78.32

4″ 71.37 71.17

5″ 78.05 78.08

6″ 62.64 62.53 3.68, dd, 12.0, 2.4
3.52, dd, 12.0, 5.2

3.71, dd, 12.0, 2.4
3.58, dd, 12.0, 5.2
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of a para-substituted benzene ring at δH 6.89 (2H, d, 9.2, 
H-3′,5′) and 8.07 (2H, d, 9.2, H-2′,6′), as well the CMR 
signals of four olefin methines at δC 116.30 (C-3′,5′) and 
130.66 (C-2′,6′), one olefin quaternary at δC 123.76 (C-1′), 
and one oxygenated olefin quaternary at δC 160.54 (C-4′) 
indicated that 2 was 5,7,4′-trihydroxyflavonol, kaemp-
ferol. The identification of 2 was confirmed through the 
molecular weight (MW) of 286 amu, which was 16 amu 
less than that of 1.
3 showed similar NMR signals as those of 2 with the 

exception of additional signals due to a β-glucopyranose. 
The hemiacetal PMR signal at δH 5.24 (d, 7.2, H-1″) and 
the chemical shifts of CMR signals confirmed the pres-
ence of a β-glucopyranosyl moiety. MW of 3 was deter-
mined to be 448 amu from a MIP [M + H]+ at m/z 449 
in FABMS spectra, which was 162 amu more than that 
of 2. The β-glucopyranose was revealed to be linked to 
the 3-OH in the C-ring from the cross-peak between the 
anomeric PMR signal at δH 5.24 (d, 7.2, H-1″) and an oxy-
genated olefin quaternary CMR signal at δC 135.47 (C-3) 
in the gHMBC spectrum. 3 was identified to be kaemp-
ferol 3-O-β-d-glucopyranoside, astragalin.
4 showed similar NMR signals as those of 1 with the 

exception of additional β-glucopyranose signals. The 
hemiacetal PMR signal at δH 5.22 (d, 7.2, H-1″) and the 
chemical shifts of CMR signals confirmed the presence 
of a β-glucopyranosyl moiety. MW was determined to 
be 464 amu from MIP [M + H]+ at m/z 465 in pFABMS 
spectrum, which was 162 amu more than that of 1. The 
3-OH linkage of the β-glucopyranose was determined 
from the cross-peak between the anomeric PMR signal 

at δH 5.22 (d, 7.2, H-1″) and an oxygenated olefin qua-
ternary CMR signal at δC 135.63 (C-3) in the gHMBC 
spectrum. 4 was identified to be quercetin 3-O-β-d-
glucopyranoside, isoquercetin. This study is the first 
report for isolation of the flavonoids from B. semperflo-
rens flowers.

Inhibitory effects on NO production in RAW 264.7 treated 
by LPS
1 and 2 were estimated for inhibition effect against NO 
generation in LPS-treated RAW 264.7. LPS-stimulated 
macrophages were treated with each compound (1: 1, 
5, 10, or 20 µM; 2: 5, 10, 20, or 40 μM). As can be seen 
in Fig. 1, 1 and 2 dose-dependently suppressed NO pro-
duction in RAW 264.7. 1 and 2 showed slightly lower 
effect than butein. IC50 value of 1 and 2 was respectively 
estimated as 84.79 and 80.87 μM. Previous studies have 
also reported the suppressive activity of 1 and 2 on NO 
generation. Naturally occurring flavonoids are known to 
modulate various inflammatory and immune processes. 
Genistein inhibits NO synthase expression and NO gen-
eration with IC50 value, 26.8 μM [17].

Neuroprotective effects against glutamate‑induced cell 
death in HT22
1-4 were investigated for their protective effects against 
glutamate-induced cell death in HT22 cells. Glutamate-
stimulated HT-22 cells were treated with the compounds 
and trolox (100 μM). As shown in Fig. 2, 2 showed con-
siderable protection (99.1%) against glutamate-induced 
toxicity at the low concentration at 80 μM, which was a 

Fig. 1  Inhibitory activity of 1 and 2 on NO generation in RAW 264.7 induced by LPS. The cells were pretreated for 12 h with the indicated 
concentrations of compounds and stimulated for 18 h with LPS (1 µg/mL). The error bars represent the mean ± SD of three independent 
experiments. *p < 0.05 compared to the LPS-treated control group. Positive control, butein
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higher protective effect than trolox (82.0%, 100 μM). The 
EC50 value of 2 was 19.95 μM. A previous study reported 
that 2 (100 μM) protected HT22 cells against glutamate-
induced cytotoxicity by 62.4 ± 2.8% [18].

Hepatoprotective activity against oxidative stress 
in t‑BHP‑induced HepG2
To examine the protective effect against t-BHP-induced 
oxidative stress in HepG2, the cells were treated with 1 
and 2 (1: 5, 10, 20, or 40 µM; 2: 10, 20, 40, or 80 μM) or 
curcumin (20 μM). As shown in Fig. 3, 1 and 2 showed 
high protective effects (86.5 and 78.7%, respectively) 

against t-BHP-induced cytotoxicity at a concentration of 
20 μM, which was almost the same as that of the positive 
control, curcumin. EC50 value of 1 and 2 was calculated 
to be 1.019 and 5.321 μM, respectively. A previous study 
also reported 1 to show protective effect against t-BHP-
induced oxidative stress [19].

Many flavonoids have been shown to have various 
pharmacological activities. Quercetin (1) is effective 
against inflammation, arteriosclerosis, bleeding, allergies, 
and swelling [10, 20]. Kaempferol (2) has antidiabetic 
[21] and antioxidant as well as anticancer [22] activities. 
Astragalin (3) exhibits antioxidant [23], anti-HIV [24], 
and anti-allergen [25] activities, and isoquercetin (4) 
shows antioxidant [26], anti-inflammatory [27], and anti-
tumor [28] activities. Compounds 1 and 2 were proved 
to have anti-inflammatory, neuroprotective, and hepato-
protective effects through our experiments and previous 
studies as well. The compounds are sure to have potential 
to be developed as new drugs.

Quantitative HPLC analysis of the flavonoids in Begonia 
semperflorens flowers
Using HPLC, each flavonoid peak was clearly separated 
and identified through comparison of the retention 
time with those of the standards (Fig.  4). The calibra-
tion curves were built using various concentrations of 
each compound (1: 1.890625, 3.78125, 7.5625, 15.125, 
and 31.25  μg/mL; 2: 3.78125, 7.5625, 15.125, 31.25, and 
62.5 μg/mL; 3 and 4: 15.125, 31.25, 62.5, 125, and 250 μg/
mL). The regression equations and correlation coeffi-
cient (r2 0.9996–1.000) for 1–4 are listed in Table 2. The 

Fig. 2  Neuroprotective activity against cell death in HT22 cells 
treated by glutamate. Treatment of HT22 with 5 μM glutamate raised 
the formation of ROS. The error bars represent the mean ± SD of 
three independent tests. *p < 0.05 compared with glutamate-treated 
group. Positive control, trolox

Fig. 3  Hepatoprotective activity against oxidative stress in t-BHP-induced HepG2. Cytotoxicity was estimated after incubating the cells with 60 μM 
t-BHP in RPMI. The error bars represent the mean ± SD of three independent tests. *p < 0.05 compared with t-BHP-treated group. Positive control, 
curcumin
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Fig. 4  Molecular structures of flavonoids from Begonia semperflorens flowers. a HPLC chromatogram of the isolated flavonoids (b) and EtOAc 
fraction (c) from the flowers of Begonia semperflorens. 1 (quercetin, rt: 29.3′), 2 (kaempferol, rt: 36.0′), 3 (astragalin, rt: 15.6′), 4 (isoquercetin, rt: 14.6′)
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high value of each r2 confirmed this analysis to be reli-
able. The concentrations of 1–4 were determined using 
the peak areas in the chromatogram and the regression 
equations (Table 2). The contents of 1–4 in the EtOAc Fr 
were calculated to be 0.3 ± 0.02, 0.8 ± 0.09, 7.1 ± 0.16, and 
11.9 ± 0.03%, respectively. 
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