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Abstract

A GC/MS-based metabolite profiling was performed to investigate metabolic differences of fermented tomatoes
according to the inoculation of different LAB strains. PCA score plot derived from 2554 signal features of GC-MS data
and PCA biplot derived from 18 identified metabolites showed clear separation into three groups. Citric acid and
malic acid were found to affect groups clustered with Lactobacillus fermentum (LF), Bifidobacterium longum (BL), and
Pediococcus pentosaceus (PP) whereas lactic acid, succinic acid, and fructose were related to Lactobacillus plantarum
(LP) and Leuconostoc mesenteroid (LM) groups. Meanwhile, Lactobacillus brevis (LB) was associated with erythritol.
Aminoacyl-tRNA biosynthesis and metabolism of cysteine and methionine were identified as metabolic pathways
affected by the use of different LAB groups (LF, BL, and PP vs. LB groups). This study highlights the applicability of
metabolic profiling for understanding fermentative characteristics of LAB strains.
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Introduction

Tomatoes are among the most consumed agricultural
products worldwide. They are rich in antioxidant com-
pounds such as carotenoids, lycopene, vitamin C, and
vitamin E [1-3]. Although some tomato products such
as paste, juice, and sauce are processed before consump-
tion, tomatoes are generally consumed fresh because
they have a short shelf-life due to rapid microbial spoil-
age. Fermentation is a simple and valuable technique to
extend shelf-life properties. Fermentation can also meet
the demands of consumers for non-dairy beverages with
high nutritional value, vegetarians, and lactose intolerant
individuals [4]. Recently, studies on tomato fermentation
as a method to improve its antioxidant activity have been
reported [5, 6].

Microorganisms can degrade organic substances with
their own enzymes and many metabolic changes occur
during fermentation. New molecular approaches are
needed to gain new insights and to control fermentation
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and indicate if changes were made.

processes. The field of metabolomics involves holistic
analysis of metabolic changes in the complete set of small
compound [7]. One advantage of the metabolic approach
is fingerprinting, which is largely used to monitor meta-
bolic patterns associated with changing metabolites [8].
Metabolomics studies have been applied to investigate
the fermentation of vegetables and fruits, such as beet
root, cucumbers, and pineapples [9-11]. However, lit-
tle is known about metabolic changes during tomato
fermentation.

The ability of fermentation depends on the type of
microbial starter used in the fermentation. For example,
allochthonous strains showed delayed growth phases
during tomato fermentation compared to selected
autochthonous strains from tomatoes [12]. Some stud-
ies have shown that total antioxidant and ACE inhibi-
tion activities were different, depending on the lactic acid
bacteria (LAB) strains [13]. Lactobacillus plantarum,
Lactobacillus brevis, and Pediococcus pentosaceus were
the main LAB strains isolated from spontaneously-fer-
mented tomatoes [4]. The use of different LAB strains
also affects the final metabolites in fermented tomatoes.
The relationship between LAB strains and metabolic
differences in fermented tomatoes is currently unclear.
Thus, the objective of this study was to determine the
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metabolic differences of fermented tomatoes inoculated
with different LAB strains, using GC-MS data sets cou-
pled with multivariate analysis.

Materials and methods

Tomato preparation

Tomatoes used in this study were purchased from a local
market (Naju, Jeollanam-do) in Korea. Total soluble sol-
ids (°Brix) of these tomatoes showed 5.2 °Brix. The pH of
these tomatoes and total acidity as lactic acid were 4.26
and 1.40%, respectively. Tomatoes were ground, mixed,
and diluted with distilled water at a ratio of 1:1. Fermen-
tation for each of the six LAB strains was performed to
five replications at 37 °C for 72 h. The amounts of tomato
samples in each fermentation were 500 mL.

Culture condition

Lactobacillus plantarum (KCCM 11322, LP), Lactoba-
cillus fermentum (KCCM 40401, LF), and Lactobacillus
brevis (KCCM 11904, LB) were obtained from KCCM
(Seoul, Korea). Leuconostoc mesenteroid (KCTC 3718,
LM), Pediococcus pentosaceus (KCTC 3116, PP), and
Bifidobacterium longum (KCTC 3128, BL) were obtained
from KCTC (Daejeon, Korea). One percent (v/v) of
pre-cultured LAB starter was inoculated for tomato
fermentation.

Total phenol content, flavonoid content, and DPPH
scavenging activity

Total phenol contents were analyzed by a modified
Folin—Denis method [14]. Briefly, 0.5 mL of each sample
was added to distilled water (4.5 mL) and Folin—Ciocal-
teuw’s phenol reagent (0.5 mL). Five mL of 7% Na,CO; was
then added and the mixture was left at room temperature
for 90 min. The absorbance at 750 nm was measured.

Total flavonoid contents were measured by the modi-
fied method of Zhishen et al. [15]. Briefly, each sample
(1 mL) was added to distilled water (4 mL) and NaNO,
(0.3 mL). After 5 min, 10% AICl; (0.3 mL) was added to
the mixture. Next, 2.4 mL of distilled water and 2 mL of
1 N NaOH were added. The absorbance was measured at
510 nm.

DPPH radical scavenging activities were measured by
the Blois method [16], with slight modification. Briefly,
0.4 mL of each sample was added to 1.6 mL of 0.4 mM
1,1-diphenyl-2-picryl-hydrazyl. ~The absorbance at
525 nm was then measured.

GC-MS analytical method

Analytical methods and conditions associated with GC—
MS analysis were similar to those described in previous
studies [17, 18] with minor modifications. Briefly, tomato
samples were centrifuged at 13,000 rpm for 5 min, then
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100pL of sample supernatant was lyophilized. Next,
freeze-dried tomato samples were methoxymated using
methoxyamine in pyridine solution, and trimethylsi-
lylated by BSTFA (containing 1% TMCS). Next, methyl
stearate in heptane was added as an internal standard.
To monitor the analytical variability, quality control
(QC) samples were prepared by pooling equal volumes
(approximately 10 uL) of each sample prior to the deri-
vatization process. QC samples were analyzed every 10
samples throughout the GC—MS analysis. One milliliter
of heptane was added into an Eppendorf tube as a blank
sample.

Derivatized samples were injected into a QP-2020
Gas Chromatography Mass Spectrometer (Shimadzu,
Kyoto, Japan) through a Rtx-5MS capillary column
(30 m x 0.25mm), with a film thickness of 0.25 um. The
Oven temperature was programed at 60 °C for 1 min,
then increased to 280 °C by 10 °C per min, and main-
tained at 280 °C for 10 min. Temperatures of the injector,
the transfer line, the ion source, and the quadrupole were
set at 250, 280, 230, 150 °C, respectively. The MS was
programmed in full scan mode at 50 to 550 m/z, and the
electron impact of ionization was set at 70 eV.

Data processing and multivariate analysis

GC-MS raw data were subjected to XCMS web software
(https://xcmsonline.scripps.edu) for baseline correction,
noise removal, and alignment. Parameters of the basic
centWave method for the GC single quadruple were set
as described previously [18]. They were: signal/noise
threshold, 2; mzdiff, 0.1; integration methods, 1; prefil-
ter peaks, 3; prefilter intensity, 10000; mzwid, 0.25; min-
frac, 0.5; and bandwidth, 3. Next, values were corrected
by subtracting the average of the blank sample at each
feature. Feature intensities were normalized according
to the intensity of methyl stearate prior to multivariate
statistical analyses. Principal component analysis (PCA)
was performed using SIMCA-P 154.0 software (Umet-
rics, Umea, Sweden). Biplot of PCA and pathway analy-
sis were generated using the web-based MetaboAnalyst
4.0 (http://www.metaboanalyst.ca). Metabolites were
identified based on similarity of RT (retention time), RI
(retention index of n-alkane), mass spectrum (NIST 14.0
library), and in-house library data, using similar analyti-
cal method [17]. The similarity value (%) was calculated
by the similarity of mass spectrum of a metabolite in
NIST library and QC sample.

Metabolic pathway analysis
Metabolic pathways and pathway topological analyses
were conducted using MetaboAnalyst 4.0.


https://xcmsonline.scripps.edu
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Results

Physicochemical and antioxidant properties of fermented
tomatoes

Changes in physicochemical and antioxidant properties
of tomatoes fermented with six-different LAB strains are
presented in Fig. 1. After 3 days of fermentation, soluble
solid contents decreased to 1.42—1.82°Brix. The pH value
and TA in tomatoes before inoculation were 4.26 and
0.7%, respectively. Differences in soluble solid contents,
pH, and TA were dependent on the fermentation strains
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used, indicating that the quality of fermented tomatoes
varied depending on the LAB strain used.

Total phenol and flavonoid contents were increased in
tomatoes fermented by LM and LP, respectively. These
fermented tomatoes also showed higher DPPH radical
scavenging activities compared to other samples, sug-
gesting that some new antioxidant components might
have been produced during the fermentation of tomatoes
by LM and LP. Differences in phenolic compounds after
fermentation might be associated with changes in the
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Fig. 1 Descriptive physicochemical and antioxidant properties of tomato samples fermented with different LAB strains. Means followed by different
letters are significantly different between samples (p <0.05). BF before fermentation; LP Lactobacillus plantarum; LM Leuconostoc mesenteroid; LF
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sensory characteristics of foods such as color and flavor
as well as differences in antioxidant effects [19].

Metabolites changes of fermented tomatoes

Tomato metabolites were analyzed using GC-MS to
determine metabolic changes in the fermented toma-
toes and the effect of different LAB strains. After data
processing using XCMS, a total number of 2554 signal
features were obtained. PCA score plot derived from the
GC-MS data of the tomatoes is shown in Fig. 2a. There
was a clear separation by PC1 between tomato samples
before and after fermentation. Cumulative R2X and Q?
values were 0.663 and 0.635, respectively. These results
indicated dramatic metabolic changes after 3 days of fer-
mentation by LAB.

Among the 2554 features detected by GC-MS, a total
of 18 metabolites were identified. Table 1 summarizes
the metabolites identified in this study and their changes
after fermentation. Levels of lactic acid, succinic acid,
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alanine, methionine, aspartic acid, glutamic acid, and
erythritol were increased, while levels of malic acid, citric
acid, serine, threonine, and fructose were decreased after
tomato fermentation. However, changes in some amino
acids, such as valine, leucine, and phenylalanine, showed
different patterns with different LAB strains.

Metabolite profiling of fermented tomatoes by different
LABs

To determine metabolic differences of tomatoes fer-
mented by the different LAB strains used, PCA modeling
was performed on samples after fermentation without
samples before fermentation (Fig. 2b). Interestingly, PCA
score plot showed a clear separation into three groups.
The first group included tomatoes fermented with PP,
LF, and BL. These samples were located close to each
other in the PCA score plot, indicating that the metabolic
profiles of these samples were more similar than those
of other samples. The second group included tomatoes
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Fig. 2 PCA score plot (a) derived from GC-MS data of tomato samples fermented with different LAB strains, showing different metabolic
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fermented with LP and LM, which were not fully sepa-
rated in score plot. The last group was tomato samples
fermented with LB, implying that metabolites of tomato
samples fermented with LB were very different from the
other samples. Interestingly, different or similar fermen-
tation behaviors were observed for each LAB strain, even
if the same tomato material was used.

Metabolite differences of fermented tomatoes by different
LABs
To identify the effects of different LAB strains on metab-
olites identified in fermented tomatoes, PCA biplot was
generated (Fig. 3). Similar to the results shown in Fig. 2b,
PCA biplot showed clear separation into three groups.
Two groups (LF, BL, and PP vs. LP and LM) were clearly
separated by PC1. Citric acid and malic acid were clus-
tered in LF, BL, and PP. In addition, lactic acid, succinic
acid, and fructose were related to LP and LM groups.
Meanwhile, LB was associated with erythritol on PC2.
Figure 4 shows the relative differences of the metabo-
lites identified in tomatoes fermented by different LAB
strains. Tomatoes fermented by LF, BL, and PP were
found to have the highest levels of glyceric acid, malic
acid, citric acid, alanine, and serine (p<0.05), whereas
levels of succinic acid and glutamic acid were signifi-
cantly higher in tomatoes fermented by LP and LM
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Fig. 3 PCA biplot derived from metabolites identified from tomato
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metabolites responsible for the divergence between tomatoes
fermented with different LAB strains. LP Lactobacillus plantarum;
LM Leuconostoc mesenteroid: LF Lactobacillus fermentum; BL
Bifidobacterium longum; PP Pediococcus pentosaceus; LB Lactobacillus
brevis
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(p<0.05). The highest values of valine, leucine, threonine,
methionine, phenylalanine, and erythritol were found in
tomatoes fermented with LB (p <0.05).

Metabolic pathway analysis of LAB strains

To determine the most relevant metabolic pathways
affected by different LAB strains, metabolic pathway
analyses were performed (Fig. 5). Metabolites identified
in fermented tomato samples from the two most distinct
groups (LF, BL, and PP vs. LB) were used for metabolic
pathway analyses. Comparing LF, BL, and PP versus LB
groups, impact values of aminoacyl-tRNA biosynthesis,
cysteine and methionine metabolism, glycine, serine and
threonine metabolism, citric acid metabolism, glutamine
and glutamate metabolism, and glutathione metabolism
were 0.18, 0.12, 0.25, 0.12, 0.17, and 0.11, respectively.
On the basis of p and impact values, aminoacyl-tRNA
biosynthesis and metabolism of cysteine and methionine
were identified as pathways affected by different LAB
groups (LF, BL, and PP vs. LB groups).

Discussion

Lactic acid fermentation is a simple and widely used
technique to enhance the nutritional value and shelf-
life of fruits and vegetables [20]. Several studies have
reported changes in the quality of tomatoes fermented by
LAB [4, 21]. Since different metabolites can be produced
depending on the LAB strain used for fermentation [22],
it is important to select appropriate LAB strains to fit the
desired characteristics of the final product.

Although it is difficult to identify similarities or differ-
ences in metabolism between LAB strains, some stud-
ies have been conducted to identify differences between
LAB strains using multivariate statistical analysis such
as PCA. The PCA has been used for grouping the LAB
strains, based on the morphological, physiological,
and biochemical characteristics [23]. Roger et al. [24]
reported that Kutukutu (fermented corn paste) must
be fermented by L. brevis G25 and L. fermentum N33,
based on the results of nutritional variables in the PCA.
D’Angelo et al. [25] reported that the results of PCA score
plot revealed three clusters of LAB strains regarding the
behavior against the stress factors studied.

Recently, Metabolomics studies have been successfully
used to display metabolic profiles of fermented foods
predominated by LAB to predict fermentative charac-
teristics of different microorganisms [26]. Some metabo-
lomics studies have reported a clear separation between
samples fermented with different LAB strains in PCA
score plots obtained from fermented foods. According to
Gallegos et al. [22], a PCA from GC-IMS spectral data
of LAB allowed the differentiation of Lactobacillus and
Lactococcus strains. In addition, this study presented the
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possibility of discrimination Lactobacillus casei from
Lactoabillus paracasei, according to their relevant vola-
tile fingerprints. Correia et al. [27] have also reported
that sorghum fermented with LB was very different from
samples fermented with LP, LF, and PP, due to the supe-
rior contents of specific macromolecules of the proteins
and lipids. However, little is known about the similarities
or differences in metabolic characteristics between LAB
strains.

Results of PCA analyses in the present study indicated
that metabolite profiles of tomatoes were dependent on
the LAB strain used. Since metabolites of tomatoes are
related to taste and flavor [28, 29], differences in metabo-
lites, depending on the LAB strain, indicate differences
in quality. For example, the umami of tomato has been
related to the content of amino acids such as citric acid,
glycine, serine and glutamic acid [30]. Among them, glu-
tamic acid played an important role as umami in tomato
taste [31]. It has been also well known that the sugars
such as glucose and fructose of tomatoes affect sweet-
ness. The sour taste in tomatoes was attributed mainly to
citric and malic acids [32]. The high levels of lactic acid
in tomato fermented with LM can be associated with the
sour taste. Further metabolomics studies involving more
samples are required to clarify the relationship between
taste and LAB strains.
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