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Abstract 

Considering the close relation between macrophages and inflammatory diseases, the design of carriers for the 
delivery of drugs, genes, and small molecules into macrophages is crucial. In this study, the surface charge of exo-
some (EXO) was easily modified to highly negative charge by citraconylation. Prepared citraconylated EXO (cit-EXO) 
exhibited a significantly reduced surface charge down to − 50 from − 15 mV of EXO surface charge, despite similar 
hydrodynamic size. In the absence of serum proteins, both EXO and cit-EXO were similarly internalized into RAW264.7 
cells and DC2.4 cells. However, cit-EXO exhibited superior intracellular uptake to that of EXO for RAW264.7 cells in 
the presence of serum proteins because of highly negative charges. However, there were no significant differences 
in intracellular uptake of EXO and cit-EXO for DC2.4 cells. Taken together, simple surface modification onto EXOs via 
citraconylation improved delivery of nanosized EXO (~ 50 nm) into macrophages, which could serve as a promising 
strategy for the development of carriers for efficient macrophage delivery.
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Introduction
Inflammatory processes have been considered crucial 
for the progression and pathogenesis of diseases, e.g., 
chronic obstructive pulmonary disease, asthma, athero-
sclerosis, cancer, tuberculosis, human immunodeficiency 
virus, and leishmaniasis [1–5]. Because the mononuclear 
phagocytic system (MPS) has pivotal roles during inflam-
mation, the MPS has been examined as an important 
target for drug delivery to treat diseases [6]. In the MPS, 
monocytes, macrophages, and dendritic cells engulf and 
destroy apoptotic cells, pathogens, and other targets by 
phagocytosis via complement receptors, Fc-receptors, 
and an opsonin receptor-dependent mechanism [7]. 
Accordingly, the development of efficient delivery sys-
tems to target macrophages is crucial as a potential car-
rier to deliver anti-inflammatory drugs and lessen a wide 
range of inflammatory diseases.

Diverse particulate carriers, including liposomes, inor-
ganic nanoparticles, and polymeric nanoparticles, have 
been fabricated to deliver small molecules, genes, and 

peptides to macrophages [8, 9]. However, several chal-
lenges, including particle stability, biocompatibility, and 
feasibility, still must be addressed [10]. Recently, bio-
logically derived vesicles, e.g., cell-derived vesicles and 
microvesicles, have been intensively investigated as one 
of the alternatives for synthetic particulate systems. In 
particular, exosomes (EXOs) have been considered prom-
ising drug carriers because of their aqueous stability, 
homogeneous diameter, and biocompatibility [11–13]. In 
a previous study, serum derived EXOs had a narrow size 
distribution of approximately 50 nm as well as high pro-
duction yield [14]. Accordingly, surface modification of 
EXOs has been examined to improve their delivery effi-
ciency, targetability, and easy purification [15–18]. How-
ever, the effects of physicochemical properties of EXOs, 
such as surface charge, size, and shape, on intracellular 
uptake according to different types of cells have not been 
studied extensively.

In this study, the surface of EXO was modified with 
citraconic anhydride via Michael addition chemistry to 
examine the effects of surface charges on intracellular 
uptake of EXO for macrophages. EXOs were citraco-
nylated at different citraconic anhydride/surface amine 
group molar ratios. Citraconylated EXO (cit-EXO) was 
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analyzed by dynamic light scattering (DLS), zeta-sizer, 
and agarose gel retardation to confirm the change of 
surface charges. After labeling of EXO and cit-EXO 
with indocyanine green (ICG), the level of intracellular 
uptake was examined for two types of cell: macrophages 
(RAW264.7) and dendritic cells (DC2.4). To investi-
gate the effects of serum proteins on cellular uptake to 
macrophages and dendritic cells, cellular uptake was 
performed not only for serum-free media but also for 
serum-containing media.

Materials and methods
Materials
Fetal bovine serum (FBS), Dulbecco’s modified Eagle’s 
medium (DMEM), Roswell Park Memorial Institute 
(RPMI) 1640 medium, penicillin/streptomycin (P/S), 
MEM nonessential amino acids solution, and 2-mer-
captoethanol were purchased from Gibco BRL (Grand 
Island, NY, USA). An ExoQuick-TC EXO precipita-
tion kit was obtained from System Biosciences, Inc. 
(Mountain View, CA, USA). A micro-BCA protein assay 
kit was purchased from Pierce (Rockford, IL, USA). 
Tetrabutylammonium iodide (TBAI), citraconic anhy-
dride, and fluorescamine were obtained from Sigma 
Aldrich (St. Louis, MO, USA). Indocyanine green (ICG, 
Mw = 775 Da) was purchased from Dongindang Pharma-
ceutical (Siheung, Gyeonggi, Korea). A desalting column 
(MWCO = 40  kDa) and GelCode Blue Stain Reagent 
were purchased from Thermo Scientific (Rockford, IL, 
USA). Nanosep centrifugal devices with omega mem-
branes (Nanosep, MWCO = 300 K) were purchased from 
Pall (Ann Arbor, MI, USA).

Cell culture
RAW264.7 cells (murine macrophage cell line) were 
maintained in DMEM supplemented with 10% FBS, 100 
U/mL penicillin, and 100  μg/mL streptomycin at 37  °C 
in a humidified atmosphere of 5% CO2 [14]. DC2.4 cells 
were donated by Prof. Kenneth L. Rock [19]. DC2.4 cells 
(murine dendritic cell line) were maintained in RPMI-
1640 supplemented with 10% FBS, 100-U/mL penicillin, 
100-μg/mL streptomycin, 1% nonessential amino acid, 
and 270 nM 2-mercaptoethanol at 37 °C in a humidified 
atmosphere of 5% CO2.

Preparation of citraconylated EXO
Serum-derived EXO was prepared according to a previ-
ous study with a slight modification [13]. Briefly speak-
ing, FBS was centrifuged at 3000×g for 15  min. The 
supernatant of the centrifuged serum solution (0.95 mL) 
was mixed with the ExoQuick-TC EXO precipitation 
solution (190 μL) via an inverting tube. After incubation 
at 4 °C overnight, the mixture was centrifuged at 1500×g 

for 30 min. After additional centrifugation at 1500×g for 
5 min, the resultant pellet was resuspended in phosphate-
buffered saline (PBS) solution.

The amount of protein in the EXO was determined 
using the BCA protein assay kit according to the manu-
facturer’s protocol. Briefly, after mixing reagent with each 
sample, the solution was incubated for 1 h at 37 °C. The 
absorbance was measured at a wavelength of 562  nm 
using a plate reader (SpectraMAX, Molecular Devices, 
Sunnyvale, CA, USA).

To calculate the amounts of existing amine groups, pri-
mary amine groups were quantitatively measured using 
a fluorescamine reagent and an amine reactive fluores-
cence indicator, as described previously. EXO in PBS 
solution was mixed with fluorescamine in acetone (2 mg/
mL) at a sample/fluorescamine volume ratio of 10. The 
fluorescence intensities of the solutions were measured 
using a fluorospectrophotometer (Gemini EM microplate 
reader, Molecular Devices, CA, USA) at an excitation and 
emission wavelength of 390 and 475 nm, respectively. To 
prepare cit-EXO, amine groups (1 μmol) on the EXO in 
PBS solution were reacted with citraconic anhydride (0, 
0.5, 1, and 2  μmol) in anhydrous dimethyl sulfoxide for 
2  h at room temperature. After reaction, unreacted cit-
raconic anhydride was removed via a 40  kDa desalting 
column [20].

Characterization of cit‑EXO
EXO and cit-EXO in PBS solution at a final concentration 
of 0.5–1 mg/mL were analyzed using DLS (Nano-s, Mal-
vern Instrument Ltd., Malvern, UK). The surface charge 
of cit-EXO in deionized water (DW) was measured using 
zeta sizer (ZEN 3690, Malvern Instrument Ltd.). For gel 
migration of EXO and cit-EXO, samples (18  μg) were 
loaded onto 0.5% agarose gel, and gel electrophoresis was 
performed for 40 min. After staining gels with Coomassie 
solution overnight, agarose gels were destained with DW 
and visualized by an illuminator.

Intracellular uptake of cit‑EXO
To visualize EXO and cit-EXO, the fluorescent dye indo-
cyanine green (ICG) was incorporated, as previously 
reported [14]. For easy incorporation of ICG into EXO 
(ICG/EXO), hydrophobic ICG (700 μg) and TBAI (2 mg) 
were mixed to prepare ICG-TBAI complex. EXO or cit-
EXO (500 μg) was mixed with ICG-TBAI (50 μg) (ICG/
exosomal protein ratio of 0.1) at 37 °C for 3 h. After incu-
bation, free ICG-TBAI was removed with 300 K Nanosep 
(MWCO = 300  kDa). To quantify the amount of ICG 
within EXO or cit-EXO, the fluorescent intensities of 
the ICG/EXO or ICG/cit-EXO solutions were measured 
with an IVIS instrument at excitation and emission wave-
length of 780 and 831 nm, respectively.
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RAW264.7 and DC2.4 cells were plated in six-well 
plates at densities of 6 × 105 cells/well 24 h prior to treat-
ment, respectively. ICG/EXO or ICG/cit-EXO treated 
cells in each well at 5.8 μg/mL concentrations of ICG in 
the absence and in the presence of serum in media. After 
incubation for 4 h, cells were washed with 0.05% trypsin–
EDTA in PBS solution once and PBS containing 5% FBS 
twice. After cell lysis by incubation with lysis buffer (1% 
Triton X-100 in PBS) for 10 min, intracellular ICG/EXO 
or ICG/cit-EXO was determined by measuring the fluo-
rescence signals in the supernatants with the IVIS instru-
ment at excitation and emission wavelengths of 780 and 
831 nm, respectively.

Results and discussion
Synthesis and characterization of cit‑EXO
Figure 1a shows the schematic illustration for the prep-
aration of cit-EXO. Primary amine groups on an EXO 
surface were reacted with citraconic anhydride via 
Michael-type addition for 2 h. The resulting cit-EXO has 
a highly negative charge because of the substitution of 
primary amine groups in carboxyl groups. As shown in 
Fig.  1b, cit-EXO was treated on macrophages to assess 
intracellular delivery efficiency. It is well known that 

surface positive charge mediates easy interaction of parti-
cles with cells and efficient intracellular delivery [21–23]. 
However, recent studies reported that the effects of sur-
face charge on intracellular uptake depend on the types 
of cell, including cancer cells and phagocytic cells. In 
particular, surface negative charge allowed efficient inter-
action of complement and antibodies in serum, which 
provided excellent phagocytic uptake of micro-sized par-
ticles. In this study, it was examined how surface charge 
modification of EXO to negative charge might enhance 
intracellular uptake into macrophages in serum-free and 
serum-containing media.

After chemical modification of EXO with citraconic 
anhydride at different citraconic anhydride/amine 
groups molar ratios (0, 0.5, 1, and 2), the size distri-
bution of cit-EXO was analyzed by DLS. As shown 
in Fig.  2a, citraconylation of EXO did not result in 
changes in size distribution for all cit-EXO samples. As 
shown in Fig.  2b, the mean hydrodynamic size of cit-
EXO at citraconic anhydride/amine group molar ratios 
(0, 0.5, 1, and 2) were 42.3 ± 3.6, 37 ± 3.3, 36.9 ± 1.9, 
and 46.3 ± 11.0  nm. The mean diameters of EXO and 
cit-EXO were similar. After citraconylation of EXO, 
the surface charges of cit-EXO at citraconic anhydride/

Fig. 1  a Schematic illustration for the preparation of citraconylated EXO (cit-EXO) and b intracellular uptake of cit-EXO for macrophages (RAW264.7 
cells)
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EXO amine molar ratios of 0.5, 1, and 2 were reduced 
to − 50.8 ± 10.4, − 44.5 ± 5.9, and − 29.9 ± 2.9 mV due 
to adopted carboxylic acid groups, respectively, while 
that of EXO was − 15.7 ± 1.3 mV (Fig. 2c). The surface 
charge of EXO was consistent with data in a previ-
ous study [24]. To confirm the surface charge of EXO, 
EXO and cit-EXOs were loaded onto 0.5% agarose gels 
for 40  min, and proteins of each sample were stained 
with Coomassie blue dye. Figure  2d shows noticeably 
fast migration of cit-EXO at citraconic anhydride/EXO 

amine molar ratios of 0.5, compared with EXO. These 
results demonstrated that citraconylation of EXO was 
successfully performed and significantly reduced the 
surface charge of EXO in physiological condition. Inter-
estingly, the surface charge of cit-EXO at citraconic 
anhydride/EXO amine molar ratios of 0.5 was a signifi-
cantly lower surface charge and faster migration in zeta 
potential analysis and agarose gel electrophoresis than 
that of cit-EXO at citraconic anhydride/EXO amine 
molar ratios of 2.
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Cellular uptake
In a previous study, the intracellular uptake of particles 
was significantly different in serum-free and serum-
containing media because of proteins, e.g., complement 
and albumin in serum [25, 26]. To examine intracellular 
uptake of EXO and cit-EXO for phagocytic cells com-
paratively, samples were treated with two types of cell, 
dendritic cells (DC2.4 cell) and macrophages (RAW264.7 

cell), in serum-free media. Figure  3a shows that the 
extents of intracellular uptake of EXO and cit-EXO for 
RAW264.7 cells and DC2.4 cells were similar. To inves-
tigate the effects of serum proteins for intracellular 
uptake of EXO and cit-EXO, samples were also treated 
with two types of phagocytic cells in serum-containing 
media (Fig. 3b). Over all, the extents of internalized par-
ticles were significantly lower in the presence of serum 
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proteins than those in the absence of serum protein for 
both RAW264.7 cells and DC2.4 cells. Interestingly, cit-
EXOs showed significantly improved intracellular uptake 
for RAW264.7 cells compared with EXOs. The relative 
fluorescence intensities of EXO and cit-EXO (citraconic 
anhydride/EXO amine = molar ratio of 0.5) were 5.5 ± 0.4 
and 8.4 ± 1.0 (×  108), respectively. However, the extents 
of intracellular fluorescence intensity for DC2.4 cells 
were similar after treatment with EXO and cit-EXOs. 
DC2.4 cells showed significantly poor particle uptake 
compared with RAW264.7 cells. In previous studies, 
surface charges of micro-/nano-particles determined 
types of surface corona protein, which affect intracellu-
lar uptake of particles in macrophages [27, 28]. In addi-
tion, negatively charged nanoparticles with a size of over 
100 nm exhibited superior intracellular uptake into mac-
rophages compared with positively charged or slightly 
negative nanoparticles due to different corona protein 
e.g., complement C [29, 30]. In this study, nanosized and 
negatively charged cit-EXO with a size of approximately 
50  nm showed higher intracellular uptake than EXOs 
with less negative charge. Previously, it was reported 
that not dendritic cells but macrophages express sev-
eral complement C receptors, which could facilitate the 
phagocytic uptake of particles for macrophages [31, 32]. 
Accordingly, it is likely that serum proteins, e.g., comple-
ment C, might provide improved intracellular uptake of 
highly negatively charged cit-EXO compared with EXO. 
Citraconic anhydride has been used for reversible modifi-
cation of amine groups because of the easy reversibility of 
the amide bond [33]. It is considered that cit-EXO could 
readily reverse the surface charge for an acidic phago-
some after intracellular uptake and following biological 
pathways similar to EXO.

In this study, the surface charge of EXO was eas-
ily modified by citraconylation. The prepared cit-EXO 
exhibited a significantly reduced surface charge down 
to −  50  mV to EXO despite similar hydrodynamic size. 
Although EXO and cit-EXO showed similar intracel-
lular uptake in the absence of serum, cit-EXO exhibited 
superior intracellular uptake to that of RAW264.7 cells in 
the presence of serum proteins. However, there were no 
significant differences in the intracellular uptake of EXO 
and cit-EXO for DC2.4 cells. It is expected that the cit-
raconylated EXOs with protein coronas including com-
plement C might be favorably delivered to RAW264.7 
cells in serum media, compared to EXOs. Probably due 
to high expression of surface receptors e.g. comple-
ment C receptors onto RAW264.7 cells, RAW264.7 cells 
showed higher uptake of cit-EXO than DC2.4 cells. Sim-
ple surface modification onto EXOs via citraconylation 
improved the delivery of nanosized EXO (~ 50 nm) into 
macrophages, which could be harnessed as a promising 

strategy for the development of carriers for targeted mac-
rophage delivery.
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