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Carnosol induces apoptotic cell death 
through ROS‑dependent inactivation of STAT3 
in human melanoma G361 cells
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Abstract 

Melanoma is the leading cause of skin cancer deaths, and the poor prognosis of metastatic melanoma has made 
needs for a novel pharmacological treatment or efficient intervention. Carnosol, a major polyphenolic compound 
from Rosmarinus officinalis, has a wide range of biological activities including anti-cancer effect. However, the underly‑
ing molecular mechanisms of its anti-cancer effect remain poorly understood in malignant human melanoma cells. 
In the present study, we investigate the apoptotic effect and the underlying anti-cancer mechanisms of carnosol. Our 
results revealed that carnosol strongly induced apoptosis against human melanoma G361 cells in a dose- and time-
dependent manner, and caused dramatical elevation in cellular reactive oxygen species (ROS) level during apoptosis. 
In mechanistic studies, carnosol treatment decreased protein level of anti-apoptotic B‑cell lymphoma 2 (Bcl-2) and B 
cell lymphoma-extra large (Bcl-xL), however, increased level of pro-apoptotic Bcl-2-associated X protein (Bax) protein. 
Moreover, carnosol escalated cellular level of p53, which was accompanied by a decline of mouse double minute 2 
homolog (MDM2) level. Also, carnosol inhibited activation of Src and signal transducer and activator of transcription 
3 (STAT3), therefore down-regulated STAT3-dependent gene expression, such as D-series cyclin and survivin. These 
changes by carnosol were attenuated by pre-treatment of N-acetyl cysteine, and abolished progression of carnosol-
induced apoptosis. In conclusion, carnosol induced apoptosis in human melanoma G361 cells through ROS genera‑
tion and inhibition of STAT3-mediated pathway. Our results provide molecular bases of carnosol-induced apoptosis, 
and suggest a novel candidate for human melanoma treatment.
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Introduction
Melanoma, a malignant tumor derived from melano-
cytes, causes the majority of deaths attributed to skin 
cancer. The incidence of melanoma, the most fatal form 
of skin cancer, has increased significantly over the past 
20  years [1]. Melanoma has been treated by various 
ways. Surgical excision is a representative treatment in 
early stages of the disease [2], in addition, RAF and MEK 
kinase-targeted chemotherapy or immunotherapy using 

immune checkpoint inhibitors are approved for patients 
with advanced stage [3]. However, melanomas have 
diverse genetic alterations in key molecules on growth/
proliferation signaling pathways and cell cycle control, 
such as BRAF, NRAS, KIT, PTEN and CDKN2A [4–6], 
and the poor prognosis-associated with metastatic mela-
noma has made it necessary for a novel pharmacological 
treatment options or more efficient chemotherapeutic 
intervention.

Apoptosis, known as programmed cell death, is trig-
gered by extrinsic and intrinsic ligands. These two dif-
ferent apoptotic pathways are regulated by diverse 
intracellular signaling pathways and coordinated by 
a network of genes [7]. During the apoptotic process, 
activation of caspase cascade leads to the cleavage of 
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essential proteins that is involved in anti-apoptotic 
pathways, such as Bcl-2 family proteins [8]. Apoptosis 
is a critical process for cellular homeostasis, therefore, 
apoptosis became a key target for the development of 
new anti-cancer therapies [9].

Reactive oxygen species (ROS) are generated by the 
mitochondria in most mammalian cells [10]. ROS have 
been related to diverse physiological and pathologic 
condition. Elevated ROS also act as signaling molecules 
in the maintenance of physiological functions [11], 
however, excessive ROS above the physiological con-
centration can lead to carcinogenesis or cell death [12].

Oxidative stress is due to the imbalance between 
scavenging activities of intracellular anti-oxidant and 
production of ROS [13], and also elevates intracellular 
levels of ROS that cause damage to various biological 
molecules, such as DNA, proteins and lipids [14]. In 
addition, oxidative stress has been reported to induce 
apoptosis via diverse pathways, such as endoplas-
mic reticulum (ER) stress and mitochondrial cascade 
[15]. Therefore, manipulating intracellular ROS levels 
is a way to selectively kill various cancer cells, which 
has been involved in the anti-cancer effects of several 
therapeutic agents, including paclitaxel, cisplatin, and 
TNF-related apoptosis-inducing ligand (TRAIL/Apo-
2L) [16–18].

It has been demonstrated that signal transducer and 
activator of transcription 3 (STAT3), a member of the 
STAT family, plays critical roles in signaling of vari-
ous cytokines, hormones, and growth factors on diverse 
human malignancies [19, 20]. STAT3 is constitutively 
activated in most human solid tumors, and constitutive 
activation of STAT3 signalling pathway has been demon-
strated to mediate critical processes in tumor cells, such 
as survival, proliferation, angiogenesis, and metastasis 
[21–23]. In previous studies, many researchers indicated 
that STAT3 might be a novel target for anti-cancer ther-
apy [24–26].

Rosmarinus officinalis, generally known as rosemary, is 
an aromatic evergreen herb which is in use of traditional 
medicine, fragrance, and spice. Rosmarinus officinalis 
contains rosmarinic acid, ursolic acid, betulinic acid, car-
nosic acid and carnosol as major bioactive polyphenolic 
components [27]. Among these components, carnosol 
(Fig. 1a) has a wide range of biological activities, includ-
ing anti-cancer, anti-oxidant, and anti-inflammatory 
effects [28–30].

In this study, we aimed to investigate the underlying 
molecular mechanisms of anti-cancer effects of carnosol 
in malignant human melanoma G361 cells. Our results 
suggest that carnosol treatment induced apoptosis in 
G361 cells through oxidative stress and the interference 
of STAT3-mediated signaling pathway.

Materials and methods
Chemicals and reagents
Carnosol (purity 99%), N-acetyl cysteine (NAC), 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide (MTT) and anti-β-actin antibody 
were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). Antibodies against cleaved caspase-3, -7, -9, 
poly(ADP-ribose) polymerase (PARP), Bcl-2, Bcl-xl, 
Bax, cytochrome c, STAT3, p-STAT3 (Y705), Src, p-Src, 
cyclin D1, D2, D3 and survivin were bought from Cell 
Signaling Technology Inc. (Beverly, MA, USA). Anti-
bodies against p53, murine double minute-2 (Mdm2), 
and horse-radish peroxidase-conjugated secondary 
antibodies were purchased from Santa Cruz Biotech-
nology (Paso Robles, CA, USA). The 2′,7′-dichloro-
fluorescein diacetate (DCF-DA) was procured from 
Invitrogen (Carlsbad, CA, USA). Hank’s balanced salt 
solution (HBSS) was purchased from the Meditech 
(Herndon, VA, USA).

Cell lines and cell culture
G361 cells were obtained from American Type Culture 
Collection (ATCC) and maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10% 
fetal bovine serum and antibiotics (100  U/ml penicillin 
G and 100 mg/ml streptomycin) at 37 °C in a humidified 
incubator with 5% CO2-containing atmosphere. In all 
experiments, cells were seeded at 50–60% confluency. All 
chemicals were dissolved in ethanol and the final concen-
tration of ethanol was less than 0.1% in culture media.

Cell viability assay
The effect of carnosol on cell viability was measured by 
MTT assay. Cells were plated at 2 × 103 cells/well onto 
a 96-well plate and incubated with 100  µl of carnosol-
containing media at 37 °C for indicated time. Thereafter, 
10 μl of MTT stock solution (5 mg/ml) was added to each 
well and incubated for 4 h. Medium was removed, insolu-
ble formazan was dissolved in DMSO and absorbance at 
550 nm was measured by using microplate reader (Tecan 
Trading AG, Switzerland). Cell viability was described as 
the relative percentage of control, and calculated based 
on technical triplicate repeats.

Annexin V‑propidium iodide (PI) staining
Annexin V-PI staining was performed using fluorescein 
isothiocyanate (FITC)-Annexin V staining kit (BD Bio-
sciences, San Jose, CA, USA) following the manufac-
turer’s instructions. Briefly, carnosol-treated cells were 
washed with PBS and resuspended in binding buffer 
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containing Annexin V and PI. The fluorescence intensity 
of cells was analyzed by FACSVerse™ (BD Biosciences).

Immunoblot analysis
Cells were harvested and lysed with radioimmunopre-
cipitation assay (RIPA) buffer, and then cell lysates were 
quantified by using a BCA protein assay kit (Pierce 

Fig. 1  Concentration- and time-dependent effect of carnosol on cell viability of G361 cells. a Chemical structure of carnosol. b Concentration- and 
time-dependent decrease of viability of human melanoma G361 cells after carnosol treatment. c The morphological changes of G361 cells after 
dose-dependent carnosol treatment after 24 h. d The FACS analysis for carnosol-treated G361 cells (20, 50, 100 μM) using Annexin V-PI staining. The 
data were presented by dot plots. Annexin V-positive cells were calculated and plotted as the mean ± S.D e *p < 0.05, **p < 0.01 compared to control 
group
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Biotechnology, Rockford, IL, USA). Equal amount of cell 
lysates was denatured by boiling at 100  °C for 5  min in 
SDA-PAGE sample buffer. The cell lysates were separated 
on 8–15% sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred onto poly-
vinylidene difluoride (PVDF) membrane. The blotto was 
blocked with 5% skim milk in Tris-buffered saline con-
taining 0.1% of Tween 20 (TBS-T) for 1 h at room tem-
perature. The blot membrane was washed for 3 times 
with TBS-T after blocking and hybridized with corre-
sponding antibodies at 4 °C for overnight. After then, the 
blotto was washed for 3 times and incubated for 1 h with 
horseradish peroxidase-conjugated secondary antibod-
ies at room temperature. The membranes were washed 
3 times for 10 min each with TBS-T buffer. Immunoblot 
s were developed using enhanced chemiluminescence 
(ECL) reagent (GE Healthcare, NJ, USA) and visual-
ized with Imagequant™ LAS 4000 (Fujifilm Life Science, 
Japan).

Electrophoretic mobility gel shift assay (EMSA)
The EMSA for STAT3 DNA binding was performed 
using a DNA–protein binding detection kit accord-
ing to the manufacturer’s protocol (GIBCO BRL, Grand 
Island, NY). Nuclear extracts were prepared from cells 
cultured with or without TQ. The STAT3 oligonucleotide 
probe 5′-AGC TTC ATT TCC CGT AAA TCC CTA-3′ 
(Bionics, South Korea) was labeled with [γ-32P] ATP and 
EMSA was performed according to the protocol previ-
ously described [31].

Measurement of ROS accumulation
Cells were treated with carnosol in the presence or 
absence of NAC for 12  h and then loaded with 25  μM 
of DCF-DA. After incubation for 30 min at 37  °C in 5% 
CO2-containing atmosphere, cells were washed twice 
with HBSS solution, and examined under a fluorescence 
microscope to detect the intracellular ROS. The posi-
tive control cells were treated with 500 μM of hydrogen 
peroxide (H2O2). For flow cytometry, cells were trypsi-
nized and re-suspended in growth media, then cells were 
applied to FACSVerse™ for further analysis.

Statistical analysis
The data were expressed as mean ± SD based on at least 
triplicate repeats, and statistical analysis between each 
single experimental group was performed using the Stu-
dent’s t-test, and p value less than 0.05 was considered 
statistically significant.

Results
Effect of carnosol on cell viability in human melanoma 
G361 cells
To examine the effect of carnosol on the viability of 
human melanoma G361 cells, we performed MTT assay 
after treatment of carnosol. As shown in Fig. 1b, carno-
sol significantly reduced cell viability with a time- and 
concentration-dependent manner in comparison to 
the untreated cells. Carnosol treatment also induced 
the apoptosis-like morphological changes as the dose 
increases in G361 cells (Fig.  1c). We further analyzed 
these morphological changes after carnosol treatment 
by Annexin V-PI staining and calculated the number of 
Annexin V(+)/PI(−) cells. At 100 μM of carnosol-treated 
group, the cells were revealed approximately 80% of the 
apoptotic cell population as compared to untreated cells 
after 24 h of treatment (Fig. 1d, e). These results showed 
that the treatment of carnosol to G361 cells dramati-
cally increased apoptotic cell death as compared with 
untreated control cells.

Effect of carnosol on activation of caspases, levels 
of anti‑apoptotic Bcl‑2 family protein, and p53
The caspase cascade is one of the key components in 
induction of apoptosis, and is closely linked to mito-
chondrial proteins that control the mitochondrial mem-
brane permeability [32]. To elucidate the involvement of 
caspases and Bcl-2 family proteins in carnosol-induced 
apoptosis, we assessed the cellular levels of cleaved cas-
pases, Bcl-2, Bcl-xL, and Bax by immunoblot. After 24 h 
of carnosol treatment with indicated concentration, cas-
pase-9, -7, and -3, which play a critical role in the exe-
cution-phase of apoptosis, were sequentially activated by 
proteolytic cleavage. In addition, cleaved PARP, a well-
known substrate of active caspase-3, was detected in a 
dose-dependent manner (Fig. 2a). In addition, immuno-
blot analysis against anti-apoptotic Bcl-2 family proteins 
revealed that the expression levels of Bcl-2 and Bcl-xL 
were concentration-dependently decreased, while pro-
apoptotic Bax protein was elevated its expression by car-
nosol treatment (Fig. 2b). As shown in Fig. 2c, carnosol 
increased expression level of p53, however, diminished 
protein expression level of Mdm2, a regulator of p53 
through proteosomal degradation, in a concentration-
dependent manner. These data suggest that carnosol 
induces apoptosis through the decrease of Bcl-2 and Bcl-
xL and accumulation of p53 by elimination of Mdm2 in 
G361 cells.
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Inhibition of STAT3 activation and STAT3‑mediated gene 
expression by carnosol
STAT3 plays a key role in cell growth and apopto-
sis through transcriptional activation of diverse genes 
in response to cell stimuli [33]. To further analyze the 
underlying mechanism in carnosol-induced apopto-
sis, the cellular levels of p-STAT3 and the activity of 
STAT3-stimulating protein kinases, Janus kinases (JAK) 
and Src, were examined by immunoblot analysis. Treat-
ment of carnosol in G361 cells inhibited phosphoryla-
tion of STAT3 on tyrosine 705 residue (Fig.  3a), while 
p-JAK and JAK were not detected under the same con-
dition (data not shown). In addition, we observed that 

carnosol inhibited DNA-binding activity of STAT3, 
which is assessed by EMSA (Fig. 3b). Then, we assessed 
the expression levels of survivin and D-series cyclins, the 
representative STAT3-regulated cell proliferative genes. 
As shown in Fig. 3c, the expression levels of Cyclin D1, 
D2, and D3 were gradually decreased by carnosol treat-
ment in a concentration-dependent manner, and the cel-
lular level of survivin was also decreased from 20 μM of 
carnosol treatment. These results suggest that carnosol 

Fig. 2  Effect of carnosol on proteolytic cleavage of caspases and 
protein levels of anti- and pro-apoptotic Bcl-2 family and p53 
in apoptosis of G361 cells. a, b The cellular levels of apoptosis 
marker proteins (cleaved caspase-9, -7, -3, and PARP) and anti- and 
pro-apoptotic proteins (Bax, Bcl-2, and Bcl-xL) in G361 cells after 
carnosol treatment (0, 20, 50, 100 μM) for 24 h. β-actin was as a 
loading control. c The expression levels of p53 and mdm2 in G361 
cells with concentration-dependent carnosol treatment

Fig. 3  Carnosol-induced inhibition of STAT3-mediated signaling 
and gene expression in G361 cells. a G361 cells were treated with 
indicated concentrations of carnosol. The cellular levels of p-STAT3 
(Y705), STAT3, p-Src, and Src were determined by immunoblot.  
b The DNA-bound STAT3 was analyzed after carnosol treatment.  
c Immunoblot analysis was assessed to elucidate the expression 
levels of cyclin D1, D2, D3, and survivin after 24 h treatment with 
indicated concentrations of carnosol
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Fig. 4  Increase in total ROS level after carnosol treatment in G361 cells. a Cells were treated with carnosol (20, 50 or 100 μM) for 12 h and cells 
were stained with 25 μM of DCF-DA. Then, intracellular accumulation of ROS was examined by fluorescence microscopy (×200) or analyzed by 
flow cytometry (b, left panel). H2O2 (500 μM)-treated cells were used as positive control. The increase in the intensity of DCF-DA fluorescence was 
compared to blank group, and plotted as a graph using geomean value (c, right panel). **p < 0.01 compared to control group
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treatment suppresses activity of Src kinase to activate 
STAT3 and this inhibition down-regulates STAT3-medi-
ated gene expression in G361 cells.

Involvement of ROS in carnosol‑induced apoptosis
Since it is well known that the accumulation of intra-
cellular ROS could induce apoptosis in various cancer 
cells, we examined the involvement of ROS in carnosol-
induced apoptosis. The cells were treated with carnosol 
(20, 50, and 100 μM) for 12 h, and then we stained the 

Fig. 5  NAC-dependent elimination of carnosol-induced ROS generation. Cells were treated with NAC (5 mM) for 12 h with or without carnosol 
treatment (100 μM), then ROS levels were measured by fluorescence microscopy (a) or by flow cytometry (b) after DCF-DA staining. c The percent 
intensity of ROS generation compared to non-stained blank was calculated using geomean value and plotted as a graph. The statistical significance 
was determined by Student’s T-test against non-treated control. *p < 0.01 compared to control group
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cells with DCF-DA to measure intracellular total ROS 
(Fig. 4a, b). The carnosol-induced ROS generation was 
analyzed by fluorescence microscopy and flow cytom-
etry. The treatment of carnosol in G361 cells led to the 
production of ROS in a concentration-dependent man-
ner, especially, 100  μM of carnosol-treated G361 cells 
generated more ROS than H2O2-treated cells. However, 
carnosol-induced ROS generation was attenuated by 
pre-treatment of NAC (Fig. 5).

Prevention of carnosol‑induced apoptosis by scavenging 
of ROS
To explore whether carnosol-induced apoptosis regu-
lated by ROS, we assessed the amelioration of car-
nosol-induced apoptosis including cell viability, 
STAT3-mediated signal pathway, and proteolytic activa-
tion of caspases in NAC-treated G361 cells. Pre-treat-
ment of NAC mitigated carnosol-induced changes on 
the phosphorylation of STAT3 and Src activity (Fig. 6a), 
DNA-binding activity of STAT3 (Fig.  6b), and level of 
cleaved caspases (Fig.  6c). The pre-treatment of NAC 
reduced expression level of p53 and cleaved PARP. These 
findings suggest that ROS play critical roles in carnosol-
induced apoptosis in G361 cells.

Discussion
Carnosol, a phenolic diterpene in rosemary, has been 
reported to exert anti-cancer activities on various cancer 
cells [34, 35]. However, the biochemical basis of carnosol-
induced anti-cancer mechanism remains elusive. In this 
study, we discovered that carnosol could induce apopto-
sis in human melanoma G361 cells in a concentration- 
and time-dependent manner. This apoptosis-inducing 
effect corresponds to the apoptosis by carnosol in other 
cancer cells [34, 36, 37]. In this study, we determined the 
apoptosis-inducing effect of carnosol on G361 cells and 
demonstrated that carnosol treatment would induce 
apoptosis through ROS-dependent inhibition of STAT3 
signaling pathway.

The proteolytic activation of caspase-9 following the 
release of cytochrome c from mitochondria and activa-
tion of apaf-1 by intrinsic apoptotic signals activates 
downstream executioner caspases, such as caspase-3 
and -7, then, initiates apoptosis [38]. During mitochon-
dria-mediated apoptosis, the transition of mitochondrial 
membrane potential is an irreversible step and this pro-
cess is regulated by anti- or pro-apoptotic BCL-2 family 
proteins [39]. According to current reports, the inhibi-
tion of Bcl-2 and Bcl-xL, anti-apoptotic BCL-2 family 
proteins, could facilitate apoptosis and be an overcom-
ing strategy for drug resistance in human melanoma [40, 
41]. From our results, the carnosol treatment revealed 
the proteolytic activation of caspase-3 and the cleavage 

of PARP. In addition, carnosol showed inhibition of Bcl-2 
and Bcl-xL expression, while the expression level of Bax 
was increased. These results suggest that carnosol might 
cause apoptosis through the mitochondria-mediated 
intrinsic pathway.

The cellular level of tumor suppressor p53 is regu-
lated by its cytosolic repressor, Mdm2, through protea-
somal degradation [42]. Negative regulation of Mdm2 
by chemicals stabilizes p53, and induces growth arrest 
and apoptosis in human melanoma cells [43, 44]. In the 
present study, the level of p53 was increased following 
the decrease of Mdm2 after carnosol treatment. These 
results suggest that accumulation of p53 through nega-
tive regulation of Mdm2 might contribute to carnosol-
induced apoptosis.

The mitochondrion is a major subcellular organelle 
producing ROS as a by-product of the oxidative phos-
phorylation process. The numerous researchers have 
been examined chemicals from natural products for 
their anti-cancer activity [45, 46], and their large part of 
anti-cancer activity relies on positive- or negative-regu-
lation of ROS level [47]. In our study, carnosol treatment 
generated ROS from the lowest dose, 20  μM, and this 
increase in cellular ROS level was analogous to 500 μM 
of H2O2-treated positive control group. Moreover, car-
nosol treatment-induced ROS generation in G361 cells 
was decreased by pre-treatment of anti-oxidant, NAC, 
and this pre-treatment of the cells with NAC attenuated 
carnosol-induced cleavage of caspase-3 and PARP. These 
evidences showed that ROS plays pivotal roles in carno-
sol-induced apoptosis.

Separately, several reports support that the expression 
of Bcl-2 and Bcl-xL is mediated by STAT3 in human mel-
anoma models [48], and abnormal activation of STAT3 
exerts effects on proliferation, invasion and migration 
of melanoma cells [49]. Moreover, the inhibiting STAT3 
signal exhibits cytotoxicity and down-regulated expres-
sion of Bcl-xL and metalloprotease-2 and -9 in melanoma 
cells [50]. We assessed the carnosol-induced changes on 
STAT3 signal pathway in G361 cells. STAT3 is activated 
by phosphorylation on tyrosine 705 residue by upstream 
protein kinases, such as JAK2 [51], and Src kinase [52], 
followed by homodimer formation. Our results revealed 
that carnosol treatment decreased phosphorylation on 
STAT3 by Src kinase, and this inhibition on STAT3 phos-
phorylation reduced STAT3-regulated genes including 
Cyclin D1, D2, D3, and survivin. However, we could not 
detect phosphorylation of JAK2 in this model (data not 
shown). These findings suggest that decreased expression 
of Cyclin D1, D2, D3, and survivin by carnosol treatment 
is connected to carnosol-induced apoptosis.

Taken together, we demonstrated that carnosol treat-
ment-induced accumulation of p53, inactivation of 
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Fig. 6  The amelioration of carnosol-induced apoptosis by elimination of ROS. a The NAC-induced restoration in phosphorylation levels of STAT3 
and Src (a), in DNA-bound STAT3 (b). c The diminution of cleaved apoptosis marker proteins and decrease of p53 level after NAC treatment in 
carnosol-treated G361 cells. d, e The decrease of apoptotic cell population by NAC treatment. The percent of apoptotic cell of each group was 
calculated and plotted. **p < 0.01 compared to control group
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STAT3-mediated signal, generation of ROS, and caspase 
cascade cause apoptosis in human melanoma G361 cells. 
Moreover, we described our proposed action mecha-
nism of carnosol in Fig. 7. Our findings would provide a 
molecular basis of carnosol-induced apoptosis in human 
melanoma cells, and might contribute to development of 
anti-melanoma drugs using carnosol.
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