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Abstract 

MiSeq-derived artificial sequences appeared to be of good quality, thus bioinformatics tools failed to remove MiSeq 
artefacts. Even after removing singleton sequences or operational taxonomic units (OTUs), it is not clear how many 
sequence artefacts remained. Here, 16S rRNA genes were amplified from soil, human feces, pig feces, and groundwa-
ter. These were sequenced with five separate runs of MiSeq. Subsequently, each run of MiSeq was compared through 
alpha and beta-diversity analyses. We found more than half the OTUs were not in consensus through the multiple 
MiSeq runs, resulting in varying group-specific biomarker OTUs in each MiSeq run. Thus, differential abundance test 
should be interpreted with caution, and we suggest that results also should be verified further with other quantifica-
tion methods such as qPCR.
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Introduction
In recent times, MiSeq has become a major sequencing 
platform for microbial community analyses. The current 
version of MiSeq allows sequencing both sides of DNA 
fragments up to 50 million reads with 300 bp read length 
in one run. On the other hand, it has been reported 
that output from this platform includes some artificial 
sequences. Caporaso et  al. [3] reported that approxi-
mately 10,000 of operational taxonomic units (OTUs) 
were observed when 1 million reads were obtained from 
a mock community containing 67 different species. This 
inflated number of species was considered to be machin-
ery artefacts, thus called ‘artificial OTUs’ and can be min-
imized by removing singletons [8] or applying minimum 
abundance threshold [1]. While these suggestions help to 
reduce computational workload and increases accuracy 
of results, as these methods do not completely remove 
artificial OTUs, leaving left-over artificial OTUs that 
need further investigation. Linear discriminant analysis 
effect  size (LEfSe) [7] is a method to identify metagen-
omic biomarkers based on effect size estimation. In many 
recent microbiome-based studies, this method has been 

widely applied to identify differentially abundant OTUs. 
We applied this method to identify biomarker species 
that are representative of either human feces, swine feces, 
soil, or groundwater.

Materials and methods
DNA extraction and Miseq Library preparation
Twelve DNA samples (as listed in Additional file  1: 
Table S1) were extracted using QIAamp PowerFecal DNA 
Kit or PowerWater DNA Isolation Kit (Qiagen, Hilden, 
Germany) and two-step PCR MiSeq library was prepared 
for the V4 region of 16S rRNA gene amplicons according 
to the manufacturer’s instructions. Briefly, the first PCR 
was conducted to amplify V4 region of 16S rRNA gene 
using the primers (515F:5′-TCG​TCG​GCA​GCG​TCA​
GAT​GTG​TAT​AAG​AGA​CAG​GTG​CCAGCMGCC​GCG​
GTAA-3′ and 806R: 5′-GTC​TCG​TGG​GCT​CGG​AGA​
TGT​GTA​TAA​GAG​ACA​GGG​ACTACHVGGG​TWT​
CTAAT-3′) with the following condition: 95 °C for 3 min; 
25 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s; 
and 72 °C for 5 min. The second PCR was conducted to 
attach linkers and barcodes provided by Illumina as fol-
lows: 95 °C for 3 min; 8 cycles of 95 °C for 30 s, 55 °C for 
30 s, 72 °C for 30 s; and 72 °C for 5 min. An equimolar of 
the PCR amplicons was pooled and sent for sequencing 
at Macrogen Inc. (Seoul, Republic of Korea).
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Miseq data processing and analysis
These 12 DNA samples were sequenced five times in five 
independent MiSeq runs. Sequencing data were analyzed 
with MOTHUR 1.42 [6]. In brief, raw sequence data 
were processed through paired-end assembly, aligned 
to SILVA database version 128 [4], and chimera removal 
was achieved with VSEARCH [5]. Singleton sequences 
were removed and the number of reads was normalized 
to the minimum number of reads per sample (n = 16,237) 
prior to downstream analysis. Resulting sequences were 
clustered using OptiClust [9] to assign OTUs with dis-
similarity of 0.03. Alpha and beta-diversity analysis was 
performed using MOTHUR ‘summary.single’ and ‘nmds’ 
subroutines, respectively. Differentially abundant OTUs 
were identified using LEfSe. In addition to OTUs, exact 
sequence variants (ESVs) were assigned to reads using 
dada2 R packages [2].

Results and discussion
Results from alpha-diversity analysis showed that vari-
ation of species richness (Chao) within the five multi-
ple runs was small except for one groundwater sample 
(Gwater#3) and three soil samples [Additional file 1: Fig. 
S1(A)]. Gwater#3 was found to have higher concentra-
tions of nitrate and E. coli compared to the other ground-
water samples (Additional file 1: Table S1), indicative of 
fecal matter or fertilizer contamination. As a result of 
fecal matter contamination, Gwater#3 showed higher 

species richness likely due to the presence of fecal bac-
teria. Including soil samples, these samples with higher 
richness showed variations in Chao as seen in the five 
MiSeq runs. On the other hand, species evenness (Shan-
non) showed a little variation among runs [Additional 
1: Fig. S1(B)], suggesting that species evenness was not 
affected by multiple MiSeq runs, unlike species richness. 
Non-metric multidimensional scaling (NMDS) analy-
sis showed that samples were clustered based on sample 
types (i.e., feces, soil, and groundwater) as well as IDs 
(i.e., #1, #2, and #3) [Additional file 1: Fig. S1(C)], except 
for Human#1, Soil#2, and Soil#3 which differed once 
(Additional file 1: Fig. S2).

The number of shared-OTUs among MiSeq runs 
are summarized in Fig.  1. Environmental samples (i.e., 
groundwater and soil) showed a high number of run-
specific OTUs that were not shared between MiSeq 
runs. On the other hand, fecal samples (i.e., human and 
pig feces) showed that the number of consensus OTUs 
(found through five MiSeq runs) was almost the same 
as that of run-specific OTUs. These results suggested 
that environmental samples were more prone to suffer 
from OTU-inflation. Regardless of the sample types, our 
results suggest that more than half the OTUs are possi-
bly a consequence of sequence artefacts. The maximum 
read abundance of these OTUs is summarized in Addi-
tional file 1: Table S2. Interestingly, non-consensus OTUs 
(OTUs that were not identified through all the MiSeq 

Fig. 1  Number of shared operational taxonomic units (OTUs) among multiple MiSeq runs for DNA obtained from groundwater (a), human feces 
(b), pig feces (c), and soils (d)
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runs) were low in abundance (< 0.7%) except for one 
OTU in Human#2 and Pig#3, which was 1.9% and 1.1% 
abundant, respectively. Therefore, our results imply that 
applying a 0.7% abundance threshold will help to remove 
most of the artificial OTUs. On the other hand, the num-
ber of shared ESVs showed higher portion of run-specific 
ESVs and lower portion of consensus ESVs compared to 
those of OTUs, suggesting that ESVs were more prone to 
sequence artefacts than OTUs (Additional file 1: Fig. S3).

To investigate how these artificial OTUs affected the 
selection of biomarkers, the data set obtained from each 
MiSeq run was subjected to differential abundance tests 
to identify biomarker OTUs that represent the sample 
types used in this study. The numbers of OTUs identi-
fied through the MiSeq runs and their abundance are 
summarized in Fig. 2. Four runs exhibited a wide range 
of OTU abundance (> 40%) for non-consensus biomarker 
OTUs (Fig.  2a). Linear discriminant analysis (LDA) 
scores for these non-consensus biomarker OTUs ranged 
from 2.0 to 5.0; thus, artificial biomarker OTUs cannot 
be screened out based on LDA scores (Fig.  2b). While 
removing low abundance OTUs (i.e., 1%) reduces a sub-
stantial amount of sequence artefacts, a large portion 
of non-artificial biomarker OTUs would be lost as well. 
Thus, simply applying an abundance threshold will lead 
to loss of important findings about consensus biomarker 
OTUs. However, our results indicate that applying lower 
abundance (i.e., 0.1%) may remove most of the artificial 
biomarker OTUs identified up to four runs, while retain-
ing more than 75% of consensus biomarker OTUs.

In summary, the reproducibility of MiSeq was investi-
gated through five runs of the 12 DNA samples isolated 
from soil, groundwater, and human and pig feces. While 
beta-diversity analysis did not show significant difference 
among runs, some samples with higher richness showed 

slight variation in alpha-diversity analysis. The number 
of run-specific OTUs was more than half the total OTUs 
and that the environmental samples tend to suffer higher 
OTU-inflation. A large part of biomarker OTUs identi-
fied through the differential abundance test comprised 
the possible sequence artefacts, but our results indicate 
that a 0.1% abundance threshold reduced the false iden-
tification of biomarker OTUs. Since a differential abun-
dance test for biomarker OTU identification is one of the 
commonly applied approaches in MiSeq-based microbial 
community analysis, our results indicate that biomarker 
OTUs with extremely low abundance should be inter-
preted with caution. Therefore, if results from the dif-
ferential abundance test includes rare OTUs, we suggest 
that verification of the results by quantification methods 
such as qPCR or colony counting may be applicable if 
species-specific primers and selective agars are available.
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