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Abstract 

Fluorine-containing compounds are widely used because they have properties required in textiles and coatings for 
electronic, automotive, and outdoor products. However, fluorinated compounds do not easily break down in nature, 
which has resulted in their accumulation in the environment as well as the human body. Recently, the enzymatic 
defluorination of fluorine-containing compounds has gained increasing attention. Here, we review the enzymatic 
defluorination reactions of fluorinated compounds. Furthermore, we review the enzyme engineering strategies for 
cleaving C–F bonds, which have the highest dissociation energy found in organic compounds.
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Introduction
Because perfluorinated compounds (PFCs) repel both 
water and oil, they are used as durable repellent treat-
ments for textiles such as outdoor clothes and for home 
products such as carpets [1]. In addition, PFCs are widely 
used in the production of fluoropolymers such as polyte-
trafluoroethylene (trade name, Teflon), which is widely 
used in coatings for electronic, automotive, and outdoor 
products [2].

However, PFCs are harmful to both the natural envi-
ronment and humans as like other well-known pollut-
ants [1, 3–6]. Furthermore, PFCs are persistent materials 
that do not readily break down in natural environments 
[2]. Some PFCs accumulate in the human body, leading 
to an increase over time of the residual concentration of 
PFCs in the blood and organs [7]. For these reasons, the 
biological decomposition of PFCs has gained increasing 
attention in recent times. The biological transformation 
of fluorotelomer alcohols (a type of PFC) was well sum-
marized in several review papers [8, 9]. Nevertheless, 
the biological pathways underlying PFC decomposition, 

and the corresponding enzymes, have not been well 
elucidated.

On the other hand, fluorinated compounds such as 
fluoroacetate and 5′-fluoro-5′-deoxyadenosine have been 
identified as natural products in nature [10, 11], dem-
onstrating the existence of a biosynthesis pathway for 
fluorinated compounds in organisms [12]. A representa-
tive pathway of this type is the C–F bond forming reac-
tion catalyzed by Streptomyces cattleya fluorinase, which 
converts inorganic NaF into fluorinated compounds [10, 
13, 14]. Fluorinase, 5′-fluoro-5′-deoxyadenosine syn-
thase, catalyzes the conversion of S-adenoxyl methio-
nine to 5′-fluoro-5′-deoxyadenosine in S. cattleya (Fig. 1). 
In addition to our knowledge of the enzymes catalyz-
ing fluorination reactions, previous studies have also 
identified enzymes involved in defluorination reactions 
[15–19].

Here, we review the defluorination reactions of ali-
phatic and aromatic compounds containing fluorine by 
native enzymes, including fluoroacetate dehalogenase, 
fluoroacetate-specific defluorinase, 4-fluorobenzo-
ate dehalogenase, defluorinating enoyl-CoA hydratase/
hydrolase, 4-fluorophenol monooxygenase, and perox-
ygenase-like LmbB2. Furthermore, we review recently 
developed enzyme engineering strategies for C–F bond 
cleavage, which give insights into the decomposition of 
fluorinated compounds. In this review, we do not discuss 
rarely studied enzymes involved in the biotransformation 
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pathway, such as pyruvate dehydrogenase, maleylacetate 
reductase, and enol-lactone isomerase [20–22].

Defluorination by native enzymes
Fluoroacetate dehalogenase
Although the dissociation energy of C–F bond is among 
the highest found in nature, defluorination of fluoroac-
etate was identified in microorganisms, such as Burk-
holderia, Pseudomonas, Delftia, Rhodopseudomonas, and 
Moraxella [23–26]. The C–F bond on fluoroacetate can 
be cleaved by fluoroacetate dehalogenase in such micro-
organisms [15]. Fluoroacetate dehalogenase functions to 
the cleavage of C–Cl bond as well as C–F bond. Kinetic 

parameters (kcat and KM) of Burkholderia fluoroacetate 
dehalogenase have been known as 9.1 mM and 35 s−1 for 
fluoroacetate at 30 °C, while 15 mM and 1.5 s−1 for chlo-
roacetate [27].

The first three dimensional structure of fluoroacetate 
dehalogenase was determined from Burkholderia sp. FA1 
in 2009 [15]. The catalytic triad was identified as Asp104, 
His271, and Asp128 (Fig.  2). Carboxyl group of Asp104 
was suggested as a nucleophile to attack the alpha carbon 
on fluoroacetate in an SN2 reaction. By this nucleophilic 
attack, fluoride ion is released from fluoroacetate, while 
enzyme–substrate (ES) ester intermediate is formed. 
In subsequent, the resulting ES ester intermediate is 

Fig. 1  The fluorination reaction catalyzed by 5′-fluoro-5′-deoxyadenosine synthase known as fluorinase [13, 14]

Fig. 2  The catalytic triad Asp104, His271, and Asp128 on fluoroacetate dehalogenase [15]
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hydrolyzed by H2O which is the second nucleophile acti-
vated by His271. In a later study using quantum mechan-
ical/molecular mechanical (QM/MM) calculations, it is 
revealed that two Arg residues at 105th and 108th posi-
tions are interacted with carboxyl group of fluoroacetate 
by hydrogen bond [28]. His149, Trp150, and Tyr212 sta-
bilize fluorine atom via hydrogen bond, which results in 
reduction of activation energy [28].

In terms of the substrate specificity of fluoroacetate 
dehalogenase, the importance of Trp150 was asserted by 
mutation of the amino acid residue [15]. The Trp150Phe 
mutation resulted in the complete loss of defluorination 
activity without the lack of dechlorination activity [15]. 
In a later study using docking simulation and QM/MM 
calculations, it was suggested that the conformational 
change for SN2 reaction is favorable in C–F bond rather 
than C–Cl bond [27, 29]. In the simulation, chloroacetate 
did not form the reactive conformation for SN2 reac-
tion, because of the longer C–Cl bond [27]. In another 
study, crystal structures of a Rhodopseudomonas palus-
tris fluoroacetate dehalogenase was determined along 
the defluorination reaction of fluoroacetate [30]. In such 
study, Chan and coworkers reported a halide pocket to 
support three hydrogen bonds which stabilize the fluo-
ride ion in the fluoroacetate dehalogenase-mediated 

defluorination reaction [30]. Furthermore, the pocket 
is delicately balanced for fluorine, the smaller halogen 
atom, for the selectivity of fluoroacetate [30].

Fluoroacetate‑specific defluorinase
Fluoroacetate-specific defluorinase has been identified 
in mammals that lives in area where plants capable of 
forming fluoroacetate grow [16]. These mammals detox-
ify fluoroacetate by fluoroacetate-specific defluorinase. 
Fluoroacetate-specific defluorinase has been purified 
from liver cytosol in mouse and rat [31, 32]. The defluori-
nation mechanism of fluoroacetate-specific defluori-
nase is differ from that of fluoroacetate dehalogenase: 
glutathione is involved in the defluorination reaction by 
fluoroacetate-specific defluorinase (Fig.  3). Fluoroace-
tate-specific defluorinase showed similar characteristics 
to glutathione S-transferase (GST) theta and zeta classes 
in liver cytosol (GSTT and GSTZ, respectively) [33, 34].

The definition of fluoroacetate-specific defluorinase 
is still controversial. In a recent study, GSTZ (exactly 
GSTZ1C) has showed the highest fluoroacetate-specific 
defluorinase among all GST isozymes, which is just 3% 
of the total activity of fluoroacetate-specific defluorinase 
determined in cytosol [35]. Kinetic parameters (Vmax 
and KM) of fluoroacetate-specific defluorinase activity 

Fig. 3  Defluorination mechanism of fluoroacetate by fluoroacetate-specific defluorinase [31–34]
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in rat cytosol have been reported as 27.7  mmol F−/mg 
protein/h and 3.8 mM for fluoroacetate [35]. In another 
study, novel fluoroacetate-specific defluorinase, FSD1 
was isolated from rat hepatic cytosol [32]. FSD1 showed 
81% of the total cytosolic activity of fluoroacetate-specific 
defluorinase, without GST activity [32]. FSD1 showed 
about 60% similarity to sorbitol dehydrogenase in amino 
acid sequence, although defluorination activity of sorbi-
tol dehydrogenase has not been reported [32].

Enzymes involved in defluorination of fluorinated 
aromatics
Some enzymes are involved in the degradation pathway 
of aromatics: 4-fluorobenzoate dehalogenase, defluori-
nating enoyl-CoA hydratase/hydrolase, 4-fluorophenol 
monooxygenase, and peroxygenase-like LmbB2 (histidyl-
ligated heme enzyme) for the degradation of fluoroben-
zoate, fluorophenol, fluorobenzene, and fluorotyrosine, 
respectively.

Defluorination of 4-fluorobenzoate and 2-fluoroben-
zoate is catalyzed by 4-fluorobenzoate dehalogenase 
[17] and defluorinating enoyl-CoA hydratase/hydrolase 
[18], respectively. However, the defluorination mecha-
nism of two enzymes is quite differ from each other. In 
the reaction catalyzed by 4-fluorobenzoate dehalogenase, 
defluorination of 4-fluorobenzoate is directly conducted 
without the structural transformation, which was sug-
gested by Oltmanns and coworkers [17]. The research 
group determined fluoride ion and trace amounts of 
4-hydroxybenzoate, the apparent reaction product in 
the conversion reaction of 4-fluorobenzoate by using cell 
extracts of Aureobacterium sp. (Fig. 4) [17].

On the other hand, defluorination of 2-fluorobenzoate 
initiates with substrate activation to yield 2-fluoroben-
zoyl-CoA, which is further converted to F-1,5-dien-
oyl-CoA isomers [18]. By defluorinating enoyl-CoA 
hydratase/hydrolase (DCH/OAH), in the next step, two 
F-1,5-dienoyl-CoA isomers are hydrated to two dif-
ferent isomers including 6-F-6-OH-1-enoyl-CoA and 
2-F-6-OH-1-enoyl-CoA (Fig.  5) [18]. This accompany 
the subsequent defluorination of unstable  6-F-6-OH-1-
enoyl-CoA spontaneously to yield 6-oxo-1-enoyl-CoA 
by HF-expulsion. Stable  2-F-6-OH-1-enoyl-CoA is fur-
ther hydrated by defluorinating enoyl-CoA hydrolase, to 
yield unstable  2-F-2,6-di-OH-cyclohexanoyl-CoA inter-
mediate, which also spontaneously defluorinates to yield 
2-oxo-6-OH-cyclohexanoyl-CoA (Fig. 5) [18].

Defluorination of 4-fluorophenol is directly conducted 
without the structural transformation by 4-fluorophenol 
monooxygenase encoded from Arthrobacter sp. fpdA2 
gene [19]. 4-Fluorophenol monooxygenase catalyzes 

Fig. 4  Defluorination reaction of 4-fluorobenzoate by 
4-fluorobenzoate dehalogenase [17]

Fig. 5  Defluorination pathway of 2-fluorobenzoate [18]. BCR benzoyl-CoA reductase, DCH 5,5-dienoyl-CoA hydratase, OAH bifunctional 
6-oxo-1-enoyl-CoA hydrolase
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NADPH-dependent hydroxylation and defluorination of 
4-fluorophenol, together with flavin reductase encoded 
from the fpdB gene (Fig. 6) [19].

Enzyme catalyzing the direct defluorination of 
fluorobenzene has not been reported, yet. First, 
fluorobenzene is transformed to yield 3-fluoro-cis,cis-
muconate through cascade reactions by three enzymes 
including fluorobenzene dioxygenase, fluorobenzene 
dihydrodiol dehydrogenase, and fluorocatechol 1,2-diox-
ygenase (Fig.  7) [36]. Then, defluorination of 3-fluoro-
cis,cis-muconate conducts to yield cis-dienelactone by 
fluoromuconate cycloisomerase [36]. The other fate of 

3-fluoro-cis,cis-muconate is the further conversion to 
yield 4-fluoromucono-lactone, which has been defluori-
nated into maleylacetate by trans-dienelactone hydrolase 
(Fig.  7) [36]. In addition, 4-fluoromucono-lactone could 
be defluorinated by spontaneous conversion to yield cis-
dienelactone (Fig. 7).

Peroxygenase-like LmbB2 (histidyl-ligated heme 
enzyme) coded by the lmbB2 gene of the lincomycin 
biosynthesis gene cluster in Streptomyces lincolnensis 
catalyzes the defluorination of 3-fluorotyrosine to yield 
3,4-dihydroxyphenylalanine (DOPA) under the pres-
ence of H2O2 (Fig.  8) [37]. At the same time 3-fluoro-
5-hydroxyl-l-tyrosine is also produced by oxidative C–H 
bond cleavage at C5 in the same reaction mediated by 
LmbB2 (Fig. 8) [37].

Enzymes engineering for C–F bond cleavage
Enzyme engineering is a powerful tool for providing new 
functions to the biological catalysts [38–40]. In a recent 
study, C–F bond cleavage by an engineered enzyme has 
been reported [41]. In this study, cysteine dioxygenase is 
engineered by replacing the tyrosine residue at 157th by 
3,5-difluoro-tyrosine (Fig.  9a). Cysteine dioxygenase has 
a protein-derived cysteine–tyrosine cofactor (C–S thi-
oester bond between Cys93 and Tyr157 in human) in the 
enzyme itself [41, 42]. The C–S thioester bond is formed 
by post-translational modification. The engineered 
cysteine dioxygenase catalyzed the defluorination of its 
own 3,5-difluoro-tyrosine residue at 157th during cofac-
tor formation (Fig. 9b) [41].

Fig. 6  Defluorination reaction of 4-fluorophenol by 4-fluorophenol 
monooxygenase [19]

Fig. 7  Defluorination pathway of fluorobenzene [36]
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Fig. 8  Defluorination of 3-fluorotyrosine by peroxygenase-like LmbB2, histidyl-ligated heme enzyme from Streptomyces lincolnensis [37]: a brief 
reaction, and b reaction mechanism
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The C–F bonds have the highest dissociation energy 
found in organic compounds, which results in no ready 
breakdown of the substance containing the C–F bond in 
natural environments. For the reason, some PFCs had 
been considered as a serious organic pollutant in the 
Stockholm convention in 2006. Wide use of F-containing 
compounds has resulted in the widespread pollution in 
the world, which has been urging us to develop defluori-
nation technologies for decompose the compounds. As 
described above, the enzymatic defluorination reactions 
of fluorinated compounds can be catalyzed by employing 
native and artificially designed enzymes. It is expected 
that more successful examples of C-F cleavage will 
appear through the enzyme engineering integrated with 
synthetic biology techniques. In the near future, native 
and artificial defluorination enzymes will play a major 
role in the reduction of the widely spread pollutant con-
taining C–F bond.
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