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Abstract 

Severe inflammatory reactions caused by macrophage activation can trigger a systemic immune response. In the 
present study, we observed the anti-inflammatory properties of hispidin on LPS induced RAW264.7 macrophage 
cells. Our results showed that hispidin treatment significantly reduced the production of cellular NO, IL-6 and reactive 
oxygen species (ROS) while has not inhibitory effect on TNF-α productions. Excitingly, hispidin treatment retains the 
phagocytosis ability of macrophages which enabling them to perform the function of removing foreign invaders. 
Signaling studies showed, hispidin treatment dramatic suppressed the LPS induced mitogen activated protein kinases 
(MAPK) and JAK/STAT activations. In conclusion, our findings suggest that hispidin may be a new therapeutic target 
for clinical treatment of macrophages-mediated inflammatory responses.
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Introduction
Inflammation is an important component of the innate 
immune response and can be caused by a variety of irri-
tants, including invasive pathogenic microorganisms, 
harmful mechanical and chemical agents, cell fragmenta-
tion, and autoimmune responses [1]. On the other hand, 
the inflammatory response can increase microvascular 
caliber and vascular permeability, recruit white blood 
cells and release inflammatory mediators [2]. Although 

the inflammatory response is initially occurs to protect 
the bodies from the damages, but the extensive studies 
have indicated that long-term and excessive inflamma-
tion is associated with various clinical manifestations 
such as arthritis [3], cardiovascular complications [4] and 
tumor progression [5]. Though the non-steroidal anti-
inflammatory drugs (NSAIDs) are widely used as anti-
inflammatory drugs [6], but long-term treatments can 
cause many adverse reactions in the body. Studies have 
shown that gastrointestinal bleeding and other complica-
tions, including peptic ulcers, are associated with long-
term use of NSAIDs [7, 8].

Lipopolysaccharide (LPS), as a component of cell 
wall of Gram-negative bacteria, is one of the strongest 
inflammatory factors found in current research and is 
widely used in the induction of inflammation in animal 
and cell experiments [9–11]. Macrophages activated by 
LPS mainly involve three signaling pathways including 
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NF-κB, MAPKs, JAK/STAT to produce amount of 
cytokines which are essential for procession of inflamma-
tory responses [12–14]. By the way, Toll-like receptor 4 
(TLR4) or CD14-specific receptors on cellular membrane 
can identify and bind to LPS, thereby activating these 
inflammatory signaling pathways in macrophages, which 
leads to release of tumor necrosis factor-alpha (TNF-α), 
interleukin-6 (IL-6), nitric oxide (NO) and other pro-
inflammatory mediators [15]. The accumulation of these 
inflammatory mediators results in increasing the tissue 
and cellular damages which can promote severe inflam-
matory responses in vivo and in vitro [16, 17] Therefore, 
efficiently inhibits the synthesis or release of these pro-
inflammatory cytokines and mediators is an important 
strategy for the treatment of systemic immune response 
syndrome (SIRS).

The “Sanghuang” are well-known traditional medicinal 
fungi which are commonly used in East Asian countries 
[18]. It was reported that “Sanghuang” or its extracts 
have anti-oxidant, anti-bacterial, anti-tumor, regulate 
blood sugar, improve immune response and blood lipids 
functions in clinical treatments [19–21]. A paper pub-
lished in Nature in 2019 showed that during the optimi-
zation of the “Sanghuang” strain, the obtained A67 strain 
had stronger antioxidant activity and inhibited tumor cell 
proliferation than the SH1 strain before optimization. 
Exploring the reasons for this, the author found that A67 
contains more polyphenols than SH1, among which his-
pidin is the most abundant [22]. Hispidin, a polyphenolic 
substance, identified as 6-(3,4-dihydroxystyryl)-4-hy-
droxy-2-pyranone by Edwards in 1961, was first isolated 
from the fruiting body of I. hispidus by Zopf (1889) [23]. 
Subsequently, the researchers isolated hispidin and its 
derivatives from the ethanol extract of the fruiting bod-
ies of Inonotus sp., I. xeronicus, P. linteus and Phellinus 
sp., fermentation products and the fruiting bodies of 
Fomitiporia ellipsoidea [24–26]. Hispidin isolated from 
the fruiting body of Gymnopilus spectabilis showed anti-
oxidant activities, such as scavenging superoxide radi-
cals. It’s antioxidant activity was about 3–5 times that 
of water-soluble vitamin E, which is equivalent to that 
of BHA and caffeic acid [24]. It has also been reported 
that hispidin has anti-cancer, anti-bacterial and hypogly-
cemic regulatory functions [27–29]. Recently, Hong Jun 
Shao et al. has also demonstrated that hispidin can inhib-
ited the macrophage mediated inflammatory response by 
down-regulating the NF-κB activations [30], however, the 
effect of hispidin on LPS induced macrophage ROS lev-
els, phagocytosis as well as cytokines productions and it’s 
molecular signaling mechanisms has remained unclear.

In the present study, we investigated the inhibitory 
effect of hispidin on the release of inflammatory media-
tors, cellular ROS level and phagocytic function in 

RAW264.7 macrophages stimulated by LPS and explore 
the possible intracellular signaling regulated by hispidin 
on LPS induced macrophages.

Materials and methods
Reagents and chemical
Lipopolysaccharides (LPS) and hispidin were both pur-
chased from Sigma (Sigma-Aldrich, St. Louis, MO, USA). 
The fetal bovine serum (FBS) and Dulbecco’s modified 
Eagle’s medium (DMEM) were purchased from Hyclone 
(General Electric Healthcare Life Sciences, Mississauga, 
Canada), penicillin streptomycin (P/S) was purchased 
from solarbio (Solarbio life sciences, Beijing, P. R. China).

Cell culture
The RAW264.7 macrophage cells (Shanghai BOGO 
Industrial Co., Ltd., Shanghai, China), was cultivated in 
DMEM supplemented with 10% FBS and 1% P/S (100 
U/ml and 100  mg/ml, respectively). In the logarithmic 
growth phase, RAW264.7 macrophage cells maintained 
in DMEM at 37 °C and 5% CO2. After pretreatment with 
various concentrations of hispidin they were treated with 
1 μg/ml LPS for the indicated time.

Cell viability assay
RAW264.7 macrophage cells were seeded into 96 well 
plates at a concentration of 4 × 103 cells per well, with 
different concentrations (0  μg/ml to 20  μg/ml) of his-
pidin treated 24  h. Subsequently, a solution of 5  mg/ml 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT; Sigma-Aldrich,) was added to each well 
and then incubated in an incubator (37  °C, 5% CO2) for 
4  h. After incubating 4  h, remove the supernatant and 
add DMSO to dissolve formazan. Finally, use a UV MAX 
kinetic microplate reader (Molecular Devices, LLC) to 
measure the absorbance at 490 nm.

Griess method detect the production of NO
The production of NO is reflected by the color render-
ing degree of nitrite generated after the reaction of cul-
ture medium with Griess reagent. Collect the culture 
supernatants and mix it with an equal volume of Griess 
reagent [0.1% sulfanilamide, 0.1% N-(1-naphthyl) eth-
ylenediamine dihydrochloride and 2.5% H3PO4]. Use a 
UV MAX kinetic microplate reader (Molecular Devices, 
LLC) to measure the absorbance at 540 nm.

Western blotting
Harvested cells were lysed with protein lysis buffers 
(20 mM HEPES-OH, pH 7.0; 50 mM NaCl; 10% glycerol 
and 0.5% Triton X 100) and extracted the total proteins.

Then, the total proteins were denatured for 5 min and 
using 12% sodium dodecyl sulfate-polyacrylamide gel 
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electrophoresis to separate it and transferred into nitro-
cellulose membranes (EMD Millipore, Billerica, MA, 
USA). Using 5% skimmed milk to block the membranes 
for 30  min, at room temperature. They were then incu-
bated with polyclonal rabbit anti iNOS, anti IκB-α, anti 
β-actin; mouse monoclonal anti p-P38, anti p-JNK, anti 
p-ERK, anti P38, anti JNK, anti ERK primary antibod-
ies (dilution, 1:1000) at 4  °C overnight. The membranes 
were washed five times with TBST (Tris buffered saline 
(TBS) containing Tween [150 mM NaCl, 10 mM Tris HCl 
(pH 7.5) and 0.2% Tween-20]) and were subsequently 
incubated with horseradish peroxidase conjugated goat 
anti mouse IgG or anti rabbit IgG for 1 h at room tem-
perature. After removing the excess antibodies by wash-
ing with TBST, specific conjugates were detected using 
a chemiluminescence detection system (GE Healthcare 
Life Sciences, Chalfont, UK) according to the manufac-
turer’s protocol.

Cytokine assays
The concentration of IL-6 and TNF-α in the cell culture 
supernatants were measured by using enzyme-linked 
immunosorbent assay (ELISA) kits for IL-6 and TNF-α. 
RAW264.7 macrophage cells (2 × 105 cells) were plated 
into a 48-well plates and incubated with different con-
centrations of hispidin (0  μg/ml to 20  μg/ml) and 1  μg/
ml LPS for 24 h. In order to determine the concentration 
IL-6 of and TNF-α that had been released from the cells, 
the culture supernatants were collected and measured 
according to the manufacturer’s protocols.

Flow cytometry measure the phagocytosis and ROS
Analysis the phagocytosis of macrophages by flow cytom-
etry according to previously reported methods [31]. 
Alexa 488 conjugated BioParticles (Invitrogen; Thermo 
Fisher Scientific) were added to serum-free medium, 
sonicated, and the cells were incubated at 37  °C for 
15 min. Subsequently, the cells were washed three times 
with phosphate-buffered saline (PBS) and resuspended 
in 500 μl PBS. The internalized fluorescence from 10,000 
cells was immediately detected by using a FACScan flow 
cytometry (BD Biosciences, Franklin Lakes, NJ, USA). 
In order to detect ROS levels, cells were incubated with 
10 mM DCFH-DA (Invitrogen; Thermo Fisher Scientific, 
Waltham, USA), a fluorescent indicator of ROS, which 
was incubated at 37  °C for 15  min, and DCF-DA fluo-
rescence intensity from 10,000 cells was measured using 
FACScan (BD Biosciences). The results were analyzed 
using WinMDI (Version 2.9, BD Biosciences) software.

Statistical analysis
The data are presented as the mean standard error of the 
mean. Differences between experimental groups were 

analyzed by one-way analysis of variance and a Tukey 
test. GraphPad Prism software version 4.0 (GraphPad 
Software, Inc., La Jolla, CA, USA) was used to analyze 
results. P < 0.05 was considered to indicate a statistically 
significant difference.

Results
Hispidin inhibits the production of NO in LPS‑treated 
RAW264.7 macrophage cells
The chemical structure of hispidin is presented in Fig. 1a. 
To ensure the effects of hispidin on macrophage cell 
viability, RAW264.7 macrophage cells were treated with 
hispidin at various concentrations (0, 1, 5 10 and 20 μg/
ml) for 24 h. As demonstrated in Fig. 1b, hispidin has no 
effect on macrophage cell viability. To clarify whether 
hispidin has anti-inflammatory properties, the NO levels 
in RAW264.7 macrophage cell culture supernatants were 
examined. The results showed that treatment with hispi-
din could dose- and time-dependently decrease the pro-
duction of NO in LPS-treated RAW264.7 macrophage 
cells (Fig.  1c, d). Furthermore, the expression level of 
iNOS (an enzyme involved in NO production) protein 
was also observed with western blotting. As shown in 
Fig.  1e–h, hispidin treatment significantly down-regu-
lated the LPS induced iNOS protein expression in a dose- 
and time-dependent manner.

Effect of hispidin on LPS induced production of IL‑6 
and TNF‑α in RAW264.7 macrophage cells
It was well known that TNF-α and IL-6 are the major 
cytokines which produced by macrophage cells response 
to LPS stimulations. To verify whether the hispidin could 
influence the secretion of pro-inflammatory cytokines in 
LPS-treated RAW264.7 macrophage cells, the content of 
cytokines in cell culture supernatants was determined by 
ELISA. The results showed that LPS treatment dramatic 
increased the production of IL-6 which were significantly 
inhibited by treatment of hispidin in RAW264.7 mac-
rophage cells (Fig.  2a, b). Unfortunately, hispidin treat-
ment had no significant effect on LPS induced TNF-α 
production, though there has a slight inhibitory effect at 
6 h (Fig. 2c, d).

Effect of hispidin on LPS induced cellular ROS level 
and phagocytosis in RAW264.7 macrophage cells
ROS has been proved to be an important signaling fac-
tor in LPS-treated macrophages. LPS-treated mac-
rophages produce a large amount of ROS, and activate 
various signaling pathways to induce macrophage over-
activation [32, 33]. To examine whether hispidin affects 
the ROS levels in LPS-treated macrophages, RAW264.7 
macrophage cells were pre-treated with hispidin (20 μg/
ml) for 30  min, followed by treatment with LPS (1  μg/
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ml) for 24 h. Cellular ROS levels were examined by flow 
cytometry and fluorescence microscopy. The results 
showed that LPS treatment upregulated the level of ROS 
in RAW264.7 macrophage cells, which were significantly 
down-regulated by pre-treatment with hispidin (Fig. 3a–
c). Phagocytosis, an important marker of macrophage 
activation, was also detected by hispidin treatment. The 
results showed that LPS treatment significantly increased 
the phagocytosis of RAW264.7 macrophage cells, but 
unfortunately, hispidin treatment could not affect the 
LPS induced macrophage phagocytosis (Fig. 3d–f).

Hispidin exerts anti‑inflammatory effects by suppresses 
LPS‑induced MAPK and JAK1‑STAT3 signaling pathways 
in RAW264.7 macrophage cells
The NF-κB, MAPK and JAK1/STAT3 signaling pathways 
are crucial mediators of pro-inflammatory cytokines 
production in LPS-treated macrophages [14, 34–36]. To 
better define the underlying mechanism of anti-inflam-
matory effect of hispidin in LPS-treated RAW264.7 

macrophage cell, the above three signaling pathways were 
detected. The results revealed that phosphorylation lev-
els of ERK, JNK, and p38 were dramatic up-regulated by 
LPS treatments which were significantly inhibited by his-
pidin treatment in RAW264.7 macrophage cells (Fig. 4a–
d). Furthermore, the effect of hispidin on JAK/STAT 
signaling pathways were also examined in LPS induced 
RAW264.7 macrophage cells. The results revealed that 
hispidin treatment significantly down-regulated LPS 
induced JAK1 and STAT3 phosphorylation levels in 
RAW264.7 cells (Fig.  4e–g). These results comprehen-
sively illustrates that hispidin inhibits LPS-mediated 
macrophage inflammatory response by extensively inhib-
iting intracellular signaling pathways.

Discussion
Inflammatory response plays a key role in the occurrence 
and development of various diseases, while macrophage 
is a target cell for regulating inflammatory related dis-
eases. When stimulated by LPS, macrophage can activate 

Fig. 1  Inhibitory effect of Hispidin on LPS induced NO prodution in RAW264.7 cells. a Chemical structure of Hispidin. b Cells were treated with 
different concentrations of Hispidin and incubated for 24 h. Cell viability was measured by MTT assay. c, d RAW264.7 cells was pre-treated with 
indicated concentrations of Hispidin for 30 min followed by LPS (1 μg/ml) stimulation for 24 h. The levels of NO production was measured by 
Griess reagent. e, f The protein expression levels of iNOS were detected by western blot by treatment with LPS and Hispidin combined with LPS in 
time- and dose-dependent manner. g, h The related protein expression levels were represented with as the mean ± SD. Data are presented as the 
mean standard error of the mean of three different samples. *P < 0.05, **P < 0.01, and ***P < 0.001
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related signal pathways NF-κB, MAPKs, JAK/STAT and 
then secrete a mass of NO, prostaglandin 2, and pro-
inflammatory cytokines, such as IL-6, TNF-α, IL-1β [15].

Nitric oxide (NO) is a highly active diatomic molecule, 
which is catalyzed by NO synthase to produce l-arginine 
in mammalian cells. As the second messenger of intracel-
lular signal transduction, nitric oxide has a wide range 
of pathophysiological functions in the regulation of car-
diovascular, digestive, immune and respiratory systems. 
Nitric oxide synthase includes structural constitutive 
nitric oxides synthase (cNOS) and inducible nitric oxide 
synthase (iNOS). iNOS is almost non-expressed in nor-
mal cells, but only in inflammation, hypoxia, tumor and 
other pathological states, followed by a large number of 
catalytic induced NO generations in a short period of 
time [37]. When macrophages are stimulated by sub-
stances such as LPS, the expression of iNOS is increased 
which in turn induces the secretion of large amounts of 
NO and promote the development of diseases such as 

inflammation [38]. In the process of inflammation, the 
pro-inflammatory cytokines, such as IL-6 and TNF-α 
plays an important role in the pathogenesis of many dis-
eases [17]. Therefore, effectively suppressing the secre-
tion of NO and pro-inflammatory cytokines is one of 
the important strategies to control the inflammatory 
response. In the present study, treatment with hispidin 
could significantly decreased the production of NO and 
IL-6 as well as iNOS protein expression level in LPS-
induced RAW264.7 macrophages cells, but not TNF-α 
(Figs.  1, 2). Our results strongly suggests that hispidin 
could play an essential roles in inhibiting the inflamma-
tory response processed upon LPS stimulation. The dif-
ferent effects of compounds on inhibitory functions on 
TNF-α and IL-6 productions have been reported in many 
researches. Our previous studies have also reported that 
16α, 17α-epoxypregnenolone-20-oxime could inhibit the 
LPS induced NO and IL-6 productions but not TNF-α 
in BV2 microglia and RAW264.7 macrophage cells [39, 

Fig. 2  Effect of Hispidin on LPS induced TNF-α and IL-6 production in RAW264.7 macrophage cells. Cells were pre-treated with 20 µg/ml Hispidin 
for 30 min, followed by treatment with LPS (1 µg/ml) for the indicated durations. a, b IL-6 and c, d TNF-α productions were measured in the culture 
media by enzyme-linked immunosorbent assay (ELISA). Data are presented as the mean ± standard error of the mean for three different samples. 
*P < 0.05, and ***P < 0.001
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40]. Furthermore, is was also reported that knockdown 
of Peroxiredoxin I could efficiently affect the expres-
sion of IL-10 but not IL-1β and TNF-α in LPS induced 
RAW264.7 macrophage cells [41]. These findings sug-
gests that there have different regulatory mechanisms 
on cytokines production upon LPS stimulation in mac-
rophage cells, but possible mechanisms should be further 
studied.

Furthermore, the inhibitory effect of hispidin on cel-
lular ROS level in LPS treated macrophages was also 
showed in our results (Fig. 3). It is well known that mac-
rophages are activated with the increase of ROS and 
causes oxidative stress and amplify the inflammatory 
response [42]. It has been reported that exposure to 
ozone could up-regulate the expression of inflammatory 
mediator, cause lung inflammation; increase MDA level 
and GSH-PX activity; induce oxidative stress in the lung 
tissue; results in leading to worsening of asthma [43]. 
Our results about the inhibitory effect hispidin on ROS 
productions deeply demonstrates that the hispidin can 
be used as a potential anti-inflammatory drug candidate 
for treatment to LPS induced immune responses. When 

exogenous microbial pathogens invade the body, in order 
to eliminate them, macrophages will greatly improve 
their phagocytic ability after being activated. However, 
we examined the effect of hispidin on the phagocytic 
capacity of macrophages induced by LPS and found that 
hispidin had no effect on the phagocytic capacity of mac-
rophages (Fig. 3d–f). The phenomenon that hispidin only 
inhibits the inflammatory response induced by LPS with-
out affecting the phagocytosis capacity has aroused our 
interest, even though we have not studied the phenom-
enon in this study. After consulting the paper, we learned 
that when studying the reason that the Gram-positive 
bacteria Listeria monocytogenes and macrophages can 
coexist, it was found that when the bacteria infects J774 
cells, the PKC family in the cells can translocate, result-
ing in less bacteria entering into the macrophages and 
escaping from the early phagocytes of macrophages. 
Hispidin, a PKC inhibitor [44], can inhibit the transfer 
of PKC β, allowing macrophages to engulf more bacteria 
and reduce the escape of bacteria from early phagosomes 
[45]. This suggests that whether hispidin does not affect 
the phagocytosis of LPS induced macrophages is also due 

Fig. 3  Effect of Hispidin on LPS induced ROS and phagocytosis in RAW264.7 macrophage cells. Cells were pre-treated with 20 µg/ml Hispidin for 
30 min, followed by treatment with LPS (1 µg/ml) for the 24 h. The level of cellular ROS and phagocytosis were detected using (a, d) flow cytometry 
(DCFH-DA for ROS and Alexa 488 for phagocytosis) and (b, e) fluorescence microscopy (DHE (red) for ROS and Hochest for nuclear; Alexa 488 for 
phagocytosis), scale bar = 200 mm. c, f The ROS and phagocytosis were confirmed in a time-dependent durations with flow cytometry and the 
related data were presented as the mean ± standard error of the mean for three different samples. **P < 0.01, ***P < 0.001
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to its ability to inhibit PKC in macrophages, which will be 
proved in subsequent experiments.

Sum up, our results also revealed that hispidin has the 
characteristics of high efficiency and low cytotoxicity in 
macrophage cells (Figs. 1, 2, 3, 4), therefore, we strongly 
believe that hispidin can be used as a candidate drug to 
inhibit inflammatory response and it can be widely used 
in future researches.

The major signaling pathways involved in macrophage 
activation are NF-κB, MAPKs and JAK/STAT. In many 
studies of anti-inflammatory drugs, many of them can 
exert their anti-inflammatory effects by inhibiting the 
activation of the these signaling pathways [14, 34–36, 
46]. Recently, Hong Jun Shao et  al. reported that hispi-
din could inhibit the activation of NF-κB in LPS-induced 
macrophages which results in suppressed the production 
of cytokines productions [30] suggests the anti-inflam-
matory properties of hispidin on LPS stimulated mac-
rophage cells, but the molecular mechanisms remains 
unknown.

MAPKs are serine/threonine protein kinases, which 
mainly include c-Jun N-terminal kinase (JNK), extracel-
lular signal regulated kinase (ERK), and p38 MAPK [47]. 
ERK regulates cell proliferation and differentiation, JNK 
is involved in stress response, p38 is closely related to 
inflammation, apoptosis and other processes. MAPKs, 
which are relatively independent but interconnected 

between different signals, transmit signals from the out-
side of the cell to the inside through a three-stage kinase 
cascade reaction activated by MAPK kinase (MKKK), 
MAPK kinase (MKK), and MAPK [48]. MAPKs play an 
important regulatory roles in the expression and secre-
tion of various inflammatory mediator, especially in the 
macrophages activated by LPS, which can produce ROS 
dependence phosphorylation [49–51]. In the present 
study, Hispidin can significantly inhibit the phosphoryla-
tion of P38, ERK, and JNK (Fig.  4a–d) suggest that the 
inhibitory effect of Hispidin on LPS induced macrophage 
activations were relayed on suppressing the MAPK sign-
aling pathway which were known as ROS-dependent 
activated signaling cascades.

Cytokines signal transduction is mainly through medi-
ating the JAK/STAT signaling pathway [52]. Cytokines 
bind to receptors on cell membrane, causing JAK to be 
phosphorylated which in turn phosphorylates down-
stream of STAT, eventually inducing a transcription 
response and increasing gene expression of related 
inflammatory mediators [53]. In the present study, we 
detected the phosphorylation of JAK1 and STAT3, and 
found that hispidin can slightly inhibit the phospho-
rylation of JAK1 and STAT3. Our results indicates that 
hispidin treatment can also reduce the production of 
inflammatory mediators by inhibiting the activation of 
JAK1/STAT3 (Fig. 4).

Fig. 4  Effect of Hispidin on LPS induced MAPK and JAK/STAT signaling pathways. Cells were pre-treated with 20 μg/ml Hispidin for 30 min, followed 
by treatment with LPS (1 µg/ml) for the indicated durations. a Western blot analysis for p-ERK, ERK, p-P38, P38, p-JNK, JNK proteins expression. b–d 
The related protein expression levels were represented with as the mean ± SD, *P < 0.05 and ***P < 0.001. e Western blot analysis for p-JAK1, JAK1, 
p-STAT3, STAT3 proteins expression. f, g The related protein expression levels were represented with as the mean ± SD, *P < 0.05, ***P < 0.001
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Taken together, our studies suggest that hispidin 
exerts anti-inflammatory properties by attenuating the 
production of NO, IL-6 and intracellular ROS levels in 
LPS-induced macrophages by inhibiting the activation 
of MAPKs and JAK1/STAT3 signaling pathways. Excit-
ingly, hispidin treatment retains the phagocytosis ability 
of macrophages, enabling them to perform the function 
of removing foreign invaders. Our findings may provide 
a new sight of hispidin as a therapeutic target for clini-
cal treatment of macrophages-mediated inflammatory 
responses.
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